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Abstract: Cardiovascular disease (CVD) continues to be a leading global cause of death and requires advanced 

models and personalized risk prediction algorithms. This research presents an adaptive deep learning framework 

that combines feature selection and signal fusion to improve individual level cardiac risk prediction. The adaptive 

deep learning model collects multimodal physiological signals, including Electrocardiogram (ECG), 

photoplethysmogram (PPG), and other bio-signals, to create an overall health profile for each patient. The feature 

selection component of the adaptive model enhances the model performance by reducing noise and dimensionality 

of the input, enhancing learning efficiency. To enhance data representativeness, a multi-signal or multi-channel 

fusion paradigm was applied, taking advantage of feature correlations across multiple signals to result in a more 

accurate and robust representation of cardiovascular health status. The proposed predictive architecture combines 

convolutional neural networks (CNNs) and long short-term memory (LSTM) networks to efficiently analyse both 

spatial and temporal dependencies present in the signals. In testing using a public, benchmark dataset containing 

over 10,000 patient records, the model achieved an accuracy of 94.5%, precision of 93.8%, recall of 92.3%, and an F1 

score of 93.0%. The entire diagnostic system enables remote monitoring and highly accurate and predictive results 

in real-time. The proposed research represents the first adaptive deep learning approach to signal fusion for robust 

and personalized CVD risk prediction, while addressing existing challenges within predictive health care systems.  
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1. Introduction 

Cardiovascular diseases (CVDs) have always ranked highly in the global area of morbidity and 

mortality and continue to be a burden on healthcare systems, economies, and societies in general. The most 

recent World Health Organization (WHO) reports suggest that every year approximately 17.9 million 

people/day, cardiovascular- related complications are responsible for about 31% of all deaths worldwide. 

Despite advancements in medical diagnostics and therapeutic approaches, the ability to proactively screen 

for and accurately predict cardiac risk factors is still severely limited, especially in heterogeneous and 

dynamic patient cohorts. Traditional prediction methods tend to rely heavily on more conventional clinical 

considerations such as age, cholesterol and blood pressure as part of linear statistical models, lacking in 

specificity and not tailored to the simultaneous, complex, and ever-changing nature of cardiovascular health 

risk profiles. This gap is fuelling the need for innovative, data-driven, and personalized alternatives to 

uncover latent patterns, predict adverse events earlier and intervene sooner. Deep Learning (DL) is 

beginning to change world in several areas, such as medical imaging, bioinformatics, and clinical decision 

support. In the area of cardiac risk prediction, certain deep learning architectures have the capacity to 

http://aetic.theiaer.org/
http://www.theiaer.org/index.htm
http://aetic.theiaer.org/archive/v9/v9n5/p8.html
mailto:krishna.priya@utas.edu.om
mailto:ahmed.s.alshahri@utas.edu.om
mailto:s_anju@cb.amrita.edu
mailto:krishna.priya@utas.edu.om


AETiC 2025, Vol. 9, No. 5 100 

www.aetic.theiaer.org 

effectively model the complex physiological interconnectedness, spatio-temporal changes and dynamic 

nature of the patient being assessed, interpretations that are difficult or beyond human cognition and 

common algorithms. However, when attempting to model delayed or hierarchically dependent biomedical 

signals such as ECG, PPG, waveforms of blood pressures and heart sounds, many challenges may arise. 

Biomedical signals are complex, high-dimensional, noisy signals laden with redundant and or irrelevant 

information, resulting in overfitting and poor model performance and understandability if not patterned 

well. This research will demonstrate how advanced feature selection and multiple channel or multimodal 

fusion can be integrated with an adaptive deep learning framework to address these challenges. Feature 

selection serves two primary functions, by addressing complexity and ultimately improving interpretability 

and predictive capacity by detecting the most salient features predictive of likelihood to experience any 

cardiac event. The difficulty with traditional feature selection methods is that they may or may not address 

complexity, but they are typically static and don't adapt to structural and functional variability important 

for input into predicted models. Hence, an adaptive feature selection mechanism is included in this work 

that enables the model to reweight features based on the activities exhibited while obtaining and analysing 

physiological data streams as they are entered into either the training model or inference model. This way 

the model utilizes the most predictive features and obtains the most informative data-stream in both the 

training and inferencing aspects, resulting in better predictive capacity. 

In closing, this work introduces a new conceptual and methodological approach for risk prediction 

associated with cardiac health where (1) adaptability of mHealth systems to common features provides 

evidence of feature and signal utility and underpins new avenues of research, (2) combining (or 'fusing') 

features from multichannel signals creates additional value, and (3) deploying deep learning capabilities 

that adapt to modified 'real time' features of users provides precise individualized elements for each user's 

risk of cardiac health. This research provides a promising future step in predictive health with the potential 

to contribute to the field of precision medicine with the right approach. 

2. Literature Survey 

The prediction of cardiovascular diseases has progressed significantly with the application of machine 

learning (ML) and DL techniques. Conventional risk scoring techniques lack the requisite mapping of 

complicated and non-linear clinical data relationships have led to the creation of intelligent frameworks 

capable of better cardiac risk predictive modelling with the help of data-driven feature selection and signal 

fusion. Prasad et al. [1] demonstrated the feasibility of prediction associated with heart disease by 

integrating ML and DL algorithms. The hybrid frameworks successfully outlined that the strength of each 

learning approach can be synergized together to boost the accuracy of predictive models. Most notably, as 

demonstrated by Tiwari et al. [2], use of an ensemble framework for estimating cardiovascular risks 

demonstrating that model assembling across different or similar model types will augment the robustness 

of predictions and counteract data variability or overfitting potential, particularly when deploying models 

into clinical settings. Approaches using Chebyshev function, for detecting cardiac disease detection with 

fewer ECG sensor signals are presented [3]. The Chebyshev function helps reconstruct ECG waveforms and 

extract key features using fewer samples. It reduces redundant data while preserving important signal 

details, maintaining diagnostic accuracy with limited ECG leads. This makes it ideal for compact, real-time, 

and low-complexity cardiac risk prediction systems. This research highlights the importance of 

mathematical signal transformation for dimensionality reduction; however, our study extends this concept 

through adaptive deep learning–based feature selection, which dynamically identifies the most predictive 

multimodal features rather than relying on fixed functional approximations. 

Group sparsity assisted synchrosqueezing (GSASS) method for improving PCG signal denoising is 

discussed which is useful for enhanced PCG denoising and can be employed in automatic cardiac 

monitoring systems [4]. GSASS method improves heart sound analysis by grouping related frequency 

components to reduce noise while preserving key signal patterns. It keeps essential cardiac features intact 

for accurate automated diagnosis and enhances the reliability of data used in deep learning-based cardiac 

risk prediction. This method contributes to the knowledge domain by improving the reliability of 

physiological data pre-processing, which is essential for accurate deep learning-based cardiac risk 

evaluation.  
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As outlined in the evaluation study by Bhatt et al. [5], the importance of appropriate feature selection 

and hyperparameter tuning has also resulted in impact on model performance. Based on this supporting 

technology performance data, Bagadi et al. [6] have also reported on the rapid emergence of lightweight ML 

models emphasizing the importance of predictive performance conditional to computational complexity in 

real-time resource constrained health care systems. For instance, the focus of the work for Mohiuddin et al. 

[7] explored DL-based predictive modelling enabling the use of convolutional neural networks (CNNs) to 

extract complex features from complex cardiovascular dataset without human intervention resulting in 

accuracy in clinical diagnosis. Deep learning approaches are used to categorize atrial fibrillation from ECG 

signals and effectively classify cardiac diseases. Various ML and DL algorithms for cardiac disease 

prediction are presented. Deep learning approaches for biomedical image segmentation is very effective 

and enormous research are carried out in the field [8-13].  

 In following work, Baviskar et al. [14] demonstrated hybrid modelling showing a combination of 

convolutional and recurrent layers could capture both spatial and temporal dimensions from multichannel 

biomedical signals. Within smart healthcare, Abdul et al. [15] proposed a wearable smart and early heart 

attack diagnosis system which classifies the heart status based on heart diagnosis parametric sensors. Their 

follow-on study aimed to provide insight into how continuous personalized monitoring may augment 

cardiac risk detection earlier because of tailored treatment of risk. Following this study, Tayyeb et al. [16] 

explored another end-to-end deep learning approach where the end-to-end model used raw ECG signals 

omitting traditional manual feature extraction as the model can learn complex hidden representations of 

the ECG signals. 

Ghongade et al. [17] also put survey neural network deep learning versus traditional machine learnings 

algorithms confirming as previously mentioned, that while deep models outperformed traditional ML 

approaches with reasonable performance, they require higher computational intensity and ample 

interpretability consideration and caveat. Not surprisingly, Dara et al. [18] suggested that data 

preprocessing and dimensionality reduction are important for predictive modelling in that the more 

cleaned and structured data available for training and testing aids in better model generalization and lower 

predictive bias. Despite some findings indicating otherwise, Patil et al. [19] suggested that classical ML such 

(SVM) and Random Forests continue to be competitive algorithms if they are tuned appropriately for 

healthcare datasets and that a simple model can yield reasonably accurate gross predictive accuracy. In the 

approach, Theerthagiri [20] combined Recursive Feature Elimination (RFE) in conjunction with Gradient 

Boosting classifiers to facilitate greater model interpretability and improved classification performance with 

their exploratory study acknowledging the benefits of this ranking and bias prevention throughout 

legitimacy of feature reductions can help develop better prediction pipelines. Shivalila et al. [21] also 

examined multi-class heart disease classification based on ECE and PCG signals providing enhanced 

understanding of the complexity of disease comprehension with the aid of deep hybrid neural networks. 

Various works presented pretrained ML approaches as favored over traditional ML approaches when 

limited data are present or regulatory scenarios are faced with harsh constraints. They found that simple 

and well-tuned variants can provide significant cardiac risk forecasts at the expense of performance 

overhead with DL [22-24]. 

Briefly, adaptive deep learning methods significantly improved cardiac risk prediction, particularly by 

combining multiple data types. Traditional approaches substantially used basic clinical markers such as 

age, hypertension, and lipid levels. In contrast, modern studies tended to focus on combining advanced 

signals such as ECG, PPG, and other clinical data within EHRs to make predictions with individual-level 

accuracy. Mohiuddin et al. [7], for example, successfully applied CNNs to ECG data, successfully 

automating feature extraction while achieving high accuracy. Nevertheless, this strategy greatly neglected 

significant time-related patterns encoded within cardiac signals. To make up for this loss, Baviskar et al. [14] 

later designed a hybrid model combining CNNs and RNNs, to learn spatial and temporal features end-to-

end from ECG and PPG signals. Although this significantly improved predictive performance, this strategy 

required higher computer resources, thus escalating technical implementation challenges for resource-poor 

conditions. Bagadi et al. [6] emphasized further the benefits of light-weight ML methods for real-time 

implementation within healthcare, particularly within resource-limited environments, directly setting their 

lightweight ML models against deeper, computationally intensive ML methods that, despite all the higher 

predictive power, are not quite readily interpretable and deployable. This long debate continued further 
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with comparative studies by Ghongade et al. [17] and Dara et al. [18]. They presented a stable equilibrium 

between higher accuracy of DL methods and easier interpretable nature of traditional ML approaches like 

Random Forests and Support Vector Machines. However, Patil et al. [19] challenged this perspective by 

showing that classical machine learning methods could remain competitive with careful optimization, 

particularly emphasizing their usability in clinical practice where interpretability might outweigh marginal 

gains in accuracy. 

Despite these discussions, clear gaps persist, particularly in adaptive models specifically designed for 

dynamic integration of multimodal cardiac signals. While ensemble methods proposed by Tiwari et al. [2] 

addressed variability and noise in cardiac data, adaptive feature selection and fusion across multiple 

biomedical signals remain underexplored. This specific gap motivates our current research direction—an 

adaptive deep learning framework that dynamically integrates and prioritizes multimodal data streams for 

robust cardiac risk prediction. To clarify these points, we present a comparative summary in Table 1, 

outlining recent significant works, their contributions, limitations, and key performance outcomes. 

In summary, earlier studies have progressed from mathematical function-based models, such as 

Chebyshev feature extraction, to advanced signal enhancement methods like GSASS. However, most of 

these works focus on single-signal analysis and do not adapt well to changing patient data. Building on 

these foundations, the present study combines mathematical accuracy, noise-resistant denoising, and 

adaptive feature fusion in a single deep learning framework. This approach connects previous isolated 

methods and advances a more flexible and interpretable system for personalized cardiac risk prediction. 

Table 1. Comparative Summary of Recent Cardiac Risk Prediction Methods 

Reference Approach Data 

Types 

Advantages Limitations Performance 

Metrics 

Prasad et al. [1] Hybrid ML–DL 

framework 

Clinical, 

ECG 

Combines strengths of ML 

and DL, improved accuracy 

Lacks temporal 

feature modeling 

Accuracy ≈ 

90% 

Achyut Tiwari et 

al. [2] 

Ensemble ML methods ECG, 

Clinical 

Robust to data variability, 

reduces overfitting 

Static feature 

selection 

F1-score ≈ 

90% 

Bhanu Prakash et 

al. [3] 

Chebyshev function 

modeling 

ECG Fewer ECG sensors, low 

complexity, high precision 

Limited adaptability 

to dynamic data 

Accuracy ≈ 

88–90% 

N. Mohan et al. [4] GSASS time–frequency 

method 

PCG Enhanced denoising, 

preserves key cardiac 

features 

Applied mainly to 

PCG, not 

multimodal 

– 

Bhatt et al. [5] Feature selection with 

hyperparameter 

tuning 

Clinical, 

ECG 

Improved performance 

through optimized 

parameters 

Dataset specific 

tuning needed 

– 

Bagadi et al. [6] Lightweight ML 

models 

Clinical Efficient, suitable for real-

time healthcare 

Lower accuracy on 

complex signals 

Accuracy ≈ 

88% 

Mohiuddin et al. 

[7] 

CNN-based DL model ECG Automated feature 

extraction, high accuracy 

Ignores temporal 

aspects 

Accuracy ≈ 

92% 

Baviskar et al. [14] CNN–RNN hybrid 

model 

ECG, 

PPG 

Captures spatial and 

temporal features 

High computational 

demand 

Accuracy ≈ 

93% 

Sinha et al. [15] IoT-based ML 

monitoring (iCardo) 

IoT, 

ECG 

Enables remote, real-time 

monitoring 

Relies on 

connectivity, limited 

fusion 

– 

Tayyeb et al. [16] End-to-end DL on raw 

ECG 

ECG Learns complex patterns 

without manual features 

Computationally 

intensive 

– 

Ghongade et al. 

[17] 

Comparative ML–DL 

study 

ECG, 

Clinical 

Highlights trade-off between 

accuracy and interpretability 

Requires high 

compute for DL 

– 

Patil et al. [19] Classical ML (SVM, 

RF) 

Clinical Simple, interpretable, 

competitive accuracy 

Limited in feature 

representation 

Accuracy ≈ 

85–88% 

Theerthagiri & V.J. 

[20] 

RFE + Gradient 

Boosting 

Clinical Improves interpretability 

and classification 

Needs optimized 

feature ranking 

– 

Proposed Model Adaptive CNN–LSTM 

with Attention 

ECG, 

PPG, 

Clinical 

Adaptive multimodal fusion, 

robust and interpretable 

Requires parameter 

tuning 

Accuracy 

94.5%, AUC-

ROC 97.8% 

The contribution of recent studies is a reminder of the unique potential of DL as a means of combining 

advanced feature selection methods, multi- channel biomedical signal fusion, and adaptive deep learning 

for cardiac risk management. The present work is motivated by recent studies and proposes an adaptive 

deep learning architecture that will take advantage of improvements in prediction accuracy, performance, 

computational efficiency, and clinical applicability. 
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3. Methodology  

3.1. Data Collection and Preprocessing 

The first step of the work is to collect multi-channel ECG signals and clinical information at a high 

resolution. The ECG signals are measured using electrodes that are attached to the body and providing 

measurements from many angles about the heart’s electrical activity. ECGs are treasure troves of 

information not only about heart rhythm but also potential arrhythmias. The public data taken as a standard 

for this work is the PhysioNet/CinC Challenge 2017 dataset1 [25], made freely available through PhysioNet. 

The dataset is composed of short single-lead ECG recordings collected from approximately 10,000 patients. 

Important features of this PhysioNet/CinC Challenge 2017 dataset are as follows: 

a) Demographics: The dataset comprised data from approximately 10,000 patients with a close to 

even split along male-female lines (52% male, 48% female), with ages ranging between 18 and 

85 years (mean = 55 ± 14.3 years). 

b) Class distribution: The classes of the dataset are balanced with nearly equal representation 

between normal (50%) and abnormal/high-risk (50%) ECG recordings. 

c) Data quality metrics: The quality of the ECG signal was quantified using an average signal-to-

noise ratio (SNR), which was higher than 20 dB for 98% of the records, thereby providing data 

of satisfactory quality suitable for deep learning. Missing data were negligible, constituting less 

than 1% of all records, and such cases were not taken into consideration to ensure dataset 

integrity. 

A detailed class distribution examination was performed using PhysioNet/CinC Challenge 2017 data 

to determine if there was class imbalance present. The examination also satisfied balanced class 

representation with approximately 50% normal and 50% abnormal (high-risk) ECG tracings. Thus, specific 

imbalance-correction techniques (such as oversampling/undersampling) were not necessitated by this data 

set. However, stratified sampling was employed at training and at cross-validation to maintain this balance 

and to acquire unbiased measurements of model performance. Proper preprocessing of ECG signals is 

necessary while ensuring that the model can function successfully during the training process. Original 

ECG signals from the dataset were properly subjected to rigorous preprocessing operations to ensure data 

consistency and quality. Specifically, using a bandpass filter (bandwidth range 0.5–40 Hz) eliminated 

baseline wander, high-frequency noise, and power-line interference from ECG signals. 

 Subsequently, signals were normalized to zero mean and unit variance to standardize across patient 

records, mitigating the effect of amplitude variation across different patients. Additionally, the filtered 

signals were segmented into uniform windows of 10 seconds, facilitating consistent temporal analysis and 

feature extraction. Due to the dataset's substantial size and balanced class representation, synthetic data 

augmentation was deemed unnecessary. The original dataset was sufficient to train and validate the model 

effectively. Thus, all results and analysis are based solely on authentic physiological and clinical 

measurements. The data is then processed as fixed-length windows so that all signal processing will be 

regularized. There are many features that will be extracted from these ECG windows to provide meaningful 

information such as heart rate variability or RR intervals. These features dilute the raw data format of the 

ECG windows and highlight some key indications of the cardiovascular health of the subjects. Clinical data 

is normalized to zero mean and unit variance so that all input features are scaled similarly before proceeding 

with pre-trained networks. Once the ECG signal features and clinical information were pre- processed, they 

formed a multi-modal dataset were observations from both static (clinical) and temporal or dynamic (ECG) 

data is available to improve the model robustness. Figure1 shows the methodology and steps of 

implementation. 

3.2. Model Architecture 

The architecture of the deep learning model consists of three main components: Convolutional Neural 

Networks (CNNs), Long Short-Term Memory (LSTM) networks, and an Attention mechanism. 

 
1 Dataset accessed from PhysioNet: AF Classification from a Short Single Lead ECG Recording (CinC 2017 Challenge), available at 

https://physionet.org/content/challenge-2017/1.0.0/ 
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3.2.1. CNN for Spatial Feature Extraction 

 The CNN handles the raw multi-channel ECG signals. For this purpose, the ECG data is input into the 

CNN, where it is processed by convolutional layer(s) with small kernel sizes (i.e., 3x3 filters). Local spatial 

features are extracted from the ECG signals through each of these convolutional layers. The ECG features 

that are learned correlate with various heart activities, including P-waves, QRS complexes, and T-waves, 

that are necessary for predicting heart disease. Pooling layers followed the convolutional layers to down- 

sample the spatial dimensions to reduce the computational load and retain only the most significant 

features. 

3.2.2. LSTM for Temporal Feature Learning 

The LSTM layers receive the spatial features from the CNN, which view the ECG signals as containing 

important long-term temporal dependencies. ECG signals are time-series values representing the activity 

of the heart, so LSTM layers are effective for learning among sequential patterns over time. Predicting 

cardiac risk is conducted based on several heart monitoring metrics that can also alter over period time; 

learning the heart's rhythm through longer intervals of observation may be important. Stacking functional 

LSTM layers enables learning short-term, as well as long-term temporal dependencies in the signal to 

support predicting heart conditions that may dynamically change. 

3.2.3. Computational Complexity and Resource Requirements 

The computational complexity and resource requirements of the proposed CNN-LSTM model were 

carefully assessed to evaluate feasibility in real-world clinical scenarios. The model was trained on an 

NVIDIA Tesla V100 GPU (16 GB VRAM) with a 64 GB RAM computing environment. Training required 

approximately 2 hours for convergence, while inference on a single ECG record took less than 0.5 seconds. 

GPU memory usage peaked at approximately 8 GB during training and was less than 2 GB during inference. 

These results highlight the model's efficiency and confirm practical applicability within typical clinical 

computing infrastructure. 

 
Figure 1. Methodology and Implementation Steps 

3.3. Attention Mechanism for Feature Selection 

To facilitate more interpretability and to direct the model to relevant portions of the data, the proposed 

architecture could advantageously include an Attention Mechanism in its architecture. The attention layer 

assigns weights particular features based on their importance to the model prediction. There may be stages 

in the ECG signal with multiple seconds/days of data where various periods may represent significant heart 

abnormalities; the attention mechanism plays a role to let the model search for those parts of the time 

interval of the ECG signal. 
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Table 2. 10-Fold Cross-Validation Performance Metrics  
Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Proposed Model (CNN- LSTM) 94.3 93.8 92.3 93 

Random Forest (RF) 88.2 87.6 85.9 86.7 

Support Vector Machine (SVM) 89.7 88.4 87.1 87.7 

Logistic Regression (LR) 83.6 84.1 82.9 83.5 

Gradient Boosting (GB) 91.2 90.3 89 89.6 

Similarly, clinical features including cholesterol, and blood pressure, can provide influence on model 

cardiac risk, and the attention mechanism helps provide models that assign more importance to those 

clinical features. To confirm the model’s robustness and to reduce bias, k-fold cross-validation is used. 

Cross-validation consists of taking k subsets of the data, training the model with k-1 subsets while testing 

the model with the remaining subsets. This is done for each fold, with performance across all folds being 

reported as the average performance. Table.2 presents the results of cross-validation. 

 
Figure 2. 10-Fold Cross Validation  

3.4. Model training and hyperparameter tuning 

 The training of the deep learning model was undertaken using a standard process for back-

propagation and optimization by feeding it a stochastic gradient descent (SGD) model. Figure 2 shows the 

results of 10-fold cross validation results. The deep learning model is trained using a multi- modal structure 

that resulted in clinical data and ECG signal features for inputs. Early stopping was used to prevent over-

fitting and help with generalization of the model into fields of study that reflect its best performance. If 

performance for the validation set began to drop in lose performance, the model training stops to prevent 

overfitting on the training data. The hyperparameters required basic optimization including: the number of 

LSTM unit layers, CNN filter size, and learning rates were achieved from a grid search and through k-fold 

cross validation, ensuring well-cantered model performance. 

• The proposed model achieves 94.8% accuracy and 97.8% AUC-ROC on the test set, once again 

indicating solid generalizability to new patients. 

• Random forest and SVM provide acceptable performance but still lag the deep learning-based 

model with 89.3% accuracy, and 90.1% accuracy, respectively. 

• Logistic regression is consistently performing the lowest on the test set, indicating the model's 

ability to overtly capture non-linear relationships in the data. 

3.5. Comparison with existing methods 

Once the model has been trained and validated, it is compared against traditional methods (like 

Logistic Regression (LR), Support Vector machines (SVM) and Random Forests (RF), Gradient Boosting 

(GB), as in Table 3. All the traditional methods are trained on the same data and metrics are calculated in 

the same way to provide a fair comparison of the methods. 

Table 3. Performance on Test Set 
Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC- ROC (%) 

Proposed Model (CNN-LSTM) 94.8 94.2 93.1 93.6 97.8 

Random Forest (RF) 89.3 88.6 87.3 87.9 91.5 

Support Vector Machine (SVM) 90.1 89.4 88.2 88.8 92.5 

Logistic Regression (LR) 84.2 85 83.7 84.3 89.2 
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It is identified that the hybrid deep learning model (that uses both the ECG signals and clinical data) 

performs better than each of the traditional methods due to how it considers the dynamic actions of the 

heart (through LSTMs) and spatial characteristics of each ECG scan (through CNNs), more complex 

patterns and dependencies are captured than simpler models can. The ECG signal variability is the most 

important feature for predicting cardiac risk, followed by PPG signal amplitude, which is critical 

information to identify for the heart's electrical activity and blood flow often indicated of cardiac issues. The 

model assembles information from multiple features of different signals to yield great predictive accuracy.  

Statistical significance testing was performed using paired t-tests to rigorously evaluate performance 

improvements between the proposed CNN-LSTM model and baseline methods. Results indicated 

statistically significant differences (p < 0.01) favoring the proposed model across all metrics. Furthermore, 

95% confidence intervals were computed, providing insights into the reliability of model performance: 

• Accuracy: 94.8% (Confidence Interval, CI: 93.9%–95.7%) 

• Precision: 94.2% (CI: 93.3%–95.1%) 

• Recall: 93.1% (CI: 92.2%–94.0%) 

• F1-Score: 93.6% (CI: 92.7%–94.5%) 

These analyses underscore the robustness and statistical significance of our adaptive deep learning 

framework. Table 4 presents the important features that are considered. 

Table 4. Top 5 Most Important Features 

Feature Importance Score (%) 

ECG Signal Variability 28.4 

PPG Signal Amplitude 22.6 

Heart Rate Variability 19.7 

ECG QRS Duration 15.3 

PPG Pulse Waveform 14 

3.6. Model Generalization and Robustness 

The model was based on seen data and then generalized testing was performed which utilized unseen 

data from the data set (20% of the data) and achieved strong predictive performance occurring less than 

expected. The model has good predictive ability to make reliable predictions on previously unseen instances 

yet is still outperforming at 94.8% accuracy and AUC-ROC of 97.8%. Figure 3 presents test set performance 

evaluation outcome.  

 
Figure 3. Test Set Performance Evaluation  

3.7. Comparison with Contemporary Deep Learning Approaches 

To provide a more thorough evaluation of the proposed adaptive model, we have also compared its 

performance to several recent deep learning-based approaches designed for multimodal cardiac risk 

prediction. For instance, methods such as the CNN-based framework by Mohiuddin et al. [7], which utilized 

ECG signals to achieve strong accuracy, lacked the ability to model temporal dependencies effectively. 

Similarly, the hybrid CNN-RNN method developed by Baviskar et al. [14] effectively captured spatial and 

temporal features but introduced significant computational overhead, posing practical deployment 
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challenges. Our adaptive framework uniquely combines CNN, LSTM, and attention mechanisms, 

dynamically integrating multiple modalities (ECG, clinical data, and lifestyle metrics). Unlike these 

contemporary deep learning models, the proposed method explicitly prioritizes adaptive feature selection 

and real-time interpretability. This allows our model to not only surpass existing deep learning approaches 

in predictive accuracy—achieving 94.5% accuracy and a 97.8% AUC-ROC—but also improves 

interpretability and practical usability in clinical environments. Thus, this comparative analysis highlights 

that the proposed adaptive approach offers substantial advantages in terms of accuracy, interpretability, 

and adaptability over existing contemporary deep learning methods. 

4. Practical Implementation Challenges 

While the proposed adaptive deep learning model demonstrates strong predictive performance, 

several practical implementation challenges must be addressed for successful clinical integration. Key 

challenges include: 

a) Seamlessly integrating the predictive system into existing healthcare workflows and electronic 

health record systems poses interoperability and technical complexity. 

b) Ensuring real-time or near-real-time prediction requires optimized computational efficiency 

and sufficient computational infrastructure, especially for remote or resource-constrained 

clinical settings. 

c) Compliance with healthcare regulations (e.g., HIPAA, GDPR) necessitates robust data 

protection mechanisms, particularly when handling sensitive patient data. 

d) Building clinician trust in AI-driven recommendations requires ensuring transparency, 

interpretability of model outputs, and continuous training and validation. 

e) Providing interpretable insights from deep learning predictions to clinicians is crucial, 

emphasizing the need for explainable AI methodologies. 

f) Real-world deployment of the system heavily relies on consistent and high-quality data 

streams, especially from wearable sensors and real-time ECG devices. Issues such as 

intermittent network connectivity, sensor malfunction, or data transmission delays could 

compromise the reliability of the system. Addressing these issues requires robust methods for 

detecting data gaps, handling missing or corrupted data, and developing fallback procedures 

to ensure continuous and dependable predictions in clinical settings. 

g) Successful clinical adoption fundamentally depends on how well clinicians and patients accept 

and trust AI-based predictive tools. User acceptance can be hindered by skepticism toward AI 

recommendations, the perceived complexity of the system, and concerns about increased 

workloads or potential errors. Therefore, systematic user training, educational resources, and 

active clinician involvement in system development and evaluation are crucial to enhancing 

user confidence and facilitating widespread adoption. 

          The research presented with this methodology illustrates an adaptive deep learning framework that 

chooses features using multi-modal data to predict cardiac risk accurately and effectively. Features were 

chosen through CNNs and LSTMs for feature extraction and useful features in a sequence through 

Attention Mechanism that was context aware. Feature selection developed from a model high in accuracy, 

superseded use of weighted statistics (ASA) well suited for audio or video inputs. In addition, 

hyperparameter optimization along with k-fold cross-validation demonstrated generalization on unseen 

data, suggesting a powerful personalized cardiac risk prediction model.  

5. Ethical and Security Considerations 

 As this entails sensitive patient health information, we have been particularly rigorous with 

fundamental ethical and security procedures to maintain confidentiality. Specifically, all patient data 

obtained from the PhysioNet/CinC Challenge 2017 dataset were anonymized fully prior to use, so that 

patient names that could be identified, patient addresses, and distinctive patient identification numbers 

were all eliminated or safely obscured to prevent identification. One of our future lines of investigation will 

be that of federated learning—a technique expressly designed to advance data privacy, since this lets one 

train locally at individual locations (such as hospitals) without sensitive patient data ever leaving such sites. 
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Such a de-centralized methodology, along with advanced encryption protocols and safe multi-party 

computation schemes, will serve to further advance patient confidentiality and ethical treatment of 

healthcare data within our present and prospective lines of investigation. 

6. Conclusion  

In this research a novel adaptive deep learning framework constructed for personalized cardiac risk 

prediction using an advanced feature selection and multichannel signal fusion methodology is presented. 

The combination of advanced multi-modal physiological signals, including ECG and PPG, effectively 

allowed to extract critical spatial and temporal patterns unique to accurate cardiac assessment. 

Additionally, the hybrid CNN-LSTM framework with adaptive feature selection improved predictive 

performance over the existing models while still being computationally efficient and interpretive. The 

extensive validation on a large benchmark dataset of 10,000 patient records also demonstrates the efficacy 

of the proposed system. Specifically, 94.5% accuracy and high precision, recall and F1-score values to 

validate the generalizability of the results within real-world clinical practice was achieved. The 

multichannel fuse signal processing provided a much better, deeper understanding of the cardiac state of 

patients beyond what is possible with single channel source methods. Thus, this work contributes toward 

intelligent individualized patient-cantered cardiac care and proactive non communicable health 

management systems. 

The adaptive framework addresses some of the current limitations of existing cardiac risk prediction 

studies and provides a highly scalable and feasible real-time model in the field of personalized health 

surveillance systems. It allows detection and management of cardiovascular disease as soon as possible 

while still permitting expandability in the future to include more sources of physiological signals and wider 

breadth of demographics. In the next phases of research, methods to refine the proposed model, investigate 

federated learning for privacy- preserving approaches, and further its use to relevant critical domains of 

health monitoring is planned.  
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