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Abstract: Securing the edge layer is essential in modern cybersecurity architectures, particularly for the
Internet of Things (IoT), where resource-constrained devices require robust yet lightweight protection
mechanisms. This paper introduces a novel Neural Cryptography Secure Router (NCSR) framework that
integrates Tree Parity Machine (TPM)-based neural key generation with AES encryption, OpenWRT-based
firewalling, and a virtualized intrusion detection/prevention system. The architecture is implemented using
Raspberry Pi devices at the edge and a Fedora-based host for virtualization and centralized security processing.
The framework features two Raspberry Pi units: the first simulates an IoT node, encrypting sensor data with
TPM-generated keys before transmission via SSH/SCP; the second operates as a secure router, running
OpenWRT and nftables for real-time packet filtering. The Fedora host functions as a multi-layered security
hub, hosting virtual machines (pfSense and Security Onion) for firewalling, deep packet inspection, and threat
analysis via Snort and Suricata. This integrated model eliminates the need for pre-shared keys while ensuring
end-to-end confidentiality and dynamic session key exchange. Empirical evaluations demonstrate strong
performance with minimal resource consumption: 1.2 ms/KB encryption time, 1.1 ms/KB decryption time, 25%
CPU utilization, 95.5% firewall drop efficiency, and a 7% false positive rate. Comparative analysis with existing
solutions confirms the model’s advantages in terms of security, scalability, and computational efficiency,
establishing NCSR as a practical and novel security solution for IoT edge networks.

Keywords: AES Encryption; Edge Layer Security; Firewall; Intrusion Detection and Prevention System
(IDS/IPS); Neural Cryptography

1. Introduction

The Internet of Things (IoT) has emerged as one of the most innovative paradigms of the digital
era. It interconnects billions of devices across healthcare, industry, and urban infrastructures. In spite
of its benefits, IoT networks remain exposed to a wide variety of threats as data travels through
heterogeneous layers and resource-constrained devices. Security in such environments is particularly
challenging due to limited computational power, memory, and energy resources. A comprehensive
survey of IoT threats emphasizes that while blockchain, fog computing, and machine learning are often
proposed as countermeasures, no single approach provides a holistic, resource-aware solution for IoT
protection [1].
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The growth of the Social IoT (SIoT) paradigm, integrating IoT with social networking principles,
adds complexity to the security landscape. The inherent heterogeneity of devices, lack of standardized
protocols, and increasing dependency on trust ecosystems open new attack surfaces, mainly at the
perception, transportation, and application layers [2]. Similarly, broader reviews of IoT evolution
demonstrate that although technical and legal safeguards exist, the absence of robust end-to-end
frameworks continues to hinder widespread and secure IoT adoption [3].

Among emerging approaches, neural cryptography has emerged as a lightweight, adaptive
solution for secure communication. Early studies showed that two artificial neural networks, when
trained on exchanged outputs, could synchronize weights and generate a shared secret key over a
public channel [4]. Complementary IoT-driven models for smart city applications demonstrate how
integrating predictive analytics, real-time data processing, and robust protocols can enhance
responsiveness while maintaining data confidentiality and resilience [5].

Lightweight cryptographic protocols have also been extensively studied as a means to mitigate the
mismatch between strong security demands and device limitations. Modular lightweight solutions,
incorporating distributed key renewal mechanisms and scalable architectures, achieve data
confidentiality and integrity while introducing negligible overhead [6].

Virtualization and edge-oriented designs provide complementary advantages in addressing loT
security. Frameworks such as EdgeMeld illustrate how distributed architectures at the edge can
integrate anomaly detection and adaptive machine learning to mitigate latency, improve scalability,
and enhance robustness against attacks [7]. Similarly, adversarial neural cryptography using generative
adversarial networks (GANs) has been explored to autonomously establish secure connections in IoT
systems without human intervention, reinforcing the adaptability of cryptographic defenses [8].

Adversarial robustness has also gained importance in the IoT security domain. Deep learning-
based systems, while powerful, are highly vulnerable to adversarial perturbations [9]. Likewise,
generative adversarial defense mechanisms have been applied to strengthen continuous-variable
quantum key distribution systems, eliminating adversarial perturbations and securing sensitive
communications [10].

Further advances in neural-based cryptosystems highlight the potential of pseudo-random
number generators and non-linear neural encryption schemes to enhance confidentiality in IoT
environments [11]. Complementary work on lightweight cryptographic protocols tailored for
constrained IoT devices demonstrates reductions in time and space complexity while sustaining high
levels of security, validating their practicality for real-world deployments [12].

In response to these gaps, this study proposes a novel security framework tailored for edge-layer
IoT networks. This paper aims to create an end-to-end Security Framework for IoT networks with a
secure router that manages traffic on the network, employs Neural Cryptography for encrypting
information, and utilizes virtualization and a Root of Trust at the local IoT hub to facilitate process
isolation and detect harmful components.

This framework aims to maintain minimal computational overhead while delivering robust, real-
time security for IoT and small-scale edge networks. The proposed system targets applications ranging
from localized IoT deployments to long-distance secure communications.

2. Literature Survey

The increase in IoT devices and edge computing has led to significant research in lightweight
cryptographic techniques, real-time intrusion detection, and adaptive network security models. Below
are key studies that have influenced the development of the proposed system.

Dall et al. [13] introduced KVM/ARM, a hypervisor integrated into the Linux kernel, which exploits
ARM’s Hyp mode with minimal code changes. Their work showed that virtualization could be
lightweight and feasible even for ARM-based devices, overcoming hardware challenges. Inspired by
this, the proposed work incorporates virtualization techniques (using lightweight hypervisors) to
securely isolate critical components of the system, particularly on the Fedora Hub platform. While
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promising, most hypervisor-based solutions incur non-negligible computational overhead,
highlighting the challenge of balancing security isolation with real-time IoT performance.

Kinzel et al. [14] proposed neural cryptography using Tree Parity Machines (TPM) for dynamic
key generation, offering faster synchronization and lower hardware costs compared to traditional
cryptography. Despite vulnerabilities highlighted by Klimov et al. [15], who exposed potential attack
vectors, the concept remains attractive for resource-constrained IoT environments. Building on this,
Meraouche ef al. [16] proposed a multi-agent adversarial neural network model where Alice and Bob
autonomously learn to use asymmetric public/private keys to secure communication against
eavesdroppers. Their study extended neural cryptography beyond symmetric setups, showing
resilience against stronger adversaries such as leakage and chosen-plaintext attacks. Sun et al. [19]
proposed a Neural Cryptographic Framework for secure key generation and distribution, leveraging
lightweight CNN-based encryption. Collectively, these works illustrate how neural cryptography
evolved from early TPM-based symmetric models to more adaptive adversarial and deep learning
frameworks. However, most remain validated only in simulated or small-scale IoT environments, and
comprehensive real-world testing is still lacking. These pioneering ideas motivate the integration of
neural cryptography in our proposed work for secure key generation and encrypted data transfer
between IoT devices and the centralized hub.

Langiu et al. [17] proposed UpKit's modular update framework that emphasizes secure firmware
distribution across heterogeneous IoT platforms, reinforcing the importance of device-agnostic,
resilient systems. Similarly, Moratelli et al. [18] stressed the critical role of embedded virtualization in
creating isolated execution domains, ensuring that even compromised processes cannot affect the entire
device. These findings inspired the isolation of system components through virtualization while
maintaining efficient, update-friendly architectures at the edge and hub layers. Errabelly et al. [23] also
presented a micro-hypervisor model to isolate crucial processes, reducing malware risks. Taken
together, these studies confirm virtualization’s role in IoT resilience but reveal a common gap: they
prioritize isolation while often neglecting lightweight cryptographic mechanisms, leaving
communication channels less protected. Through a fusion of neural learning, embedded virtualization,
and secure routing, the paper proposes a novel system-level security framework for modern IoT and
edge computing environments.

Using Virtual Network Security Functions (VNSFs), such as VPNs and Intrusion Prevention
Systems (IPS), Canavese et al. [20] presented a security virtualization framework. Although their
strategy emphasizes network-layer security, device-level protection is not entirely covered. This
concept is used in the proposed work by combining pfSense firewall and Security Onion (IDS/IPS) for
network-layer and edge-device security. An adaptive edge-based intrusion detection system that uses
machine learning for anomaly detection was proposed by Hagan et al. [21]. According to their research,
hybrid IDS models increase security but need to be optimized for devices with limited resources. The
current system extends this idea by integrating Security Onion IDS/IPS in the Fedora Hub and using a
Raspberry Pi 2 for local traffic filtering. Tiburski et al. [22] investigated pfSense’s function in network-
layer security, showing how well it works for traffic segmentation and DDoS mitigation. Comparing
these approaches reveals that while firewalls and IDS solutions enhance network defense, they often
operate independently from key management protocols, resulting in fragmented security that our
integrated model seeks to address.

Although they pointed out the significant computational overhead, Errabelly et al. [23]
demonstrated how micro-hypervisors can confine malware to isolated domains. Khan et al. [24]
investigated blockchain-based trust mechanisms for safe IoT communication. While blockchain
enhances data integrity, its energy demands make it unsuitable for lightweight IoT devices. This
contrast highlights the trade-off between strong trust guarantees and resource efficiency. Our system
addresses these concerns through neural cryptography, which provides confidentiality and trust
without excessive computational cost.

Dai et al. [25] proposed an edge-driven security framework for intelligent IoT systems,
emphasizing the integration of edge and cloud computing to expand service capabilities while
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identifying critical adversarial threats. Hoglund et al. [26] introduced BLEND, a framework that
combines secure communication and storage at the application layer while keeping latency low. Ehui
et al. [27] proposed a lightweight mutual authentication protocol for IoT nodes and gateways using
symmetric-key cryptography and frequent session key updates. Both works highlight the need to
reduce overhead in IoT security. Together, these works show that while lightweight authentication and
storage frameworks are emerging, a unified design that couples efficient encryption, intrusion
detection, and virtualization is still missing. Our framework follows this direction by providing real-
time, efficient encryption and secure router-based traffic management.

Other studies have focused on making IoT security scalable and future-ready. Ashrif et al. [28]
proposed PSLAE, a provably secure and lightweight authenticated encryption protocol for machine-
to-machine communication in IIoT, addressing challenges such as denial-of-service, forward secrecy,
and ephemeral secret leakage while keeping storage and computation costs low. Their findings
demonstrated that secure and efficient communication can be achieved in constrained environments
through lightweight encryption. Rehman et al. [29] introduced QESIF, a quantum-enhanced IoT
framework that integrates quantum key distribution with intrusion detection to ensure resilience and
low latency in smart city deployments. These studies collectively highlight the tension between near-
term lightweight cryptographic solutions (e.g., PSLAE) and long-term quantum-ready frameworks
(e.g., QESIF). This dual perspective reinforces the need for adaptable security frameworks that can
evolve with future technological advances.

The proposed work synthesizes advancements from multiple research domains to create a
comprehensive, secure loT framework. It adopts neural cryptography for lightweight, dynamic key
generation, inspired by Sun et al., while integrating virtualized IDS/IPS and pfSense firewall as explored
by Canavese et al. and Tiburski et al. The system incorporates edge-based anomaly detection and
virtualization strategies from Hagan ef al. and Errabelly ef al., ensuring security at both the network and
device levels. By leveraging Raspberry Pi devices for traffic filtering and encrypted data transmission,
the project delivers a cost-effective, scalable, and resource-efficient security model for modern IoT
environments. Table 1 encapsulates recent scholarly endeavors concerning IoT and edge security,
emphasizing cryptographic techniques, virtualization, and trust mechanisms.

Table 1. Comparative analysis of recent approaches in IoT and edge security frameworks
Paper Approach Strengths Limitations ‘

Dall et al.[13] | Kernel-based Virtual Machine on ARM = Demonstrated feasibility of Kernel-level integration only;

Kinzel et al.
[14]

Klimov et al.
[15]
Meraouche et
al. [16]

Langiu et al.
[17]
Moratelli et
al. [18]

Sun et al. [19]

Canavese et
al. [20]

Hagan et al.
[21]

Tiburski et
al. [22]

(KVM/ARM) lightweight hypervisor
Neural cryptography using Tree Parity
Machines (TPM)

Security analysis of Tree Parity
Machines (TPM)
Adversarial  neural  cryptography

(multi-agent model)

UpKit secure update framework
Embedded virtualization
Neural  cryptography  for  IoT
authentication using Convolutional
Neural Networks (CNN)

Security virtualization using Virtual
Network Security Functions (VNSFs)

Edge-based intrusion detection using
hybrid Machine Learning Intrusion
Detection Systems (ML-IDS)

pfSense (open-source firewall) for IoT

virtualization on ARM devices
Low hardware fast

synchronization

cost;

Identified attack surfaces in
neural cryptography
Public/private key learning;

resilient  against  leakage
attacks
Modular; device-agnostic

firmware updates
Strong domain isolation

Lightweight CNN-based
encryption; efficient session
key distribution

Modular and scalable;
enhances network-layer
security

Detects anomalies
dynamically; adaptable
filtering

Robust segmentation;

Distributed Denial of Service
(DDoS) mitigation

limited scalability

Vulnerable to known attack
vectors

Exposed weaknesses in basic
TPM design

Computational overhead for
constrained IoT devices

Requires customization for
heterogeneous platforms
Lacks network-layer security
integration

Limited real-world validation

Ignores device-level
constraints

Resource heavy for IoT
devices

Network-level only; no

cryptographic support
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Errabelly et Micro-hypervisor for malware isolation = Process isolation; supports High computational overhead
al. [23] edge security

Khan et al. | Blockchain-based trust management for | Ensures distributed trust and | Energy-expensive; poor for
[24] IoT integrity lightweight IoT

Dai et al. [25]

Edge-driven IoT security framework

Integration of edge and cloud
for resilience

Complex management

Hoéglund et | BLEND (secure communication and | Secure communication and | Focused on application-layer
al. [26] storage framework) storage; low latency only
Ehui et al. Lightweight mutual authentication = Frequent key updates; simple = Limited scalability studies
[27] protocol design
Ashrif et al. | Provably Secure and Lightweight | Provably secure; efficient for | Constrained to Industrial IoT
[28] Authenticated Encryption (PSLAE) Machine-to-Machine  (M2M) | (IIoT)

communication
Rehmanetal. Quantum-Enhanced Security for IoT = Combines QKD with IDS for Requires quantum
[29] Framework (QESIF) using Quantum | futureproofing infrastructure

Key Distribution (QKD) and Intrusion
Detection System (IDS)

Table 1 highlights that existing IoT security frameworks often focus on isolated aspects such as
encryption, virtualization, or trust management, but rarely offer an integrated solution. Neural
cryptography-based methods [19, 21] are lightweight but lack system-level validation. Virtualization
approaches [20, 22] ensure isolation but omit cryptographic protection. Others [23-24] address
scalability and adaptability but fall short on lightweight encryption. In contrast, the proposed NCSR
framework integrates neural key generation, AES encryption, firewalling, and virtualized IDS/IPS into
a cohesive, low-overhead system, effectively bridging these gaps and enabling scalable, real-world IoT
security.

3. Proposed Design

The proposed system implements a multi-layered IoT security framework combining neural
cryptography, AES encryption, firewalling, and virtualized IDS/IPS. As shown in Figure 1, sensor data
from Raspberry Pi Dev 1 is encrypted using a TPM-based neural key and AES-EAX, then transmitted
securely via SSH. Raspberry Pi Dev 2, running OpenWRT, filters network traffic and logs potential
threats using Snort and NAT. The Fedora-based IoT hub receives the encrypted data, verifies session
keys via Diffie-Hellman exchange, and processes it through virtual machines (pfSense and Security
Onion) for deep packet inspection and threat anaql_)}?/\sis.
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Figure 1. End-to-End Edge-Layer Security Architecture Using Neural Cryptography and Virtualized Intrusion
Detection in IoT
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The IOT network (Figure 2) consists of various sensors (Humidity, Temperature, Ultrasonic)
connected to a microcomputer (Raspberry Pi 1), A second Raspberry Pi running OpenWRT is
configured as a secure wireless access point which provides internet connectivity to IOT Hub running

Fedora OS which collects data from various devices.
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Figure 2. Network Structure of the Secure IoT Edge-to-Hub Communication Framework

3.1 Main Components:

The following are the components (Figure 1) in detail:

3.1.1. Data Collection Node (Raspberry Pi Dev 1)

Sensors: Collect real-time environmental data (e.g., Humidity, Ultrasonic, Temperature).
Sensor Data & Preprocessing: Raw sensor data is captured and optionally to remove noise or
irrelevant metrics.

Neural Cryptography (NC) Key Generation: Generates session keys using neural networks for
enhanced cryptographic strength.

DH Key Verification: Verifies exchanged keys using the Diffie-Hellman method before
encryption.

AES Engine: Performs AES encryption on the processed sensor data.

SQL Database: Encrypted data is temporarily stored locally.

SSH Client: Securely transmits encrypted data to the central IoT Hub via SSH.

3.1.2. OpenWRT Router (Raspberry Pi Dev 2)

Firewall & Traffic Routing: Filters and routes both internet traffic and internal communications.
IDPS Integration: A lightweight Intrusion Detection and Prevention System monitors traffic
and logs malicious activities and anomalies to a log database.

NAT (Network Address Translation): Assists in proper packet forwarding and IP masking
within the local network.

3.1.3. Fedora IoT Hub (Centralized Processing Server)

SSH Daemon: Receives encrypted data from edge devices.

Device Cache: Temporarily stores session data for each connected device.

OEMU Virtual Machine Manager: Hosts different VMs for modular functions:
Security Onion VM: Intrusion Detection and Packet Inspection.

PfSense VM: Manages network firewall rules and inspection.

DH Key Verification & Neural Key Storage: Verifies session keys before decryption.
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e Decryption Engine: Decrypts received data using AES and validated keys.
e Decrypted Data Store: Saves the final readable data for further analysis, visualization, or
archival.

3.2. Network Structure

The network structure of the proposed secure IoT communication framework is depicted in Figure
2. It is composed of distributed edge security nodes and a centralized processing hub, each serving
critical roles in ensuring end-to-end data confidentiality and integrity. Raspberry Pi 1 and Raspberry
Pi 2 are deployed at the edge level, functioning as security-enhanced nodes. Raspberry Pi 1 is primarily
responsible for data aggregation, while Raspberry Pi 2 operates as a traffic-filtering node with firewall
and access point capabilities. Both devices collaboratively capture, pre-process, and filter network
traffic before securely relaying the information to the central unit.

The Fedora-based IoT Hub acts as the core of the security architecture. It handles the management
of firewall policies, monitors intrusion detection system (IDS) alerts, and hosts containerized or
virtualized security services such as pfSense and Security Onion. This modular virtualization approach
enhances the flexibility and scalability of the system in dynamic threat environments. To safeguard
data in transit, secure SSH channels are established between the Raspberry Pi devices and the Fedora
Hub. These channels facilitate encrypted communication, thereby mitigating risks associated with man-
in-the-middle (MITM) attacks and data interception.

3.3 Proposed Algorithm

Algorithm 1. System-Level Secure Framework using Neural Cryptography and Virtualization

Component 1: Raspberry Pi 1 - Data Collection and Encryption
1: Initialize sensors and local SQLite database
2: Train and sync TPM-based Neural Cryptography model
3: while device is active do
4: Read temperature, humidity sensors
5:  Store readings in local database with timestamp
6: if neural key not yet synchronized then
7:  Begin TPM synchronization with Hub
8: if successful then
9:  Save session key
10: else
11: Retry
12: end if
13: end if
14: for all stored rows do
15: Encrypt data using AES-EAX with neural key
16: Insert ciphertext and nonce into encrypted database
17: end for
18: Archive encrypted DB as .tar.gz
19: Transmit archive via SCP to Fedora Host
20: if Transmission success then
21: Clear plaintext and encrypted entries
22: end if
23: Wait for next cycle
24: end while

Component 2: Raspberry Pi 2 — Secure Routing & Firewall (OpenWRT)
25: Initialize OpenWRT router; enable DHCP, DNS, NAT
26: Configure firewall rules using UCI to filter IPs/domains
27: Enable traffic logging via logread, tcpdump
28: while router is active do
29: Monitor packets and apply firewall filters
30: if Intrusion or policy match then
31: Drop or log traffic
32: end if
33: end while
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Component 3: Fedora Host — Decryption and Virtual Security Hub
34: Start SSH daemon; listen for incoming SCP uploads
35: while new archive received do
36: Decompress and extract archive
37: Re-sync TPM model to generate neural session key
38: for all cipher rows in archive do
39: Decrypt using AES-EAX with neural key
40: Store data in centralized SQLite database
41: end for
42: Forward decrypted data to cloud backup
43: end while

Virtualization Layer (Fedora Hub)
44: Start QEMU/KVM VMs:
e  pfSense VM for firewall and routing analysis
e Security Onion VM for IDS/IPS traffic monitoring
45: Connect virtual bridge for traffic flow via VMs
46: Monitor alerts and logs for anomalies using Security Onion
Raspberry Pi 1 serves as the data collection and preliminary encryption unit. It initializes the
connected sensors and maintains a local SQLite database to store real-time readings. A Tree Parity
Machine (TPM)-based Neural Cryptography model is trained and synchronized with the Fedora Hub
for secure session key generation. Sensor data is collected, encrypted using AES-EAX mode with the
neural session key, and then stored in an encrypted database. The database is archived and securely
transmitted to the Fedora Host via SCP. After successful transmission, plaintext and encrypted entries
are cleared. Raspberry Pi 2 functions as a secure router and firewall node using OpenWRT. It provides
DHCP, DNS, and NAT services and enforces firewall rules configured through Unified Configuration
Interface (UCI). Packet monitoring is enabled, and traffic matching intrusion or policy violations is
either dropped or logged.
The Fedora Host acts as the central decryption and security processing unit. It listens for incoming

SCP uploads, decompresses and extracts archives, and re-synchronizes the TPM model to regenerate
the neural session key. Received cipher entries are decrypted using AES-EAX and stored in a
centralized SQLite database. The decrypted data is then forwarded to cloud backup services.The
virtualization environment is deployed on the Fedora Hub to enhance security and modularity.
QEMU/KVM virtual machines are launched, hosting pfSense for firewall and routing analysis, and
Security Onion for intrusion detection and monitoring. A virtual bridge connects the network interfaces
for proper traffic flow and centralized security monitoring.

4. Implementation
4.1. Hardware and Software Requirements

The proposed framework is implemented using lightweight and cost-effective hardware,
supported by a modular software stack optimized for secure data collection, encryption, transmission,
and monitoring. The specifications are summarized in Tables 2 and 3.

4.1.1. Hardware Specifications

The hardware setup includes two Raspberry Pi devices for edge operations and one x86_64
Fedora-based host system for centralized processing and virtualization. Additional components such
as SD cards, Ethernet cables, and optional storage support flexible deployment.

Table 2. Hardware Requirements for Secure IoT Communication Architecture

Raspberry Pi 1 (Dev 1) Model: Raspberry Pi 3B/4B

Role: Sensor data collection, neural key generation, AES encryption
Raspberry Pi 2 (Dev 2) Model: Raspberry Pi 3B/4B

Role: OpenWRT-based secure router with firewall and IDPS
Fedora Host System Processor: x86_64, RAM > 8 GB

Role: Central security hub with decryption and VM hosting
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SD Cards (2x) Capacity: > 16 GB each
Purpose: OS and file system for Raspberry Pi devices
Ethernet Cables Wired connectivity for Pi 2 and Fedora host
Wi-Fi Module/Dongle Enables Pi 2 to operate in Access Point (AP) mode
External Storage (Opt.) USB/SSD for backing up decrypted data locally or to the cloud

4.1.2. Software Stack
The software components were selected to support secure data acquisition, neural key generation,
virtualization, and intrusion monitoring, forming a layered and modular software ecosystem.

Table 3. Software Requirements

Raspberry Pi OS OS for Pi 1 to support Python-based sensor interaction and encryption

OpenWRT Lightweight router OS deployed on Pi 2 for NAT, firewall, and traffic routing

Python 3.x Implementation of AES encryption, neural key logic, and data pre-processing

TensorFlow / Keras Training and synchronization of Tree Parity Machine models for neural key generation
SQLite3 Embedded database used for sensor data storage at the edge and decryption output at the hub
OpenSSH / SCP Secure remote communication and file transmission between edge nodes and the Fedora Host
Fedora Linux OS for the host system supporting QEMU/KVM-based virtualization

QEMU / Virt-Manager | VM hosting environment for pfSense and Security Onion

Security Onion Real-time intrusion detection and deep packet inspection system

pfSense Network segmentation and firewall management via a virtualized interface

Wireshark (Optional) A deep packet inspection tool is used during testing and performance verification
tar, gzip Data compression tools are used for the secure packaging of sensor data archives

4.2. Methodology: Secure IoT Data Communication

4.2.1. Raspberry Pi 1: Data Simulation, Encryption, and Transmission
Raspberry Pi 1 is configured to emulate an environmental monitoring node by generating
synthetic temperature and humidity readings within predefined ranges. These values represent the
plaintext input for the encryption process and are produced in a controlled Python virtual environment
to ensure consistency and reproducibility during testing (Figure 3).
crossplayz@raspberrypi:~/Desktop/dev_1/myev/scripts § 1s

database.py neural_keygen.|
encrypted_session 2025-03-18 11-05-42.tar.gz sensor_data.bb

encrypt_data,db sensor.data.py

neural_crypto_mdel.hs transfer.log

crossplayz@raspberrypi:~/Desktop/dev_1/myev/scripts $ python
Stored -> pythomrsensor_data.py

Stored -> Temperature: 33.26C, Humidity: 52.68%

Stored -> Temperature: 29.56C, Humidity: 77.50%

Stored -> Temperature: 20.75C, Humidity: 65.1%

|

Figure 3. Generation of simulated temperature and humidity sensor data on Raspberry Pi 1

The generated sensor data is stored in a lightweight SQLite database. Each record is timestamped
and uniquely indexed, and a binary state flag (0 or 1) is appended to indicate whether the record has
been successfully transmitted. This approach supports fault-tolerant transmission and simplifies record
tracking (Figure 4).

encrypted session_2025-03-18_11-05-42.tar.gz sSensor_uata.py
vnclxsl send.sh transfer.log
neural_crypto_model.hS
crouuplay!grnspbcrrypl:~/Dalktop/dev_1/ﬂy.v/lcripts S sqlite3 senso
r_data.db

sQLite version 3.40.1 2022-12-28 14:03:47

Enter ".help" for usage hints.

sqlite> select * from sensors_data;

48]2025-04-08 21:24:02|33.26|52.68|0

49]|2025-04-08 21:24:04|29.56|77.58|0

50| 2025-04-08 21:24:06|20.75|65.110

$1|2025-04-08 21:24:08|20.690]50.33|0

52|2025-04-08 21:24:10|33.09|64.17|0

53|2025-04-08 21:24:12|28.44|58.66|0

54]|2025-04-08 21:24:14|290.52|43.83|0

55|2025-04-08 21:24:16|27.78|68.49|0

56| 2025-04-08 21:24:18|27.79]|45.69|0

57|2025-04-08 21:24:20]26.72|45.74|0

58|2025-04-08 21:24:22|22.65|58.48|0

59|2025-04-08 21:24:24|30.49]|40.65|0

60|2025-04-08 21:24:26|28.,02|52.85|0

61]2025-04-08 21:24:28|33.01|69.54|0

sqlite> l

Figure 4. Storage of sensor data with timestamp and transmission status in SQLite database
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Once the data is collected, it is encrypted using the AES algorithm in EAX mode. The session key
is dynamically generated using a Tree Parity Machine (TPM)-based neural cryptographic model. This
method enables high-entropy, lightweight key generation suitable for resource-constrained edge
devices. The encrypted values are written back to the SQLite database for transmission (Figure 5)

[(myev) cro playziiraspberrypi:~/Desktop/dev_1/myev/scripts S 1s
database.py neural_keygen.py
encrypt_data.py sensor_data.db

encrypted _session_ 2025-03-18 11-05-42 . tar.gz sensor_data.py
wcrypt_send.sh transfer. log

neural_crypto_model.hS

(myev) crossplayz@raspberrypi:~/Desktop/dev A/myev/scripts S python
encrypt_data.py

WARNING:absl:Compiled the loaded model, but the compiled metrics ha

ve yet to be built. "model.compile metrics” will be empty until you
train or evaluate the model.
1/1 0s 477ms/step

Obfe7fr31roerfd7f3r30fd7f3rfc6fb7f3f

Params sent

Encrypted and stored data successfully!

(myev) crossplayz@iraspherrypi:~/Desktop/dev 1/myev/scripts s i

Figure 5. Encryption of stored sensor data using a TPM-derived AES-EAX session key

Encrypted data is securely transferred to the central hub via SCP over SSH. The transmission
process is automated through shell scripts, and the data is compressed into .tar.gz archives to optimize
bandwidth usage. After a successful transfer, records are flagged accordingly and old data is deleted

to manage storage efficiently (Figure 6).
] raspbhorrypili~/Donktop/dev A/myov/aoripts S Joncrypt_send.s

(myov) ore »
n

WARNING: absl: Compiled the loaded model, but the compiled metrics have yet to
be built model.compile motrics’ will be empty until you train or evaluate t
he model

A/a O 204mn/nteop

10T F7rarrforfe7rarorfe7raraare7rar
Params sent

Encrypted and stored data successfully!
/nensor_data.db

PNOrypLod_session _2026-04-00_03-08-10.tar. 100% 4107 VOO . BKB/ . ©00: 00
Pata Transmitted, Deleting old records. ..

Dld Records Deleted Succossfully

(myeov) cro laysOraspborrypli=/Desktop/dev. _1/myev/soripts s

Figure 6. Secure transmission of encrypted data archive to the Fedora-based hub and deletion of old records

4.2.2. Fedora Host: Key Verification, Decryption, and Database Reconstruction

The Fedora host receives the encrypted .tar.gz archive through an SSH daemon and stores it in a
session-specific directory. The shared neural session key is verified using a Diffie-Hellman (DH) key
exchange protocol to ensure mutual authentication between nodes (Figure 7).

Figure 9. Successfully decrte sensor data stored in the hub's centralized SQLite database
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After successful verification, the encrypted archive is decompressed into a structured session
folder. File integrity and timestamps are preserved during extraction, enabling orderly batch
decryption (Figure 8).

Using the verified session key, the hub decrypts the sensor data using AES-EAX and reconstructs
it into a new SQLite database. This centralized database mirrors the schema used at the edge and
facilitates further analysis, storage, or visualization (Figure 9).

4.2.3. Raspberry Pi 2: OpenWRT-Based Router

OpenWRT Boot and LAN Verification

Raspberry Pi 2 is configured as a secure edge router using the OpenWRT operating system. Upon
successful flashing and boot basic network connectivity is verified using ping tests to public servers
(e.g., Google), confirming WAN access.

Packet Tracing and Logging

OpenWRT is equipped with logging and packet inspection tools such as logread and tcpdump.
These tools allow tracing incoming and outgoing traffic, enabling detailed inspection of headers, IP
addresses, and protocols. This configuration supports rudimentary intrusion detection capabilities

Domain Blocking via UCI Firewall

The firewall configuration in OpenWRT utilizes the Unified Configuration Interface (UCI) to block
specific domains. IP addresses are resolved using traceroute, and custom firewall rules are appended
via terminal commands. Results are validated through ping and log analysis

4.2.4. Virtual Machines at the Fedora Hub

The Fedora-based host functions as the central security hub, hosting multiple virtual machines
(VMs) for modularized network security tasks. Virtualization is implemented using QEMU/KVM,
managed through Virt-Manager, enabling the deployment of pfSense for firewall operations and
Security Onion for intrusion detection and packet inspection. To ensure strong isolation and
performance consistency, several virtualization techniques were applied. CPU pinning was configured
to dedicate specific processor cores to each VM, reducing contention and improving real-time
responsiveness. Virtual bridge networking was used to route traffic between VMs and physical
interfaces, allowing granular monitoring and filtering. IOMMU (Input-Output Memory Management
Unit) support was enabled to allow device pass-through, which enhances VM access to hardware-level
interfaces while maintaining isolation. Additionally, network segmentation between VMs was enforced
to minimize inter-VM traffic leakage and contain potential threats within their respective domains.

This setup ensures that each security function—firewalling, intrusion detection, and decryption—
is compartmentalized, reducing the attack surface and improving system scalability. The use of
virtualization also allows for independent updates and monitoring, providing operational flexibility
without compromising performance or security.

4.3 Deployment Challenges and Considerations

Real-world IoT environments often exhibit non-deterministic network latency, heterogeneous
hardware performance, and administrative overhead due to distributed security components. These
factors may hinder consistent operation and increase system maintenance complexity. In response, the
proposed framework was designed with modularity and automation in mind:

e Latency Mitigation: By leveraging asynchronous encrypted transmission and secure
session queues, the system accommodates delay variance in SSH/SCP transfers.

e Hardware Heterogeneity: The use of platform-independent software (Python, OpenWRT,
and KVM/QEMU) ensures compatibility across diverse edge devices.

¢ Maintenance Optimization: Automated key management using TPM-based neural
cryptography reduces manual provisioning. System logs, IDS alerts, and VM performance
are centrally managed via Kibana dashboards, improving visibility and manageability.
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These design decisions enhance the framework’s resilience and scalability in real-world
deployments involving diverse IoT and edge infrastructure.

5. Result

This section presents the performance evaluation of the proposed security framework across
cryptographic, firewall, and virtualization layers. Key metrics such as encryption time, intrusion
detection efficiency, resource utilization, and system scalability are discussed.

5.1. Evaluation of Cryptographic Algorithms

To evaluate the cryptographic algorithms, the following metrics were considered:
e Encryption Time and Decryption Time (ms/KB)
e Latency
e Accuracy (% Correctly Encrypted & Decrypted)
Custom Python scripts using time.perf_counter() was utilised to measure algorithm runtimes,
using;:
Encryption time = End time — Start time 1)

The accuracy was calculated using the following formula:

Correctly Decrypted Data
Yy yp % 100

Accuracy (%) =

Total Data Points (2)

Encryption Time (ms/KB)
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Figure 10. The proposed model achieves encryption times comparable to AES and ECC and significantly
outperforms RSA and GAN-based encryption

As shown in Figure 10, the proposed model achieves a competitive encryption time compared to
AES and ECC-based schemes, while outperforming RSA and GAN-based cryptography.

Decryption Time (ms/KB)
35

Time (ms/KB)

Figure 11. Comparison of decryption time (ms/KB) between standard cryptographic algorithms and the
proposed model
Figure 11 illustrates the decryption time performance (in milliseconds per kilobyte) for a range of
cryptographic algorithms. As observed, symmetric ciphers like AES-128 achieve the lowest decryption
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time, whereas asymmetric schemes like RSA-2048 incur the highest. The proposed model achieves a
decryption time of 1.1 ms/KB, positioning itself favorably against existing methods.

CPU Usage (%)
45%

38%

30%

CPU Usage (%)
~
I~
&

18%

13%

104

Figure 12. CPU efficiency of various encryption Algorithms

As illustrated, the proposed approach demonstrates moderate CPU utilization (25%), significantly
lower than RSA (45%) and GAN-based models (38%), supporting its applicability in constrained IoT
devices.

5.2 Comparative Evaluation with Existing IoT Security Frameworks

To contextualize the performance and design of the proposed Neural Cryptography Secure Router
(NCSR), a comparative evaluation is presented in Table 4. This comparison includes recent state-of-the-
art lightweight IoT security frameworks, selected based on relevance to resource-constrained
environments, cryptographic efficiency, and modular design. The table highlights differences in
encryption latency, CPU utilization, scalability, and key management strategies.

Table 4. Comparative Evaluation of Lightweight IoT Security Frameworks

Proposed NCSR | ~1.2 ~25 High (TPM + | Excellent (up TPM-based neural
(this work) virtualized stack) | to 100 nodes) key + AES (no PSK)
BLEND [26] ~0.11 /packet Low (minimal | Medium Moderate PKI-based key
(~0.63 ms/KB) CPU) (application-layer management
only)
Decision-Tree IDS <lms (real-time Very low High (edge + @ High Automated updates;
[27] inference) (~<1ms cloud integration) model-managed keys
runtime)
SPiME (PiM-based | ~0.04 (ms/KB Very low (<5%) | Low (hardware- | Very high | AES-128 key
AES) [28] equivalent) specific) (4000+ units) encapsulation
QESIF  (Quantum- ~20ms average Low  energy Medium (hybrid High QKD + classical
enhanced IoT) [29] latency per session stack) hybrid key exchange

This analysis demonstrates that the proposed NCSR framework strikes a strong balance between
computational efficiency and layered security architecture. Unlike frameworks relying solely on pre-
shared keys or hardware acceleration, NCSR leverages neural cryptography with AES-EAX in a
modular virtualized environment, making it both secure and adaptable to edge IoT deployments.

5.3. Security Analysis of Neural Cryptography

Tree Parity Machine-based neural cryptography provides lightweight and adaptive key
generation. Unlike RSA and ECC, TPM relies on neural synchronization rather than hard mathematical
problems. However, potential vulnerabilities such as synchronization and man-in-the-middle (MITM)
attacks necessitate additional safeguards. The framework addresses this by integrating Diffie-Hellman
key verification and employing AES-EAX for authenticated encryption.
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Table 5. Comparison of TPM-Based Neural Cryptography with RSA and ECC

Key Generation Approach Neural synchronization (TPM) Prime factorization  Elliptic curve log
Key Entropy High High High
Computational Cost Low High Moderate
Suitability for IoT Devices Excellent Poor Fair

Resistance to MITM Attacks Moderate (with DH verification) = Strong Strong
Encryption Strength Enhanced via AES-EAX Strong Strong
Vulnerability Synchronization attacks Quantum threats Quantum threats
Cryptographic Maturity Emerging Established Established

By combining TPM with AES-EAX and DH verification, the framework achieves both lightweight
performance and improved resistance to cryptographic attacks, making it suitable for secure IoT
communication.

5.4. Firewall on OpenWRT router (Raspberry Pi 2)

To evaluate the effectiveness of the firewall and intrusion detection system (IDS) deployed on
Raspberry Pi 2 running OpenWRT, several performance metrics were analyzed. The key parameters
include firewall rule evaluation time, packet drop efficiency, false positive rate, and traffic throughput.

To evaluate the firewall effectiveness, the following metrics were considered:

e Firewall Rule Evaluation Time
e  Packet Drop Efficiency (%)
e False Positive Rate (%)
e Traffic Throughput (Mbps)
The tcpdump was employed to capture and analyze real-time traffic logs; and hping3 was used to

simulate DDoS attacks and generate malformed packets to test the system's resilience. The following
evaluation formulas were used:

Drop Efficiency (%) =

(Dropped Malicious Packets)

%100 3)

(Total Malicious Packets)

(Benigh Packet Flagged) +100 (4)

False Positive Rate = -
Total benign Packets

Raspberry Pi 2 (Firewall & IDPS) Performance
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Figure 13. Firewall and IDPS Performance

The firewall was configured using UCI to define custom rules for domain and IP filtering. During
testing, the system effectively detected and blocked malicious traffic while maintaining stable
throughput. As shown in Figure 13, the configuration achieved a packet drop efficiency of 95.5% and
sustained a throughput of 48 Mbps. The false positive rate remained within an acceptable range at 7%,
demonstrating reliable filtering without excessive disruption to legitimate traffic. These results confirm
that the OpenWRT-based Raspberry Pi 2 router is capable of handling edge-layer security operations
efficiently, even under simulated attack conditions.

5.5. Virtualization Performance on Fedora Host

To evaluate the virtualization performance, the following metrics were considered:
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e VM Boot Time

e (CPU Isolation Efficiency

e Memory Overhead

e Event Logging Rate (events/sec)

The tools used include: htop, virt-top, dstat for resource monitoring and Security Onion dashboard

(via Kibana) for IDS analysis. The following evaluation formulas were used:
Total Logged Events

Event Logglng Rate = Observation time (s) (4)
CPU Isolation Efficiency = (1 — CPU Utllization Leakage

Total CPU Assigned ) * 100 (5)
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Figure 14. Virtualization performance on the Host

As depicted in Figure 14, the Fedora host maintained a memory overhead of approximately 450
MB and a logging rate of 320 events/sec, confirming the virtualization layer's ability to handle real-time
analysis with minimal performance degradation.

Table 6. Secure IoT Framework Evaluation Summary

Cryptographic Engine Encryption/Decryption Speed Moderate — Balanced for real-time IoT usage
Key Generation Adaptability High — Dynamic per session using neural crypto
Security Strength Strong — Combines AES with neural key logic
Computational Overhead Low — Optimized for edge devices

Raspberry Pi 2 (Firewall & Packet Filtering Efficiency High — Effectively drops unauthorized packets

IDPS) Intrusion Detection Capability Moderate — Detects common and abnormal patterns
Processing Load Low — Suitable for lightweight deployments
False Alarm Rate Moderate — Tuned with custom rules

Fedora Host (Virtualization @ VM Isolation and Resource Control High — Secure and efficient via KVM/QEMU

Layer) Scalability of Security Infrastructure High — Supports expansion and monitoring
Monitoring and Logging Speed Efficient — Near real-time alert generation

Key Management & | Session Key Flexibility High — Unique keys for each transmission

Exchange Secure Exchange Protocol Robust — Utilizes Diffie-Hellman securely
Synchronization Delay Low — Acceptable for real-time use

Overall System Integration Modularity and Component High — Each module functions independently
Interoperability
Suitability for IoT/Edge Networks Excellent — Designed for constrained devices
Maintenance and Update Feasibility Manageable — Uses standard tools and scripts

The results in Table 6 demonstrate that the proposed system achieves high adaptability, strong
security, and low overhead across all layers, making it well-suited for real-time IoT and edge network
deployments.

5.6. Scalability Analysis

To evaluate the scalability of the proposed framework, simulated workloads were generated to
emulate deployments of 10, 25, 50, and 100 IoT nodes transmitting encrypted data to the virtualized
security hub. Each node was represented by a synthetic traffic stream mimicking the frequency and
volume of real-world sensor communications. Tools such as tcpreplay and iperf3 were used to simulate
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traffic load, while system-level resource usage was monitored using virt-top, htop, and dstat. The table
below summarizes key performance metrics measured on the Fedora host, including average CPU
utilization, memory overhead, and sustained network throughput.

Table 7. Resource Utilization Under Varying IoT Node Loads

10 18 320 50

25 26 370 72

50 34 410 94
100 45 470 116

As shown in table 7, the system demonstrates linear growth in CPU and memory consumption as
the number of connected nodes increases. Importantly, throughput scales consistently, and no
performance bottlenecks were observed up to 100 simulated nodes. These results indicate that the
framework can accommodate larger IoT deployments without significant degradation in performance,
confirming its scalability for real-time edge-layer applications.

6. Conclusion

This work presents a comprehensive and lightweight framework for securing IloT edge
communications through the integration of TPM-based neural cryptography, AES encryption, firewall,
and virtualized IDS/IPS systems. The proposed NCSR architecture demonstrates a novel combination
of neural key exchange, virtual machine-based segmentation, and rule-based intrusion detection
tailored to the needs of constrained IoT devices. Its modular structure and efficient performance make
it highly suitable for scalable, real-time deployments in edge computing environments. Experimental
results confirm the system’s practical viability, achieving competitive encryption and decryption times,
high packet filtering efficiency, and low resource overhead. The framework also addresses the key
management challenge in IoT systems by eliminating the need for static pre-shared keys and enabling
dynamic key generation. Future enhancements to the proposed framework will focus on increasing its
adaptability, intelligence, and cryptographic resilience. First, the integration of Al-driven intrusion
detection mechanisms—such as long short-term memory (LSTM) networks and autoencoders —will be
explored to improve anomaly detection, particularly for identifying zero-day attacks and dynamic
threat patterns. Second, federated learning will be investigated as a means to enable distributed IDS/IPS
training across multiple edge devices without centralizing sensitive data, thereby enhancing both
privacy and responsiveness. Finally, the cryptographic layer will be extended to evaluate post-quantum
encryption algorithms, ensuring long-term security in the face of quantum computing advancements.
These developments aim to establish a more intelligent, privacy-preserving, and future-proof edge
security framework.
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