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Abstract: Securing the edge layer is essential in modern cybersecurity architectures, particularly for the 

Internet of Things (IoT), where resource-constrained devices require robust yet lightweight protection 

mechanisms. This paper introduces a novel Neural Cryptography Secure Router (NCSR) framework that 

integrates Tree Parity Machine (TPM)-based neural key generation with AES encryption, OpenWRT-based 

firewalling, and a virtualized intrusion detection/prevention system. The architecture is implemented using 

Raspberry Pi devices at the edge and a Fedora-based host for virtualization and centralized security processing. 

The framework features two Raspberry Pi units: the first simulates an IoT node, encrypting sensor data with 

TPM-generated keys before transmission via SSH/SCP; the second operates as a secure router, running 

OpenWRT and nftables for real-time packet filtering. The Fedora host functions as a multi-layered security 

hub, hosting virtual machines (pfSense and Security Onion) for firewalling, deep packet inspection, and threat 

analysis via Snort and Suricata. This integrated model eliminates the need for pre-shared keys while ensuring 

end-to-end confidentiality and dynamic session key exchange. Empirical evaluations demonstrate strong 

performance with minimal resource consumption: 1.2 ms/KB encryption time, 1.1 ms/KB decryption time, 25% 

CPU utilization, 95.5% firewall drop efficiency, and a 7% false positive rate. Comparative analysis with existing 

solutions confirms the model’s advantages in terms of security, scalability, and computational efficiency, 

establishing NCSR as a practical and novel security solution for IoT edge networks. 

Keywords: AES Encryption; Edge Layer Security; Firewall; Intrusion Detection and Prevention System 

(IDS/IPS); Neural Cryptography 

 

1. Introduction 

The Internet of Things (IoT) has emerged as one of the most innovative paradigms of the digital 

era. It interconnects billions of devices across healthcare, industry, and urban infrastructures. In spite 

of its benefits, IoT networks remain exposed to a wide variety of threats as data travels through 

heterogeneous layers and resource-constrained devices. Security in such environments is particularly 

challenging due to limited computational power, memory, and energy resources. A comprehensive 

survey of IoT threats emphasizes that while blockchain, fog computing, and machine learning are often 

proposed as countermeasures, no single approach provides a holistic, resource-aware solution for IoT 

protection [1]. 
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The growth of the Social IoT (SIoT) paradigm, integrating IoT with social networking principles, 

adds complexity to the security landscape. The inherent heterogeneity of devices, lack of standardized 

protocols, and increasing dependency on trust ecosystems open new attack surfaces, mainly at the 

perception, transportation, and application layers [2]. Similarly, broader reviews of IoT evolution 

demonstrate that although technical and legal safeguards exist, the absence of robust end-to-end 

frameworks continues to hinder widespread and secure IoT adoption [3]. 

Among emerging approaches, neural cryptography has emerged as a lightweight, adaptive 

solution for secure communication. Early studies showed that two artificial neural networks, when 

trained on exchanged outputs, could synchronize weights and generate a shared secret key over a 

public channel [4]. Complementary IoT-driven models for smart city applications demonstrate how 

integrating predictive analytics, real-time data processing, and robust protocols can enhance 

responsiveness while maintaining data confidentiality and resilience [5]. 

Lightweight cryptographic protocols have also been extensively studied as a means to mitigate the 

mismatch between strong security demands and device limitations. Modular lightweight solutions, 

incorporating distributed key renewal mechanisms and scalable architectures, achieve data 

confidentiality and integrity while introducing negligible overhead [6]. 

Virtualization and edge-oriented designs provide complementary advantages in addressing IoT 

security. Frameworks such as EdgeMeld illustrate how distributed architectures at the edge can 

integrate anomaly detection and adaptive machine learning to mitigate latency, improve scalability, 

and enhance robustness against attacks [7]. Similarly, adversarial neural cryptography using generative 

adversarial networks (GANs) has been explored to autonomously establish secure connections in IoT 

systems without human intervention, reinforcing the adaptability of cryptographic defenses [8]. 

Adversarial robustness has also gained importance in the IoT security domain. Deep learning-

based systems, while powerful, are highly vulnerable to adversarial perturbations [9]. Likewise, 

generative adversarial defense mechanisms have been applied to strengthen continuous-variable 

quantum key distribution systems, eliminating adversarial perturbations and securing sensitive 

communications [10]. 

Further advances in neural-based cryptosystems highlight the potential of pseudo-random 

number generators and non-linear neural encryption schemes to enhance confidentiality in IoT 

environments [11]. Complementary work on lightweight cryptographic protocols tailored for 

constrained IoT devices demonstrates reductions in time and space complexity while sustaining high 

levels of security, validating their practicality for real-world deployments [12]. 

In response to these gaps, this study proposes a novel security framework tailored for edge-layer 

IoT networks. This paper aims to create an end-to-end Security Framework for IoT networks with a 

secure router that manages traffic on the network, employs Neural Cryptography for encrypting 

information, and utilizes virtualization and a Root of Trust at the local IoT hub to facilitate process 

isolation and detect harmful components.  

This framework aims to maintain minimal computational overhead while delivering robust, real-

time security for IoT and small-scale edge networks. The proposed system targets applications ranging 

from localized IoT deployments to long-distance secure communications. 

2. Literature Survey 

The increase in IoT devices and edge computing has led to significant research in lightweight 

cryptographic techniques, real-time intrusion detection, and adaptive network security models. Below 

are key studies that have influenced the development of the proposed system. 

Dall et al. [13] introduced KVM/ARM, a hypervisor integrated into the Linux kernel, which exploits 

ARM’s Hyp mode with minimal code changes. Their work showed that virtualization could be 

lightweight and feasible even for ARM-based devices, overcoming hardware challenges. Inspired by 

this, the proposed work incorporates virtualization techniques (using lightweight hypervisors) to 

securely isolate critical components of the system, particularly on the Fedora Hub platform. While 
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promising, most hypervisor-based solutions incur non-negligible computational overhead, 

highlighting the challenge of balancing security isolation with real-time IoT performance. 

Kinzel et al. [14] proposed neural cryptography using Tree Parity Machines (TPM) for dynamic 

key generation, offering faster synchronization and lower hardware costs compared to traditional 

cryptography. Despite vulnerabilities highlighted by Klimov et al. [15], who exposed potential attack 

vectors, the concept remains attractive for resource-constrained IoT environments. Building on this, 

Meraouche et al. [16] proposed a multi-agent adversarial neural network model where Alice and Bob 

autonomously learn to use asymmetric public/private keys to secure communication against 

eavesdroppers. Their study extended neural cryptography beyond symmetric setups, showing 

resilience against stronger adversaries such as leakage and chosen-plaintext attacks. Sun et al. [19] 

proposed a Neural Cryptographic Framework for secure key generation and distribution, leveraging 

lightweight CNN-based encryption. Collectively, these works illustrate how neural cryptography 

evolved from early TPM-based symmetric models to more adaptive adversarial and deep learning 

frameworks. However, most remain validated only in simulated or small-scale IoT environments, and 

comprehensive real-world testing is still lacking. These pioneering ideas motivate the integration of 

neural cryptography in our proposed work for secure key generation and encrypted data transfer 

between IoT devices and the centralized hub. 

Langiu et al. [17] proposed UpKit’s modular update framework that emphasizes secure firmware 

distribution across heterogeneous IoT platforms, reinforcing the importance of device-agnostic, 

resilient systems. Similarly, Moratelli et al. [18] stressed the critical role of embedded virtualization in 

creating isolated execution domains, ensuring that even compromised processes cannot affect the entire 

device. These findings inspired the isolation of system components through virtualization while 

maintaining efficient, update-friendly architectures at the edge and hub layers. Errabelly et al. [23] also 

presented a micro-hypervisor model to isolate crucial processes, reducing malware risks. Taken 

together, these studies confirm virtualization’s role in IoT resilience but reveal a common gap: they 

prioritize isolation while often neglecting lightweight cryptographic mechanisms, leaving 

communication channels less protected. Through a fusion of neural learning, embedded virtualization, 

and secure routing, the paper proposes a novel system-level security framework for modern IoT and 

edge computing environments. 

Using Virtual Network Security Functions (VNSFs), such as VPNs and Intrusion Prevention 

Systems (IPS), Canavese et al. [20] presented a security virtualization framework. Although their 

strategy emphasizes network-layer security, device-level protection is not entirely covered. This 

concept is used in the proposed work by combining pfSense firewall and Security Onion (IDS/IPS) for 

network-layer and edge-device security. An adaptive edge-based intrusion detection system that uses 

machine learning for anomaly detection was proposed by Hagan et al. [21]. According to their research, 

hybrid IDS models increase security but need to be optimized for devices with limited resources. The 

current system extends this idea by integrating Security Onion IDS/IPS in the Fedora Hub and using a 

Raspberry Pi 2 for local traffic filtering. Tiburski et al. [22] investigated pfSense’s function in network-

layer security, showing how well it works for traffic segmentation and DDoS mitigation. Comparing 

these approaches reveals that while firewalls and IDS solutions enhance network defense, they often 

operate independently from key management protocols, resulting in fragmented security that our 

integrated model seeks to address. 

Although they pointed out the significant computational overhead, Errabelly et al. [23] 

demonstrated how micro-hypervisors can confine malware to isolated domains. Khan et al. [24] 

investigated blockchain-based trust mechanisms for safe IoT communication. While blockchain 

enhances data integrity, its energy demands make it unsuitable for lightweight IoT devices. This 

contrast highlights the trade-off between strong trust guarantees and resource efficiency. Our system 

addresses these concerns through neural cryptography, which provides confidentiality and trust 

without excessive computational cost. 

Dai et al. [25] proposed an edge-driven security framework for intelligent IoT systems, 

emphasizing the integration of edge and cloud computing to expand service capabilities while 
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identifying critical adversarial threats. Höglund et al. [26] introduced BLEND, a framework that 

combines secure communication and storage at the application layer while keeping latency low. Ehui 

et al. [27] proposed a lightweight mutual authentication protocol for IoT nodes and gateways using 

symmetric-key cryptography and frequent session key updates. Both works highlight the need to 

reduce overhead in IoT security. Together, these works show that while lightweight authentication and 

storage frameworks are emerging, a unified design that couples efficient encryption, intrusion 

detection, and virtualization is still missing. Our framework follows this direction by providing real-

time, efficient encryption and secure router-based traffic management. 

Other studies have focused on making IoT security scalable and future-ready. Ashrif et al. [28] 

proposed PSLAE, a provably secure and lightweight authenticated encryption protocol for machine-

to-machine communication in IIoT, addressing challenges such as denial-of-service, forward secrecy, 

and ephemeral secret leakage while keeping storage and computation costs low. Their findings 

demonstrated that secure and efficient communication can be achieved in constrained environments 

through lightweight encryption. Rehman et al. [29] introduced QESIF, a quantum-enhanced IoT 

framework that integrates quantum key distribution with intrusion detection to ensure resilience and 

low latency in smart city deployments. These studies collectively highlight the tension between near-

term lightweight cryptographic solutions (e.g., PSLAE) and long-term quantum-ready frameworks 

(e.g., QESIF). This dual perspective reinforces the need for adaptable security frameworks that can 

evolve with future technological advances. 

The proposed work synthesizes advancements from multiple research domains to create a 

comprehensive, secure IoT framework. It adopts neural cryptography for lightweight, dynamic key 

generation, inspired by Sun et al., while integrating virtualized IDS/IPS and pfSense firewall as explored 

by Canavese et al. and Tiburski et al. The system incorporates edge-based anomaly detection and 

virtualization strategies from Hagan et al. and Errabelly et al., ensuring security at both the network and 

device levels. By leveraging Raspberry Pi devices for traffic filtering and encrypted data transmission, 

the project delivers a cost-effective, scalable, and resource-efficient security model for modern IoT 

environments. Table 1 encapsulates recent scholarly endeavors concerning IoT and edge security, 

emphasizing cryptographic techniques, virtualization, and trust mechanisms. 

Table 1. Comparative analysis of recent approaches in IoT and edge security frameworks 

Paper Approach Strengths Limitations 

Dall et al. [13] Kernel-based Virtual Machine on ARM 

(KVM/ARM) lightweight hypervisor 

Demonstrated feasibility of 

virtualization on ARM devices 

Kernel-level integration only; 

limited scalability 

Kinzel et al. 

[14] 

Neural cryptography using Tree Parity 

Machines (TPM) 

Low hardware cost; fast 

synchronization 

Vulnerable to known attack 

vectors 

Klimov et al. 

[15] 

Security analysis of Tree Parity 

Machines (TPM) 

Identified attack surfaces in 

neural cryptography 

Exposed weaknesses in basic 

TPM design 

Meraouche et 

al. [16] 

Adversarial neural cryptography 

(multi-agent model) 

Public/private key learning; 

resilient against leakage 

attacks 

Computational overhead for 

constrained IoT devices 

Langiu et al. 

[17] 

UpKit secure update framework Modular; device-agnostic 

firmware updates 

Requires customization for 

heterogeneous platforms 

Moratelli et 

al. [18] 

Embedded virtualization Strong domain isolation Lacks network-layer security 

integration 

Sun et al. [19] Neural cryptography for IoT 

authentication using Convolutional 

Neural Networks (CNN) 

Lightweight CNN-based 

encryption; efficient session 

key distribution 

Limited real-world validation 

Canavese et 

al. [20] 

Security virtualization using Virtual 

Network Security Functions (VNSFs) 

Modular and scalable; 

enhances network-layer 

security 

Ignores device-level 

constraints 

Hagan et al. 

[21] 

Edge-based intrusion detection using 

hybrid Machine Learning Intrusion 

Detection Systems (ML-IDS) 

Detects anomalies 

dynamically; adaptable 

filtering 

Resource heavy for IoT 

devices 

Tiburski et 

al. [22] 

pfSense (open-source firewall) for IoT Robust segmentation; 

Distributed Denial of Service 

(DDoS) mitigation 

Network-level only; no 

cryptographic support 
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Errabelly et 

al. [23] 

Micro-hypervisor for malware isolation Process isolation; supports 

edge security 

High computational overhead 

Khan et al. 

[24] 

Blockchain-based trust management for 

IoT 

Ensures distributed trust and 

integrity 

Energy-expensive; poor for 

lightweight IoT 

Dai et al. [25] Edge-driven IoT security framework Integration of edge and cloud 

for resilience 

Complex management 

Höglund et 

al. [26] 

BLEND (secure communication and 

storage framework) 

Secure communication and 

storage; low latency 

Focused on application-layer 

only 

Ehui et al. 

[27] 

Lightweight mutual authentication 

protocol 

Frequent key updates; simple 

design 

Limited scalability studies 

Ashrif et al. 

[28] 

Provably Secure and Lightweight 

Authenticated Encryption (PSLAE) 

Provably secure; efficient for 

Machine-to-Machine (M2M) 

communication 

Constrained to Industrial IoT 

(IIoT) 

Rehman et al. 

[29] 

Quantum-Enhanced Security for IoT 

Framework (QESIF) using Quantum 

Key Distribution (QKD) and Intrusion 

Detection System (IDS) 

Combines QKD with IDS for 

futureproofing 

Requires quantum 

infrastructure 

Table 1 highlights that existing IoT security frameworks often focus on isolated aspects such as 

encryption, virtualization, or trust management, but rarely offer an integrated solution. Neural 

cryptography-based methods [19, 21] are lightweight but lack system-level validation. Virtualization 

approaches [20, 22] ensure isolation but omit cryptographic protection. Others [23–24] address 

scalability and adaptability but fall short on lightweight encryption. In contrast, the proposed NCSR 

framework integrates neural key generation, AES encryption, firewalling, and virtualized IDS/IPS into 

a cohesive, low-overhead system, effectively bridging these gaps and enabling scalable, real-world IoT 

security. 

3. Proposed Design 

The proposed system implements a multi-layered IoT security framework combining neural 

cryptography, AES encryption, firewalling, and virtualized IDS/IPS. As shown in Figure 1, sensor data 

from Raspberry Pi Dev 1 is encrypted using a TPM-based neural key and AES-EAX, then transmitted 

securely via SSH. Raspberry Pi Dev 2, running OpenWRT, filters network traffic and logs potential 

threats using Snort and NAT. The Fedora-based IoT hub receives the encrypted data, verifies session 

keys via Diffie–Hellman exchange, and processes it through virtual machines (pfSense and Security 

Onion) for deep packet inspection and threat analysis. 

 
Figure 1. End-to-End Edge-Layer Security Architecture Using Neural Cryptography and Virtualized Intrusion 

Detection in IoT 



AETiC 2025, Vol. 9, No. 5 48 

The IOT network (Figure 2) consists of various sensors (Humidity, Temperature, Ultrasonic) 

connected to a microcomputer (Raspberry Pi 1), A second Raspberry Pi running OpenWRT is 

configured as a secure wireless access point which provides internet connectivity to IOT Hub running 

Fedora OS which collects data from various devices. 

 
Figure 2. Network Structure of the Secure IoT Edge-to-Hub Communication Framework 

3.1 Main Components:  

The following are the components (Figure 1) in detail: 

3.1.1. Data Collection Node (Raspberry Pi Dev 1) 

• Sensors: Collect real-time environmental data (e.g., Humidity, Ultrasonic, Temperature). 

• Sensor Data & Preprocessing: Raw sensor data is captured and optionally to remove noise or 

irrelevant metrics. 

• Neural Cryptography (NC) Key Generation: Generates session keys using neural networks for 

enhanced cryptographic strength. 

• DH Key Verification: Verifies exchanged keys using the Diffie-Hellman method before 

encryption. 

• AES Engine: Performs AES encryption on the processed sensor data. 

• SQL Database: Encrypted data is temporarily stored locally. 

• SSH Client: Securely transmits encrypted data to the central IoT Hub via SSH. 

3.1.2.  OpenWRT Router (Raspberry Pi Dev 2) 

• Firewall & Traffic Routing: Filters and routes both internet traffic and internal communications. 

• IDPS Integration: A lightweight Intrusion Detection and Prevention System monitors traffic 

and logs malicious activities and anomalies to a log database. 

• NAT (Network Address Translation): Assists in proper packet forwarding and IP masking 

within the local network. 

3.1.3. Fedora IoT Hub (Centralized Processing Server) 

• SSH Daemon: Receives encrypted data from edge devices. 

• Device Cache: Temporarily stores session data for each connected device. 

• OEMU Virtual Machine Manager: Hosts different VMs for modular functions: 

• Security Onion VM: Intrusion Detection and Packet Inspection. 

• PfSense VM: Manages network firewall rules and inspection. 

• DH Key Verification & Neural Key Storage: Verifies session keys before decryption. 
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• Decryption Engine: Decrypts received data using AES and validated keys. 

• Decrypted Data Store: Saves the final readable data for further analysis, visualization, or 

archival. 

3.2. Network Structure 

The network structure of the proposed secure IoT communication framework is depicted in Figure 

2. It is composed of distributed edge security nodes and a centralized processing hub, each serving 

critical roles in ensuring end-to-end data confidentiality and integrity. Raspberry Pi 1 and Raspberry 

Pi 2 are deployed at the edge level, functioning as security-enhanced nodes. Raspberry Pi 1 is primarily 

responsible for data aggregation, while Raspberry Pi 2 operates as a traffic-filtering node with firewall 

and access point capabilities. Both devices collaboratively capture, pre-process, and filter network 

traffic before securely relaying the information to the central unit. 

The Fedora-based IoT Hub acts as the core of the security architecture. It handles the management 

of firewall policies, monitors intrusion detection system (IDS) alerts, and hosts containerized or 

virtualized security services such as pfSense and Security Onion. This modular virtualization approach 

enhances the flexibility and scalability of the system in dynamic threat environments. To safeguard 

data in transit, secure SSH channels are established between the Raspberry Pi devices and the Fedora 

Hub. These channels facilitate encrypted communication, thereby mitigating risks associated with man-

in-the-middle (MITM) attacks and data interception. 

3.3 Proposed Algorithm  

Algorithm 1. System-Level Secure Framework using Neural Cryptography and Virtualization 

Component 1: Raspberry Pi 1 – Data Collection and Encryption 

1: Initialize sensors and local SQLite database 

2: Train and sync TPM-based Neural Cryptography model 

3: while device is active do 

4: Read temperature, humidity sensors 

5: Store readings in local database with timestamp 

6: if neural key not yet synchronized then 

7: Begin TPM synchronization with Hub 

8: if successful then 

9: Save session key 

10: else 

11: Retry 

12: end if 

13: end if 

14: for all stored rows do 

15: Encrypt data using AES-EAX with neural key 

16: Insert ciphertext and nonce into encrypted database 

17: end for 

18: Archive encrypted DB as .tar.gz 

19: Transmit archive via SCP to Fedora Host 

20: if Transmission success then 

21: Clear plaintext and encrypted entries 

22: end if 

23: Wait for next cycle 

24: end while 

Component 2: Raspberry Pi 2 – Secure Routing & Firewall (OpenWRT) 

25: Initialize OpenWRT router; enable DHCP, DNS, NAT 

26: Configure firewall rules using UCI to filter IPs/domains 

27: Enable traffic logging via logread, tcpdump 

28: while router is active do 

29: Monitor packets and apply firewall filters 

30: if Intrusion or policy match then 

31: Drop or log traffic 

32: end if 

33: end while 
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Component 3: Fedora Host – Decryption and Virtual Security Hub 

34: Start SSH daemon; listen for incoming SCP uploads 

35: while new archive received do 

36: Decompress and extract archive 

37: Re-sync TPM model to generate neural session key 

38: for all cipher rows in archive do 

39: Decrypt using AES-EAX with neural key 

40: Store data in centralized SQLite database 

41: end for 

42: Forward decrypted data to cloud backup 

43: end while 

Virtualization Layer (Fedora Hub) 

44: Start QEMU/KVM VMs: 

• pfSense VM for firewall and routing analysis 

• Security Onion VM for IDS/IPS traffic monitoring 

45: Connect virtual bridge for traffic flow via VMs 

46: Monitor alerts and logs for anomalies using Security Onion 

Raspberry Pi 1 serves as the data collection and preliminary encryption unit. It initializes the 

connected sensors and maintains a local SQLite database to store real-time readings. A Tree Parity 

Machine (TPM)-based Neural Cryptography model is trained and synchronized with the Fedora Hub 

for secure session key generation. Sensor data is collected, encrypted using AES-EAX mode with the 

neural session key, and then stored in an encrypted database. The database is archived and securely 

transmitted to the Fedora Host via SCP. After successful transmission, plaintext and encrypted entries 

are cleared. Raspberry Pi 2 functions as a secure router and firewall node using OpenWRT. It provides 

DHCP, DNS, and NAT services and enforces firewall rules configured through Unified Configuration 

Interface (UCI). Packet monitoring is enabled, and traffic matching intrusion or policy violations is 

either dropped or logged. 

The Fedora Host acts as the central decryption and security processing unit. It listens for incoming 

SCP uploads, decompresses and extracts archives, and re-synchronizes the TPM model to regenerate 

the neural session key. Received cipher entries are decrypted using AES-EAX and stored in a 

centralized SQLite database. The decrypted data is then forwarded to cloud backup services.The 

virtualization environment is deployed on the Fedora Hub to enhance security and modularity. 

QEMU/KVM virtual machines are launched, hosting pfSense for firewall and routing analysis, and 

Security Onion for intrusion detection and monitoring. A virtual bridge connects the network interfaces 

for proper traffic flow and centralized security monitoring. 

4. Implementation 

4.1. Hardware and Software Requirements 

The proposed framework is implemented using lightweight and cost-effective hardware, 

supported by a modular software stack optimized for secure data collection, encryption, transmission, 

and monitoring. The specifications are summarized in Tables 2 and 3. 

4.1.1. Hardware Specifications 

The hardware setup includes two Raspberry Pi devices for edge operations and one x86_64 

Fedora-based host system for centralized processing and virtualization. Additional components such 

as SD cards, Ethernet cables, and optional storage support flexible deployment. 

Table 2. Hardware Requirements for Secure IoT Communication Architecture 

Component Specification / Purpose 

Raspberry Pi 1 (Dev 1) Model: Raspberry Pi 3B/4B 

Role: Sensor data collection, neural key generation, AES encryption 

Raspberry Pi 2 (Dev 2) Model: Raspberry Pi 3B/4B 

Role: OpenWRT-based secure router with firewall and IDPS 

Fedora Host System Processor: x86_64, RAM ≥ 8 GB 

Role: Central security hub with decryption and VM hosting 



AETiC 2025, Vol. 9, No. 5 51 

SD Cards (2x) Capacity: ≥ 16 GB each 

Purpose: OS and file system for Raspberry Pi devices 

Ethernet Cables Wired connectivity for Pi 2 and Fedora host 

Wi-Fi Module/Dongle Enables Pi 2 to operate in Access Point (AP) mode 

External Storage (Opt.) USB/SSD for backing up decrypted data locally or to the cloud 

4.1.2. Software Stack 

The software components were selected to support secure data acquisition, neural key generation, 

virtualization, and intrusion monitoring, forming a layered and modular software ecosystem. 

Table 3. Software Requirements 

Software/Tool Purpose 

Raspberry Pi OS OS for Pi 1 to support Python-based sensor interaction and encryption 

OpenWRT Lightweight router OS deployed on Pi 2 for NAT, firewall, and traffic routing 

Python 3.x Implementation of AES encryption, neural key logic, and data pre-processing 

TensorFlow / Keras Training and synchronization of Tree Parity Machine models for neural key generation 

SQLite3 Embedded database used for sensor data storage at the edge and decryption output at the hub 

OpenSSH / SCP Secure remote communication and file transmission between edge nodes and the Fedora Host 

Fedora Linux OS for the host system supporting QEMU/KVM-based virtualization 

QEMU / Virt-Manager VM hosting environment for pfSense and Security Onion 

Security Onion Real-time intrusion detection and deep packet inspection system 

pfSense Network segmentation and firewall management via a virtualized interface 

Wireshark (Optional) A deep packet inspection tool is used during testing and performance verification 

tar, gzip Data compression tools are used for the secure packaging of sensor data archives 

4.2. Methodology: Secure IoT Data Communication 

4.2.1. Raspberry Pi 1: Data Simulation, Encryption, and Transmission 

Raspberry Pi 1 is configured to emulate an environmental monitoring node by generating 

synthetic temperature and humidity readings within predefined ranges. These values represent the 

plaintext input for the encryption process and are produced in a controlled Python virtual environment 

to ensure consistency and reproducibility during testing (Figure 3). 

 
Figure 3. Generation of simulated temperature and humidity sensor data on Raspberry Pi 1 

The generated sensor data is stored in a lightweight SQLite database. Each record is timestamped 

and uniquely indexed, and a binary state flag (0 or 1) is appended to indicate whether the record has 

been successfully transmitted. This approach supports fault-tolerant transmission and simplifies record 

tracking (Figure 4). 

 
Figure 4. Storage of sensor data with timestamp and transmission status in SQLite database 
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Once the data is collected, it is encrypted using the AES algorithm in EAX mode. The session key 

is dynamically generated using a Tree Parity Machine (TPM)-based neural cryptographic model. This 

method enables high-entropy, lightweight key generation suitable for resource-constrained edge 

devices. The encrypted values are written back to the SQLite database for transmission (Figure 5) 

.  
Figure 5. Encryption of stored sensor data using a TPM-derived AES-EAX session key 

Encrypted data is securely transferred to the central hub via SCP over SSH. The transmission 

process is automated through shell scripts, and the data is compressed into .tar.gz archives to optimize 

bandwidth usage. After a successful transfer, records are flagged accordingly and old data is deleted 

to manage storage efficiently (Figure 6). 

 
Figure 6. Secure transmission of encrypted data archive to the Fedora-based hub and deletion of old records 

4.2.2. Fedora Host: Key Verification, Decryption, and Database Reconstruction 

The Fedora host receives the encrypted .tar.gz archive through an SSH daemon and stores it in a 

session-specific directory. The shared neural session key is verified using a Diffie-Hellman (DH) key 

exchange protocol to ensure mutual authentication between nodes (Figure 7). 

 
Figure 7. Key verification on the hub using Diffie-Hellman exchange for TPM session authentication 

 
Figure 8. Received archive decompressed and prepared for decryption and analysis 

 
Figure 9. Successfully decrypted sensor data stored in the hub's centralized SQLite database 
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After successful verification, the encrypted archive is decompressed into a structured session 

folder. File integrity and timestamps are preserved during extraction, enabling orderly batch 

decryption (Figure 8). 

Using the verified session key, the hub decrypts the sensor data using AES-EAX and reconstructs 

it into a new SQLite database. This centralized database mirrors the schema used at the edge and 

facilitates further analysis, storage, or visualization (Figure 9). 

4.2.3. Raspberry Pi 2: OpenWRT-Based Router 

OpenWRT Boot and LAN Verification 

Raspberry Pi 2 is configured as a secure edge router using the OpenWRT operating system. Upon 

successful flashing and boot basic network connectivity is verified using ping tests to public servers 

(e.g., Google), confirming WAN access. 

 Packet Tracing and Logging 

OpenWRT is equipped with logging and packet inspection tools such as logread and tcpdump. 

These tools allow tracing incoming and outgoing traffic, enabling detailed inspection of headers, IP 

addresses, and protocols. This configuration supports rudimentary intrusion detection capabilities  

 Domain Blocking via UCI Firewall 

The firewall configuration in OpenWRT utilizes the Unified Configuration Interface (UCI) to block 

specific domains. IP addresses are resolved using traceroute, and custom firewall rules are appended 

via terminal commands. Results are validated through ping and log analysis  

4.2.4. Virtual Machines at the Fedora Hub 

The Fedora-based host functions as the central security hub, hosting multiple virtual machines 

(VMs) for modularized network security tasks. Virtualization is implemented using QEMU/KVM, 

managed through Virt-Manager, enabling the deployment of pfSense for firewall operations and 

Security Onion for intrusion detection and packet inspection. To ensure strong isolation and 

performance consistency, several virtualization techniques were applied. CPU pinning was configured 

to dedicate specific processor cores to each VM, reducing contention and improving real-time 

responsiveness. Virtual bridge networking was used to route traffic between VMs and physical 

interfaces, allowing granular monitoring and filtering. IOMMU (Input-Output Memory Management 

Unit) support was enabled to allow device pass-through, which enhances VM access to hardware-level 

interfaces while maintaining isolation. Additionally, network segmentation between VMs was enforced 

to minimize inter-VM traffic leakage and contain potential threats within their respective domains. 

This setup ensures that each security function—firewalling, intrusion detection, and decryption—

is compartmentalized, reducing the attack surface and improving system scalability. The use of 

virtualization also allows for independent updates and monitoring, providing operational flexibility 

without compromising performance or security. 

4.3 Deployment Challenges and Considerations 

Real-world IoT environments often exhibit non-deterministic network latency, heterogeneous 

hardware performance, and administrative overhead due to distributed security components. These 

factors may hinder consistent operation and increase system maintenance complexity. In response, the 

proposed framework was designed with modularity and automation in mind: 

• Latency Mitigation: By leveraging asynchronous encrypted transmission and secure 

session queues, the system accommodates delay variance in SSH/SCP transfers. 

• Hardware Heterogeneity: The use of platform-independent software (Python, OpenWRT, 

and KVM/QEMU) ensures compatibility across diverse edge devices. 

• Maintenance Optimization: Automated key management using TPM-based neural 

cryptography reduces manual provisioning. System logs, IDS alerts, and VM performance 

are centrally managed via Kibana dashboards, improving visibility and manageability. 
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These design decisions enhance the framework’s resilience and scalability in real-world 

deployments involving diverse IoT and edge infrastructure. 

5. Result 

This section presents the performance evaluation of the proposed security framework across 

cryptographic, firewall, and virtualization layers. Key metrics such as encryption time, intrusion 

detection efficiency, resource utilization, and system scalability are discussed. 

5.1. Evaluation of Cryptographic Algorithms 

To evaluate the cryptographic algorithms, the following metrics were considered:  

• Encryption Time and Decryption Time (ms/KB) 

• Latency 

• Accuracy (% Correctly Encrypted & Decrypted) 

Custom Python scripts using time.perf_counter() was utilised to measure algorithm runtimes, 

using: 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 =  𝐸𝑛𝑑 𝑡𝑖𝑚𝑒 −  𝑆𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒                                                                                       (1) 

The accuracy was calculated using the following formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%)  =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝐷𝑎𝑡𝑎

𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎 𝑃𝑜𝑖𝑛𝑡𝑠
∗ 100        (2) 

 
Figure 10. The proposed model achieves encryption times comparable to AES and ECC and significantly 

outperforms RSA and GAN-based encryption 

As shown in Figure 10, the proposed model achieves a competitive encryption time compared to 

AES and ECC-based schemes, while outperforming RSA and GAN-based cryptography. 

 
Figure 11. Comparison of decryption time (ms/KB) between standard cryptographic algorithms and the 

proposed model 

Figure 11 illustrates the decryption time performance (in milliseconds per kilobyte) for a range of 

cryptographic algorithms. As observed, symmetric ciphers like AES-128 achieve the lowest decryption 
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time, whereas asymmetric schemes like RSA-2048 incur the highest. The proposed model achieves a 

decryption time of 1.1 ms/KB, positioning itself favorably against existing methods. 

 
Figure 12. CPU efficiency of various encryption Algorithms 

As illustrated, the proposed approach demonstrates moderate CPU utilization (25%), significantly 

lower than RSA (45%) and GAN-based models (38%), supporting its applicability in constrained IoT 

devices. 

5.2 Comparative Evaluation with Existing IoT Security Frameworks 

To contextualize the performance and design of the proposed Neural Cryptography Secure Router 

(NCSR), a comparative evaluation is presented in Table 4. This comparison includes recent state-of-the-

art lightweight IoT security frameworks, selected based on relevance to resource-constrained 

environments, cryptographic efficiency, and modular design. The table highlights differences in 

encryption latency, CPU utilization, scalability, and key management strategies. 

Table 4. Comparative Evaluation of Lightweight IoT Security Frameworks 

Framework Encryption 

Latency (ms/KB) 

CPU 

Utilization (%) 

Modularity Scalability Key Management 

Proposed NCSR 

(this work) 

~1.2 ~25 High (TPM + 

virtualized stack) 

Excellent (up 

to 100 nodes) 

TPM-based neural 

key + AES (no PSK) 

BLEND [26] ~0.11 /packet 

(~0.63 ms/KB) 

Low (minimal 

CPU) 

Medium 

(application-layer 

only) 

Moderate PKI-based key 

management 

Decision-Tree IDS 

[27] 

<1 ms (real-time 

inference) 

Very low 

(~<1 ms 

runtime) 

High (edge + 

cloud integration) 

High Automated updates; 

model-managed keys 

SPiME (PiM-based 

AES) [28] 

~0.04 (ms/KB 

equivalent) 

Very low (<5%) Low (hardware-

specific) 

Very high 

(4000+ units) 

AES-128 key 

encapsulation 

QESIF (Quantum-

enhanced IoT) [29] 

~20 ms average 

latency 

Low energy 

per session 

Medium (hybrid 

stack) 

High QKD + classical 

hybrid key exchange 

This analysis demonstrates that the proposed NCSR framework strikes a strong balance between 

computational efficiency and layered security architecture. Unlike frameworks relying solely on pre-

shared keys or hardware acceleration, NCSR leverages neural cryptography with AES-EAX in a 

modular virtualized environment, making it both secure and adaptable to edge IoT deployments. 

5.3. Security Analysis of Neural Cryptography 

Tree Parity Machine-based neural cryptography provides lightweight and adaptive key 

generation. Unlike RSA and ECC, TPM relies on neural synchronization rather than hard mathematical 

problems. However, potential vulnerabilities such as synchronization and man-in-the-middle (MITM) 

attacks necessitate additional safeguards. The framework addresses this by integrating Diffie-Hellman 

key verification and employing AES-EAX for authenticated encryption. 
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Table 5. Comparison of TPM-Based Neural Cryptography with RSA and ECC 

Feature / Metric TPM-Based Neural Crypto RSA ECC 

Key Generation Approach Neural synchronization (TPM) Prime factorization Elliptic curve log 

Key Entropy High High High 

Computational Cost Low High Moderate 

Suitability for IoT Devices Excellent Poor Fair 

Resistance to MITM Attacks Moderate (with DH verification) Strong Strong 

Encryption Strength Enhanced via AES-EAX Strong Strong 

Vulnerability Synchronization attacks Quantum threats Quantum threats 

Cryptographic Maturity Emerging Established Established 

By combining TPM with AES-EAX and DH verification, the framework achieves both lightweight 

performance and improved resistance to cryptographic attacks, making it suitable for secure IoT 

communication. 

5.4. Firewall on OpenWRT router (Raspberry Pi 2) 

To evaluate the effectiveness of the firewall and intrusion detection system (IDS) deployed on 

Raspberry Pi 2 running OpenWRT, several performance metrics were analyzed. The key parameters 

include firewall rule evaluation time, packet drop efficiency, false positive rate, and traffic throughput. 

To evaluate the firewall effectiveness, the following metrics were considered: 

• Firewall Rule Evaluation Time 

• Packet Drop Efficiency (%) 

• False Positive Rate (%) 

• Traffic Throughput (Mbps) 

The tcpdump was employed to capture and analyze real-time traffic logs; and  hping3 was used to 

simulate DDoS attacks and generate malformed packets to test the system's resilience. The following 

evaluation formulas were used: 

𝐷𝑟𝑜𝑝 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%)  =
(𝐷𝑟𝑜𝑝𝑝𝑒𝑑 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑃𝑎𝑐𝑘𝑒𝑡𝑠)

(𝑇𝑜𝑡𝑎𝑙 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑃𝑎𝑐𝑘𝑒𝑡𝑠)
∗ 100       (3) 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  (
𝐵𝑒𝑛𝑖𝑔ℎ 𝑃𝑎𝑐𝑘𝑒𝑡 𝐹𝑙𝑎𝑔𝑔𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑏𝑒𝑛𝑖𝑔𝑛 𝑃𝑎𝑐𝑘𝑒𝑡𝑠
) ∗ 100       (4) 

 
Figure 13. Firewall and IDPS Performance 

The firewall was configured using UCI to define custom rules for domain and IP filtering. During 

testing, the system effectively detected and blocked malicious traffic while maintaining stable 

throughput. As shown in Figure 13, the configuration achieved a packet drop efficiency of 95.5% and 

sustained a throughput of 48 Mbps. The false positive rate remained within an acceptable range at 7%, 

demonstrating reliable filtering without excessive disruption to legitimate traffic. These results confirm 

that the OpenWRT-based Raspberry Pi 2 router is capable of handling edge-layer security operations 

efficiently, even under simulated attack conditions. 

5.5. Virtualization Performance on Fedora Host 

To evaluate the virtualization performance, the following metrics were considered: 



AETiC 2025, Vol. 9, No. 5 57 

• VM Boot Time 

• CPU Isolation Efficiency 

• Memory Overhead 

• Event Logging Rate (events/sec) 

The tools used include: htop, virt-top, dstat for resource monitoring and Security Onion dashboard 

(via Kibana) for IDS analysis. The following evaluation formulas were used: 

Event Logging Rate =  
𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑔𝑔𝑒𝑑 𝐸𝑣𝑒𝑛𝑡𝑠

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (𝑠)
          (4) 

CPU Isolation Efficiency =  (1 −  
𝐶𝑃𝑈 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐿𝑒𝑎𝑘𝑎𝑔𝑒

𝑇𝑜𝑡𝑎𝑙 𝐶𝑃𝑈 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑
) ∗ 100                  (5) 

 
Figure 14. Virtualization performance on the Host 

As depicted in Figure 14, the Fedora host maintained a memory overhead of approximately 450 

MB and a logging rate of 320 events/sec, confirming the virtualization layer's ability to handle real-time 

analysis with minimal performance degradation. 

Table 6. Secure IoT Framework Evaluation Summary 

Component Evaluation Metric Relative Performance 

Cryptographic Engine Encryption/Decryption Speed Moderate — Balanced for real-time IoT usage 

Key Generation Adaptability High — Dynamic per session using neural crypto 

Security Strength Strong — Combines AES with neural key logic 

Computational Overhead Low — Optimized for edge devices 

Raspberry Pi 2 (Firewall & 

IDPS) 

Packet Filtering Efficiency High — Effectively drops unauthorized packets 

Intrusion Detection Capability Moderate — Detects common and abnormal patterns 

Processing Load Low — Suitable for lightweight deployments 

False Alarm Rate Moderate — Tuned with custom rules 

Fedora Host (Virtualization 

Layer) 

VM Isolation and Resource Control High — Secure and efficient via KVM/QEMU 

Scalability of Security Infrastructure High — Supports expansion and monitoring 

Monitoring and Logging Speed Efficient — Near real-time alert generation 

Key Management & 

Exchange 

Session Key Flexibility High — Unique keys for each transmission 

Secure Exchange Protocol Robust — Utilizes Diffie-Hellman securely 

Synchronization Delay Low — Acceptable for real-time use 

Overall System Integration Modularity and Component 

Interoperability 

High — Each module functions independently 

Suitability for IoT/Edge Networks Excellent — Designed for constrained devices 

Maintenance and Update Feasibility Manageable — Uses standard tools and scripts 

The results in Table 6 demonstrate that the proposed system achieves high adaptability, strong 

security, and low overhead across all layers, making it well-suited for real-time IoT and edge network 

deployments. 

5.6. Scalability Analysis 

To evaluate the scalability of the proposed framework, simulated workloads were generated to 

emulate deployments of 10, 25, 50, and 100 IoT nodes transmitting encrypted data to the virtualized 

security hub. Each node was represented by a synthetic traffic stream mimicking the frequency and 

volume of real-world sensor communications. Tools such as tcpreplay and iperf3 were used to simulate 
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traffic load, while system-level resource usage was monitored using virt-top, htop, and dstat. The table 

below summarizes key performance metrics measured on the Fedora host, including average CPU 

utilization, memory overhead, and sustained network throughput. 

Table 7. Resource Utilization Under Varying IoT Node Loads 

Number of IoT Nodes Average CPU Usage (%) Memory Overhead (MB) Throughput (Mbps) 

10 18 320 50 

25 26 370 72 

50 34 410 94 

100 45 470 116 

As shown in table 7, the system demonstrates linear growth in CPU and memory consumption as 

the number of connected nodes increases. Importantly, throughput scales consistently, and no 

performance bottlenecks were observed up to 100 simulated nodes. These results indicate that the 

framework can accommodate larger IoT deployments without significant degradation in performance, 

confirming its scalability for real-time edge-layer applications. 

6. Conclusion  

This work presents a comprehensive and lightweight framework for securing IoT edge 

communications through the integration of TPM-based neural cryptography, AES encryption, firewall, 

and virtualized IDS/IPS systems. The proposed NCSR architecture demonstrates a novel combination 

of neural key exchange, virtual machine-based segmentation, and rule-based intrusion detection 

tailored to the needs of constrained IoT devices. Its modular structure and efficient performance make 

it highly suitable for scalable, real-time deployments in edge computing environments. Experimental 

results confirm the system’s practical viability, achieving competitive encryption and decryption times, 

high packet filtering efficiency, and low resource overhead. The framework also addresses the key 

management challenge in IoT systems by eliminating the need for static pre-shared keys and enabling 

dynamic key generation. Future enhancements to the proposed framework will focus on increasing its 

adaptability, intelligence, and cryptographic resilience. First, the integration of AI-driven intrusion 

detection mechanisms—such as long short-term memory (LSTM) networks and autoencoders—will be 

explored to improve anomaly detection, particularly for identifying zero-day attacks and dynamic 

threat patterns. Second, federated learning will be investigated as a means to enable distributed IDS/IPS 

training across multiple edge devices without centralizing sensitive data, thereby enhancing both 

privacy and responsiveness. Finally, the cryptographic layer will be extended to evaluate post-quantum 

encryption algorithms, ensuring long-term security in the face of quantum computing advancements. 

These developments aim to establish a more intelligent, privacy-preserving, and future-proof edge 

security framework. 

CRediT Author Contribution Statement 

Kavita Agrawal: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, 

Software, Validation, Visualization, Writing – original draft, Writing – review & editing; Padala Prasad 

Reddy: Conceptualization, Methodology, Supervision, Validation, Writing – review & editing; Suresh 

Chittineni: Resources, Project administration, Supervision, Writing – review & editing. 

References 

[1] Naqash Azeem Khan, Azlan Awang and Samsul Ariffin Abdul Karim, “Security in Internet of Things: A 

review”, IEEE Access, Online ISSN: 2169-3536, Vol. 10, 26 July 2022, pp. 104649–104670, Published by IEEE, 

DOI: 10.1109/ACCESS.2022.3209355, Available: https://ieeexplore.ieee.org/document/9902998. 

[2] Mario Frustaci, Pasquale Pace, Gianluca Aloi and Giancarlo Fortino, “Evaluating critical security issues of the 

IoT world: Present and future challenges”, IEEE Internet of Things Journal, Online ISSN: 2327-4662, Vol. 5, No. 

4, 1 August 2018, pp. 2483–2495, Published by IEEE, DOI: 10.1109/JIOT.2017.2767291, Available: 

https://ieeexplore.ieee.org/document/8086136. 

[3] Oludare Isaac Abiodun, Esther Omolara Abiodun, Moatsum Alawida, Rami S. Alkhawaldeh and Humaira 

Arshad, “A review on the security of the internet of things: Challenges and solutions”, Wireless Personal 

https://ieeexplore.ieee.org/document/9902998
https://ieeexplore.ieee.org/document/8086136


AETiC 2025, Vol. 9, No. 5 59 

Communications, E-ISSN: 1572-834X, Print ISSN:0929-6212, Vol. 119,  2021, pp. 2603–2637, Published by 

Springer, DOI: 10.1007/s11277-021-08348-9, Available: https://link.springer.com/article/10.1007/s11277-021-

08348-9. 

[4] Wolfgang Kinzel and Ido Kanter, “Neural cryptography”, in Proceedings of the 9th International Conference on 

Neural Information Processing (ICONIP), 18-22 November 2002, Singapore, Print ISBN: 981-04-7524-1, Vol. 3, 

pp. 1351–1354, Published by IEEE, DOI: 10.1109/ICONIP.2002.1202841, Available: 

https://ieeexplore.ieee.org/document/1202841. 
[5] Kalyankumar Dasari, Mohmad Ahmed Ali, Shankara N. B., K. Deepthi Reddy, M. Bhavsingh et al.,“A Novel 

IoT-Driven Model for Real-Time Urban Wildlife Health and Safety Monitoring in Smart Cities”, in Proceedings 

of the 8th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 3-5 October 

2024, Kirtipur, Nepal, E-ISBN:979-8-3503-7642-5, pp. 122–129, Published by IEEE, DOI: 10.1109/I-

SMAC61858.2024.10714601, Available: https://ieeexplore.ieee.org/document/10714601. 

[6] Pedro Rosa, André Souto and José Cecílio, “Light-SAE: A lightweight authentication protocol for large-scale 

IoT environments made with constrained devices”, IEEE Transactions on Network and Service Management, E-

ISSN: 1932-4537, Vol. 20, No. 3, pp. 2428-2441, September 2023, Published by IEEE, DOI: 

10.1109/TNSM.2023.3275011, Available: https://ieeexplore.ieee.org/document/10122630. 

[7] K. Lakshmi, Garlapadu Jayanthi, and Jallu Hima Bindu, “EdgeMeld: An Adaptive Machine Learning 

Framework for Real-Time Anomaly Detection and Optimization in Industrial IoT Networks”, International 

Journal of Computer Engineering in Research Trends, Print ISSN: 2349-0829, Vol. 11, No. 4, 1 April 2024, pp. 20–

31, Published by IJCERT, DOI: 10.22362/ijcert/2024/v11/i4/v11i403, Available: 

https://www.ijcert.org/index.php/ijcert/article/view/951. 

[8] Basil Hanafi and Mohammad Ubaidullah Bokhari, “Enhancement of security in connection establishment for 

IoT infrastructure through adversarial neural cryptography using GANs”, in Proceedings of the 3rd International 

Conference on ICT for Digital, Smart, and Sustainable Development (ICIDSSD 2022), 24-25 March 2022, New Delhi, 

India, E-ISBN: 978-1-63190-396-0, E-ISSN: 2593-7642, Published by European Alliance for Innovation (EAI). 

DOI: 10.4108/eai.24-3-2022.2318924, Available: https://eudl.eu/doi/10.4108/eai.24-3-2022.2318924. 

[9] Weimin Zhao, Qusay H. Mahmoud and Sanaa Alwidian, “Evaluation of GAN-based model for adversarial 

training”, Sensors, Online ISSN: 1424-8220, Vol. 23, No. 5, March 2023,  Published by MDPI, DOI: 

10.3390/s23052697, Available: https://www.mdpi.com/1424-8220/23/5/2697. 

[10] Xun Tang, Pengzhi Yin, Zehao Zhou and Duan Huang, “Adversarial perturbation elimination with GAN-

based defense in continuous-variable quantum key distribution systems”, Electronics, Online ISSN: 2079-9292, 

Vol. 12, No. 11,  2023, Art. No. 2437, Published by MDPI, DOI: 10.3390/electronics12112437, Available: 

https://www.mdpi.com/2079-9292/12/11/2437. 

[11] Apdullah Yayık and Yakup Kutlu, “Neural Network-Based Cryptography”, Neural Network World, Print ISSN: 

1210-0552, Vol. 24, No. 2, 1st April 2014, pp. 177–192, Published by Institute of Computer Science AS CR, 

Prague., DOI: 10.14311/NNW.2014.24.011, Available: https://nnw.cz/doi/2014/NNW.2014.24.011.pdf. 
[12] Plabon Bhandari Abhi, Kristelle Ann R. Torres, Tao Yusoff and K. Samunnisa, “A Novel Lightweight 

Cryptographic Protocol for Securing IoT Devices”, International Journal of Computer Engineering in Research 

Trends, Print ISSN: 2349-0829, Vol. 10, No. 10, 15th October 2023, pp. 24–30, Published by IJCERT, DOI: 

10.22362/ijcert/2023/v10/i10/v10i104, Available: https://www.ijcert.org/index.php/ijcert/article/view/875. 

[13] Christoffer Dall and Jason Nieh, “KVM/ARM: The Design and Implementation of the Linux ARM 

Hypervisor”, ACM SIGPLAN Notices, Online ISSN: 0362-1340, Vol. 49, No. 4, 1 April 2014, pp. 333–348, 

Published by ACM, DOI: 10.1145/2644865.2541946, Available: https://dl.acm.org/doi/10.1145/2644865.2541946. 

[14] Wolfgang Kinzel and Ido Kanter, “Neural Cryptography”, in Proceedings of the 9th International Conference on 

Neural Information Processing (ICONIP), 18-22 November 2002, Singapore, Print ISBN: 981-04-7524-1, Vol. 3, 

pp. 1351–1354, Published by IEEE, DOI: 10.1109/ICONIP.2002.1202841, Available: 

https://ieeexplore.ieee.org/document/1202841. 
[15] Alexander Klimov, Anton Mityagin, and Adi Shamir, “Analysis of Neural Cryptography”, in Advances in 

Cryptology—ASIACRYPT 2002, Lecture Notes in Computer Science, Online ISBN: 978-3-540-36178-7, Print ISBN: 

978-3-540-00171-3, Series Print ISSN: 0302-9743, Series Online ISSN: 1611-3349, Vol. 2501, pp. 288–298, DOI: 

10.1007/3-540-36178-2, Published by Springer Berlin, Heidelberg, Available: 

https://link.springer.com/chapter/10.1007/3-540-36178-2_18. 

[16] Ishak Meraouche, Sabyasachi Dutta , Haowen Tan and Kouichi Sakurai”, Learning asymmetric encryption 

using adversarial neural networks”, Engineering Applications of Artificial Intelligence, Online ISSN: 1873-6769, 

Print ISSN: 0952-1976, Vol. 123,  August 2023, 106220, DOI: 10.1016/j.engappai.2023.106220, Available: 

https://www.sciencedirect.com/science/article/abs/pii/S0952197623004049. 

https://link.springer.com/article/10.1007/s11277-021-08348-9
https://link.springer.com/article/10.1007/s11277-021-08348-9
https://ieeexplore.ieee.org/document/1202841
https://ieeexplore.ieee.org/document/10714601
https://ieeexplore.ieee.org/document/10122630
https://www.ijcert.org/index.php/ijcert/article/view/951
https://eudl.eu/doi/10.4108/eai.24-3-2022.2318924
https://www.mdpi.com/1424-8220/23/5/2697
https://www.mdpi.com/2079-9292/12/11/2437
https://nnw.cz/doi/2014/NNW.2014.24.011.pdf
https://www.ijcert.org/index.php/ijcert/article/view/875
https://dl.acm.org/doi/10.1145/2644865.2541946
https://ieeexplore.ieee.org/document/1202841
https://link.springer.com/chapter/10.1007/3-540-36178-2_18
https://www.sciencedirect.com/science/article/abs/pii/S0952197623004049.


AETiC 2025, Vol. 9, No. 5 60 

[17] Alessio Langiu, Carlo Alberto Boano, Matthias Schuß and Kay Römer, “UpKit: An Open-Source, Portable, and 

Lightweight Update Framework for Constrained IoT Devices”, in Proceedings of the 2019 IEEE 39th International 

Conference on Distributed Computing Systems (ICDCS), 7–10 July 2019, Dallas, TX, USA, E-ISBN:978-1-7281-2519-

0, pp. 2101–2112, Published by IEEE, DOI: 10.1109/ICDCS.2019.00207, Available: 

https://ieeexplore.ieee.org/document/8884933. 

[18] Carlos Moratelli, Sergio Johann, Marcelo Neves and Fabiano Hessel, “Embedded Virtualization for the Design 

of Secure IoT Applications”, in Proceedings of the 27th International Symposium on Rapid System Prototyping (RSP), 

06-07 October 2016, Pittsburgh, PA, USA, E-ISBN:978-1-4503-4535-4, pp. 1–5, Published by IEEE, DOI: 

10.1145/2990299.2990301, Available: https://ieeexplore.ieee.org/document/7909116. 

[19] Yingnan Sun, Frank P.-W. Lo and Benny Lo, “Lightweight Internet of Things Device Authentication, 

Encryption, and Key Distribution Using End-to-End Neural Cryptosystems”, IEEE Internet of Things Journal, 

Online ISSN: 2327-4662, Vol. 9, No. 16, 15 August 2022, pp. 14978–14990, Published by IEEE, DOI: 

10.1109/JIOT.2021.3067036, Available: https://ieeexplore.ieee.org/document/9381407. 

[20] Daniele Canavese, Luca Mannella, Leonardo Regano and Cataldo Basile, “Security at the Edge for Resource-

Limited IoT Devices”, Sensors, Online ISSN: 1424-8220, Vol. 24, No. 2, 8 January 2024, Article No. 590, 

Published by MDPI, DOI: 10.3390/s24020590, Available: https://www.mdpi.com/1424-8220/24/2/590. 

[21] Matthew Hagan, Fahad Siddiqui and Sakir Sezer, “Enhancing Security and Privacy of Next-Generation Edge 

Computing Technologies”, in Proceedings of the 17th International Conference on Privacy, Security and Trust (PST), 

26-28 August 2019, Fredericton, NB, Canada, E-ISBN:978-1-7281-3265-5, Published by IEEE, DOI: 

10.1109/PST47121.2019.8949052, Available: https://ieeexplore.ieee.org/abstract/document/8949052. 

[22] Abou Bakary Ballo and Diarra Mamadou, “A Comprehensive Study of IoT Security Issues and Protocols”, 

International Journal of Computer Engineering in Research Trends, Print ISSN: 2349-0829, Vol. 10, No. 7, 15 July 

2023, pp. 8–14, Published by IJCERT, DOI: 10.22362/ijcert/2023/v10/i07/v10i0702, Available: 

https://www.ijcert.org/index.php/ijcert/article/view/858. 

[23] Kewei Sha, Ranadheer Errabelly, Wei Wei, T. Andrew Yang and Zhiwei Wang “EdgeSec: Design of an Edge 

Layer Security Service to Enhance IoT Security”, Proceedings of the IEEE/ACM 1st International Conference on Fog 

and Edge Computing (ICFEC), 14–15 May 2017, Madrid, Spain, E-ISBN:978-1-5090-3047-7, Published by IEEE, 

DOI: 10.1109/ICFEC.2017.7, Available: https://ieeexplore.ieee.org/document/8014363. 

[24] Mohd Khan, Mohsen Hatami, Wenfeng Zhao and Yu Chen, “A Novel Trusted Hardware-Based Scalable 

Security Framework for IoT Edge Devices”, Discover Internet of Things, Online ISSN: 2731-4441, Vol. 4, No. 4, 

2024, Published by Springer, DOI: 10.1007/s43926-024-00056-7, Available: 

https://link.springer.com/article/10.1007/s43926-024-00056-7. 

[25] Minghui Dai, Zhou Su, Ruidong Li, Yuntao Wang, Jianbing Ni and Dongfeng Fang, “An Edge-Driven Security 

Framework for Intelligent Internet of Things”, IEEE Network, Print ISSN: 0890-8044, Online ISSN: 1558-156X, 

Vol. 34, No. 5, September 2020, pp. 39–45, Published by IEEE, DOI: 10.1109/MNET.011.2000068, Available: 

https://ieeexplore.ieee.org/document/9199790. 

[26] Joel Höglund and Shahid Raza, “BLEND: Efficient and Blended IoT Data Storage and Communication with 

Application Layer Security”, in Proceedings of the 2022 IEEE International Conference on Cyber Security and 

Resilience (CSR), 27–29 July 2022, Rhodes, Greece, E-ISBN:978-1-6654-9952-1 ,pp. 253–260, Published by IEEE, 

DOI: 10.1109/CSR54599.2022.9850290, Available: https://ieeexplore.ieee.org/document/9850290. 

[27] Brou Bernard Ehui, Yiran Han, Hua Guo and Jianwei Liu ,“A Lightweight Mutual Authentication Protocol for 

IoT”, Journal of Communications and Information Networks, Print ISSN: 2096-1081, Online ISSN: 2096-109X, Vol. 

7, No. 2, June 2022, pp. 181–191, Published by China Communications Society and IEEE, DOI: 

10.23919/JCIN.2022.9815201, Available: https://ieeexplore.ieee.org/document/9815201. 

[28] Fatma Foad Ashrif, Elankovan A. Sundararajan, Mohammad Kamrul Hasan, Rami Ahmad, Aisha-Hassan 

Abdalla Hashim et. al, “Provably secured and lightweight authenticated encryption protocol in machine-to-

machine communication in industry 4.0”, Computer Communications, Online ISSN: 1873- 703X, Print ISSN: 

0140-3664, Vol. 218, 15 March 2024, pp. 263-275, DOI:  10.1016/j.comcom.2024.02.008, Available: 

https://www.sciencedirect.com/science/article/abs/pii/S0140366424000586.  

[29] Abdul Rehman and Omar Alharbi, “QESIF: A Lightweight Quantum-Enhanced IoT Security Framework for 

Smart Cities”, Smart Cities, Online ISSN: 2624-6511, Vol. 8, No. 4, 1st July 2025, Article No. 116, Published by 

MDPI, DOI: 10.3390/smartcities8040116, Available: https://www.mdpi.com/2624-6511/8/4/116. 

 

© 2025 by the author(s). Published by Annals of Emerging Technologies in Computing 

(AETiC), under the terms and conditions of the Creative Commons Attribution (CC BY) 

license which can be accessed at http://creativecommons.org/licenses/by/4.0. 

 

https://ieeexplore.ieee.org/document/8884933
https://ieeexplore.ieee.org/document/7909116
https://ieeexplore.ieee.org/document/9381407
https://www.mdpi.com/1424-8220/24/2/590
https://ieeexplore.ieee.org/abstract/document/8949052
https://www.ijcert.org/index.php/ijcert/article/view/858
https://ieeexplore.ieee.org/document/8014363
https://link.springer.com/article/10.1007/s43926-024-00056-7
https://ieeexplore.ieee.org/document/9199790
https://ieeexplore.ieee.org/document/9850290
https://ieeexplore.ieee.org/document/9815201
https://www.sciencedirect.com/science/article/abs/pii/S0140366424000586
https://www.mdpi.com/2624-6511/8/4/116

