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Abstract: Millimetre wave (mmWave) systems require high beamforming gains to overcome the unfavourable
impacts of high path losses at mmWave frequencies. Large antenna arrays enable such gains through highly
directive narrow beams which then require multiple beams to cover the spatial directions of interest. The required
beam management for such systems, particularly for mobile use cases such as the vehicle-to-infrastructure (V2I)
scenarios, is challenging. Real-time optimal beam selection from codebooks consumes radio resources and incurs
large training overheads. As a result, geolocation side information and machine learning (ML) algorithms are
being explored to address beam management challenges. However, prior works have mostly applied their
solutions using simulations that are based on synthetic datasets. Recently, real-world datasets based on extensive
mmWave measurements have become available. Leveraging the real-world datasets, in this work, we evaluate and
compare the performance of three ML (i.e., k-nearest neighbours, support vector machine and decision tree)
algorithms on mmWave V2I beam selection aided by global positioning system latitude and longitude coordinates
as the only two features for the ML. The results show the impact of codebook sizes on the accuracies of the ML
algorithms under ten different scenarios. The results also reveal the limitations of the geolocation-aided beam
prediction as average accuracy could go below 30% in some scenarios, and higher than 90% in other scenarios.
These performance results point to the need for multi-modal approaches (involving a combination of different
sensors' data) for efficient mmWave V2I beam prediction.

Keywords: Beam Prediction; Decision Tree; GPS; K-Nearest Neighbour; Machine learning; mmWave; Support
Vector Machine; V21

1. Introduction

Millimetre-wave (mmWave) systems enable enhanced mobile broadband communication by
exploiting larger bandwidth than available at the legacy sub-7 GHz frequency bands. However, to
facilitate the desired multi-Gigabits-per-second (Gbps) rates, mmWave systems need to combat the high
path losses (PL) at such high frequencies [1]. For example, according to the Friis equation, the free space
path loss (FSPL) for a 6 GHz system at a transmitter (TX)-to-receiver (RX) separation distance of 100 m is
88 dB. This same 88 dB is the FSPL at only 10 m separation distance for 60 GHz mmWave propagation.
Therefore, to extend range and facilitate reliable communication, mmWave systems employ large antenna
arrays with narrow beams that offer high beamforming gains and directivity to ensure sufficient received
signal power. This solution is, however, not without its own challenges with respect to beam
management, particularly for vehicle-to-everything (V2X) scenarios with mobility of both the TX and RX
or either one of them [2-4].
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The challenge with narrow beams is that they cover limited spatial directions. This, therefore,
necessitate the use of either multiple beams with predefined beamforming codebook [5-6] to cover the
entire region of interest or field of view (FOV), or beam sweeping operations where beams cover a spatial
area during a time instance in a predetermined way, and sweeps through another area in another time
instance [3], using approaches based on the beam’s angle of arrival (AoA) and angle of departure (AoD)
[7]. In addition, the beam management procedures (i.e., beam alignment, tracking, training, selection and
steering) typically consume radio resources and are associated with large training overheads [2, 6].

To address the radio resource challenge, many authors consider alternatives such as using
geolocation side information (i.e., localisation and positioning systems such as the global positioning
system (GPS)) in aiding beam management procedures and in reducing beam training overhead [2-3, §].
In addition to these system-aiding alternatives, many authors also explore artificial intelligence (Al)-based
solutions such as machine learning (ML) or deep learning (DL) in tackling beam management challenges
[2]. Therefore, while classical approaches have been employed over the years, there is a growing adoption
of the "AI/ML for wireless" paradigm in communication systems where ML techniques are used to tackle
several challenges in communications systems, including beam management [9].

In [8], the authors employed ray tracing-based simulations to investigate the performance of support
vector machine (SVM)-aided beam management for 5G new radio mmWave systems. The simulations
used geolocation side information to reduce the required channel state information (CSI) feedback
leveraging the proposed scheduler and using sum rate, latency and overhead as metrics. A similar ray-
traced simulation was undertaken in [10] that leveraged GPS signals for beam alignment in 28 GHz
vehicular network setups. The study employed random forest classifier and multilayer perceptron as two
supervised classification ML algorithms, compared against the baseline naive context information (CI)
algorithm. Performance was evaluated using accuracy, precision and recall for the optimal beam
prediction challenge. The authors of [11] and [12] went further by employing DL for beam prediction,
alongside the ML-based approaches. A common denominator in these state-of-the-art works is that the
ML, DL and GPS-aided frameworks are applied on synthetic datasets which present some limitations
when compared to real-world experimental data.

Different from earlier approaches, the authors of [6] proposed position-aided beam prediction
frameworks that use GPS coordinates for beam selection at the infrastructure in vehicle-to-infrastructure
(V2I) scenarios. The authors considered three approaches for performance evaluation: (i) look-up table, (ii)
k-nearest neighbours (KNN), and (iii) fully connected neural network. Interestingly, the frameworks are
tested using large real-world datasets! curated from extensive 60 GHz mmWave experiments under
different scenarios and use cases (i.e., DeepSense6G) [13]. In [6], the results across nine different scenarios
(Scenarios 1-9) show average beam prediction accuracy less than 40% for a 64-beam codebook and 80% for
the downsampled 8-beam codebook. These results are less than the typical over 95% accuracy from
synthetic datasets and this underscores how the proposed ML-based and GPS-aided solutions perform on
real-world datasets. The solutions in [6] leave room to test other ML algorithms on the considered datasets
and to consider other scenarios to draw further performance insights.

The authors of [14] investigated the impacts of dataset and codebook sizes on V2I beam prediction
using four different algorithms (KNN, SVM, DT and Naive Bayes (NB)), using also the experimental
datasets from DeepSense6G!. The authors investigated the impacts of the ML training-to-testing split
ratios (80:20, 70:30 and 60:40%) and beam codebook sizes (Q = 8, 16, 32 and 64). The authors of [15]
similarly employed KNN, SVM, DT and NB algorithms for five scenarios (i.e., Scenarios 1, 2, 5-7 of the
DeepSense6G dataset), and further employed other metrics such as confusion matrices, area under the
receiver operating characteristic curves, precision, recall, specificity and Fl-score for performance
evaluation. The work in [15] also investigated the impacts of data splits and codebook sizes on the beam
prediction accuracy. However, unlike this work, the works in [14-15] only considered five scenarios (1, 2,
5-7) and did not also consider the day and night characteristics of the datasets. The overall number of
dataset samples in [14-15] are also considerably lower than the number of dataset samples used in this
work.

!DeepSense6G, ‘A Large-Scale Real-World Multi-Modal Sensing and Communication Dataset for 6G Deep Learning Research’.
[Online]. Available: https://www.deepsense6g.net/
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In this work, therefore, we compare the performance of three algorithms on ten V2I scenarios from
the DeepSense6G datasets’. The ML algorithms are the KNN, SVM and the Decision Tree (DT). The ten
scenarios (Scenarios 1-2, 5-7, 14, 31-34) represent different data collection locations and time of the day
and have different datapoints or samples, as further described in subsection 2.2 (and presented in Table 2
and Table 2). A sample scenario (i.e., Scenario 7) is shown in Figure 1 and described in subsection 2.1.

To the best knowledge of the authors, the KNN has been explored in [6,14,15] and the SVM and DT
algorithms have been considered in [14-15] for position-aided ML-driven beam prediction challenge using
data from the real-world DeepSense6G datasets. However, the considered numbers of scenarios, and by
extension the number of data samples in [6, 14-15] are limited. In addition, this study investigates the
impacts of several parameters such as beam codebook size, number of data samples, time of the day
aggregates, etc., on system performance considering the KNN, SVM and DT algorithms and thus provides
further insights of the performance of the algorithms.

The remainder of this paper is organised as follows. In Section 2, we present the system model that
describes the network deployment layout, datasets and preprocessing operations. Section 3 then presents
the considered ML algorithms. In Section 4, we present the results and discussion while the conclusions
and future research directions are presented in Section 5.

2. System Model

In this section, we describe the considered deployment layouts, datasets and preprocessing
operations on the datasets. Figure 1 shows a sample of the network deployment layout (i.e., Scenario 7).
Other scenarios show similar network layouts but at different locations, and with different number of
lanes and data samples.

Infrastt“' tar

Figure 1. GPS View of Network Deployment (Scenario 7)!

2.1. Deployment Layout

As shown in Figure 1, we consider a V2I system where the TX is a vehicle equipped with a single
(N; = 1) omnidirectional antenna at 60 GHz, and a GPS sensor. Scenario 1 features two lanes where the
vehicle (TX) traverses the lanes multiple times in both directions and sends both communication and GPS
signals to the street-level base station (BS) or access point (AP) infrastructure on the sidewalk. The
infrastructure then predicts the beam with the highest received power from its beam codebook for each
sample point. Other scenarios have similar V2I deployment setups as described on the DeepSense6G
dataset repository’.

www.aetic.theiaer.org
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The infrastructure is equipped with a phased array employing analog beamforming. The BS (i.e., RX)
features N, = 16 uniform linear array (ULA) 60 GHz antennas and a GPS sensor receiver. The BS array
employs an oversampled codebook with Q = 64 receive beams or beamforming vectors w, € C'** or W €
CMr*@ such that W = {w,}2_,. The transmit signal x € C1*! and received signal vector y € C?*! are related
by (1):

Yq = wihifx + win (1)

where h,; € C"*! is the complex channel vector that holds the amplitude and phase transformations
that occur between each BS antenna and the UE antenna, f is the TX beamformer and n ~ N¢(0,0?)

represents a complex normally distributed noise. The beamforming gain is G = aULA((pq)Th where the
array response vector ay;, is given by (2):

1 1dsi NN
aya(9,) = JT_T[Le]ldsqu, ..., e/ (N-Dldsineq) "

where beam q is from the codebook Q, and ¢ € [—m/3, /3] represent the field of view (FoV) or @,
represents the beamwidth of beam g, A is the wavelength and d is the inter-element spacing of the AP's
ULAand! = 2m/A.

The optimal beam selection problem corresponds to the selection of the beamforming vector that
achieves the highest receive power at the infrastructure. This is formulated as in (3). However, since the
CSI acquisition in highly mobile scenarios is challenging, real-time position coordinates can be used to aid
the beam prediction challenge. This is what we explore in this study. Further details on the DeepSense6G
experimental testbed are available in [13] and on the DeepSense6G dataset repository!.

w* = argmax|w"h'f|? 3)

2.2. Scenarios' Datasets and Preprocessing

The dataset used for this study are from the DeepSense6G multimodal open datasets' for mmWave
communication [13]. The dataset is a large multimodal dataset with several scenarios, data samples and
measurement units (i.e., devices) and measured variables. The dataset is well documented on its website
such that users can easily access the needed information for their specific use case or scenario. The full
dataset contains many measured variables relating to data index, GPS values, mmWave power, beam
index, LiDAR, radar, camera images, number of satellites used, etc. The dataset contains the following
headers, which are adequately described on the DeepSense6G repository!:

['index’, "unitl_rgb’, ‘unitl_pwr_60ghz’, ‘unitl_loc’, ‘unitl_lidar’, "unitl_lidar_SCR’,

‘unitl_radar’, ‘unitl_beam_index’, ‘seq_index’,'unit2_loc’, ‘unit2_direction’,

"time_stamp’, ‘unit2_sat_used’, ‘unit2_fix_type’, ‘unit2_DGPS’, 'unit2_PDOP’, ‘unit2_HDOP’]

However, in this work, we have only fetched the specific variables/columns in Table 1 below for the
use in this work, where unitl is the AP/infrastructure and unit2 is the vehicle (TX). The “index” refers to
the dataset sample number in each scenario, each row of the “unit_pwr_60ghz” column contains the list of
measured mmWave power in the 64 beams, each row of the “unitl_loc” contains the infrastructure’s GPS
coordinates (which is same for each scenario as the infrastructure (unitl) is static for each scenario) while
each row of “unit2_loc” column contains the GPS coordinates for the vehicle which is different per row as
the vehicle (TX) is mobile. The beam with the highest power among the 64 beams is the ground truth
index or class. The measured GPS coordinates for both unitl (infrastructure or RX) and unit2 (vehicle or
TX) allows conversion to cartesian coordinates as well as the calculation of the Euclidean distance
between corresponding TX and RX positions for each row or datapoint as used in KNN for example or for
the determining the hyperplane as employed in SVM.

Table 1. Employed dataset features

index unitl_pwr_60ghz unitl_loc unit2_loc
1 Junitl/mmWave_data/mmWave_power_0.txt | ./unitl/GPS_data/gps_location.txt | ./unit2/GPS_data/gps_location_0.txt
2 Junitl/mmWave_data/mmWave_power_1.txt ./unitl/GPS_data/gps_location.txt = ./unit2/GPS_data/gps_location_1.txt
3 Junitl/mmWave_data/mmWave_power_2.txt | ./unitl/GPS_data/gps_location.txt | ./unit2/GPS_data/gps_location_2.txt
4 Junitl/mmWave_data/mmWave_power_3.txt = ./unitl/GPS_data/gps_location.txt = ./unit2/GPS_data/gps_location_3.txt
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On data preprocessing, we convert the GPS latitude and longitude tuples into Cartesian coordinate
values. The two-dimensional (2D) Cartesian location values are used as the two features for the ML-based
beam prediction or selection algorithms. This feature extraction stage is equivalent to having a GPS-to-
Cartesian coordinates converter before the ML prediction module. Also, the Cartesian location
coordinates are normalised before use as ML features, following standard ML practice.

The dataset currently consists of forty-four different scenarios that cover different use cases. Out of
these, V2I use cases are covered by 17 scenarios (i.e., Scenarios 1-9, 13-15, and 31-35). Scenarios 10-12 are
for pedestrian communications, Scenario 16 is for indoor communications, Scenario 23 is for drone
communications, Scenarios 36-39 are for vehicle-to-vehicle (V2V) communication, and Scenarios 42-44 are
for integrated sensing and communication (ISAC) use cases. Throughout this manuscript, we have
retained the scenario numbering exactly as used in the DeepSense6G dataset!. This is to ensure
consistency with the source of the datasets and to ease performance comparison with other works that
employ the same datasets.

Considering the V2I scenarios, we have focused on only ten scenarios (i.e., Scenarios 1-2, 5-7, 14, 31-
34). These selected scenarios are without any missing data, thus easing the preprocessing and
performance evaluation. We have also considered only the mmWave communication and GPS data (i.e.,
without other sensor data such as Light Detection and Ranging (LiDAR), Radio Detection and Ranging
(RADAR), and camera). Typically, vehicle localisation employs GPS signals when available and resorts to
sensed data (e.g., LIDAR, RADAR, and camera images, etc) when GPS signals are not available [16]. In
addition, the approach to employ only GPS signals in this work is to limit the required computational
complexity of the system, as processing the position-based features is less computationally demanding
than using camera/vision-based beam prediction that requires image processing, for example, or using the
multi-modal approach that involves a combination of sensed data, which improves the system's accuracy
but at the expense of higher computational demand.

A summary on each of the considered ten scenarios, together with the total data (i.e., with all ten
scenarios' samples combined) is given in Table 2. Also, the period of the day and weather condition under
which the measurements were taken are also presented in Table 2. Also, each scenario dataset is split into
80% training and 20% test samples using the hold-out partitioning method. The partitioning is
randomised in each iteration, and the results are averaged over ten iterations, considered sufficient for the
beam prediction use case under consideration.

Table 2. Summary of scenarios' datasets
Number of Samples

Scenario #* | Time of the Day = Weather Condition Total Training Testing
(80%) (20%)
1 Day Clear 2411 1929 482
2 Night Clear 2974 2380 594
5 Night Rainy 2300 1840 460
6 Day Clear 915 732 183
7 Day Clear 854 684 170
14 Night Clear 512 409 103
31 Day Clear 7012 5609 1403
32 Day Clear 3235 2588 647
33 Night Clear 3981 3184 797
34 Night Clear 4439 3551 888
Total Mixed Mixed 28633 22906 5727

*We have retained the scenario numbering as in DeepSense6G!.

2.3. Beam Codebook Downsampling

The original codebook considered in this study is an oversampled codebook with Q = 64 beams. With
the AP's FoV, we show in Figure 22 and Figure 3? for the ideal and real beam patterns respectively, that
these 64-beam codebook has significant overlap. It is also more computationally complex due to the high

The ideal beam pattern is generated using the MIMO4MATLAB Toolbox available at: http://mimoformatlab.com

3The real beam pattern is generated using the DeepSense6G measurement data and code available at:
https://www.deepsense6g.net/data-collection/ and https://www.deepsense6g.net/tutorials/, respectively.

www.aetic.theiaer.org
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dimensional search space. For these reasons, we downsample the codebook from Q = 64 beams to Q €
{32,16,8} beams. In addition, a comparison of Figure 2 and Figure 3 underscores the difference between
synthetic and real-world datasets.

Q=064 Q=32 Q=16 Q=8
Figure 2. Ideal multi-beam patterns for Q € {64,32,16,8} [15]
90 85 90 90
! 60 1 ! 60 ! 60
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08 08 08 08
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0.2 0.2

0.2

-30 -30 -30 -30
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Figure 3. Real multi-beam patterns for Q € {64,32, 16,8} [15]

3. ML Algorithms

In this work, we consider three supervised learning classification algorithms for mmWave V2I beam
prediction. The three algorithms are described as follows:

3.1. k-Nearest Neighbours (KNN)

KNN is a simple, easy-to-implement and widely-used supervised learning classification algorithm
where a sample is classified based on a specific number of its nearest neighbours [14]. It is a lazy learner
that works by learning the training dataset and thereafter determining the label of the new sample based
on the labels of its closest neighbours. KNN considers that the nearby samples should have the same label.
There are several methods employed in determining the k value (i.e., the number of neighbours). The
common method is, however, by trial and error where small, odd numbers are tested one after the other
to obtain desirable results. Also, several distance metrics (such as the Euclidean, Minkowski, Hamming
and Manhattan distances, etc) are employed to compute the sample’s closest/nearest neighbours [17].
With a predefined beam codebook, each beam covers a spatial direction within the FoV. Thus, KNN
considers that similar or neighbour positions (using the location coordinate tuples) should have similar
beams. Following the implementation in [6], the mode of the beams from N, nearest neighbours is
selected as the predicted beam. The k-smallest difference in Euclidean distances is employed as the

www.aetic.theiaer.org
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parameter used in selecting the neighbours and predicting the beams. The true beam (ground truth) is the
beam with the highest measured received power for each sample TX point.

3.2. Support Vector Machine (SVM)

SVMs are efficient and powerful classifiers that have found application in diverse real-world use
cases due to their versatility and extraordinary generalization capability. SVM can be adapted for the
specific use case leading to variants such as binary SVM and multi-class SVM, or for the type of dataset
under consideration leading to variants such as SVM for unbalanced datasets, SVM for large datasets, etc
[18]. The SVM algorithm employed in this work is a multi-class SVM based on the directed acyclic graph
(DAG). The DAG-SVM was proposed in [19] and we adopt the MATLAB implementation code* The
DAG-SVM predicts beams using only two features (location coordinates tuples in this case) and employs
the one-versus-one framework to transform many two-class classifiers into a multi-class classifier for the
multi-beam/multi-label prediction challenge. For a Q-class problem, the DAG-SVM contains Q(Q-1)/2
classifiers, one for each pair of classes. It employs a Gaussian radial basis function kernel to generate
nonlinear boundaries or SVM hyperplane between the two classes of each combination [20]. The DAG-
SVM is hereinafter simply referred to as SVM. Despite its optimal solution and high discriminative power,
a challenge with SVM is that it generates a large amount of data that can become prohibitive, particularly
when the number of classes is high [18].

3.3. Decision Tree (DT)

The Decision Tree (DT) algorithm is a rule-based classifier that employs a top-down classification
structure. In its tree structure, each feature is represented by a tree vertex, and each tree branch shows the
value of the feature. The tree’s topmost vertex is known as the root of the decision tree while the vertices
at the bottom are known as leaves., with each leaf representing a class. The DT employs information gain
or entropy differences for classification [20]. For the beam prediction application in this work, the DT
supervised learning algorithm predicts the target beam by learning simple decision rules that it infers
from the data features. The tree works as a piecewise constant approximation, can handle multi-class
output problems and can efficiently deal with large and complicated datasets, while making no
assumption of the underlying data distribution [14,21]. The DT classifier predicts the class of sample with
the highest probability. In the event of multiple classes with same and highest probabilities, the class with
the lowest index among the classes is predicted. The complexity of the tree determines its accuracy.

4. Results and Discussion

In this section, we evaluate the performance of the ML algorithms on the scenarios' dataset. We
employ beam prediction accuracy as the performance metric. It should be noted that throughout this
paper, the beam prediction accuracy refers to the testing accuracy. It is the percentage of test samples
where the predicted beam by the ML algorithms (KNN, SVM and DT) are the same as the ground
truth/measured optimal beam at the AP.

For KNN, we also evaluate the top-k accuracy, with k € {1, 2, 3,4, 5} and which measures the ratio of
the test samples where the ground truth/measured optimal beam is within the top-k predicted beams. It is
the percentage of hitting the optimal beam by searching the top-k beams.

4.1. Performance Comparison of Algorithms

Figure 4 shows the beam prediction accuracies of KNN, SVM and DT for downsampled codebooks Q
= 32, 16 and 8 for the ten considered scenarios. The trends in Figure 4 show that the lower the beam
codebook size Q, the better the beam prediction accuracy. This means that lower number of beams in the
codebook with wider beamwidth per beam is beneficial for more accurate beam pairing predictions. This
is, however, at the expense of the higher array gain realisable with narrower beams. The difference
between the ideal beam patterns and the real beam patterns as illustrated in Figure 2 and Figure 3,

“https://www.mathworks.com/matlabcentral/fileexchange/65232-binary-and-multi-class-svm
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respectively, underscores the difference between synthetic and real-world datasets. Also, the low
performance results are majorly for high codebook values (e.g., 32 beams and 64 beams) where due to
significant overlap of the beams, the probability of misclassifying the optimal beams becomes higher,
where the probability that the algorithm predicts near-optimal beams is higher, as against predicting the
optimal beams or ground truth index which then leads to higher misclassification by the algorithms as the
codebook size increases.

Also, for all considered scenarios, the results also show that SVM marginally outperforms both KNN
and DT. However, for all scenarios, codebook sizes and algorithms, no correlation can be established
between the number of samples in each scenario and the accuracy. For example, as shown in Table 2,
Scenario 14 has the lowest number of datapoints whereas Scenario 7 has the least performance while not
having the highest number of data samples. Along the same line, Scenario 31 with highest number of data
samples does not show any performance superiority over most of the scenarios with lower data samples.
Overall, the results show that the beam prediction accuracy is scenario-specific. However, the results
show that the accuracy is codebook size-dependent, as the higher the codebook size, the lower the
prediction accuracy.

|— © —KNN —#—SVM -+ Decision Tree |
SOJ T T T

T T T

Q =32 beams

Beam Prediction Accuracy (%)

40 | L ! L | L !
1 2 ) 6 7 14 31 32 33 34
100 T T T T T T T T
Q = 8 beams
9
80
70

Scenario Number
Figure 4. Algorithms' Accuracies for Q =32, 16 and 8

4.2, Performance with Day and Night Aggregates

In Figure 5(a) (KNN) and Figure 5(b) (DT), we compare the beam prediction accuracy for aggregated
day scenarios (#1, 6, 7, 14, 31 and 32) and aggregated night scenarios (#2, 5, 33 and 34), against the total
that includes all scenarios (i.e., containing all day and night scenarios).

Following the same trend as in Figure 4, the results in Figure 5 also show that the lower the Q, the
higher the accuracy. Also, the night scenarios show higher prediction accuracies than the day scenarios,
while the total scenarios show the least accuracies. No correlation could be established from the day and
night statistics, except that the night performance statistics were averaged over 4 scenarios, day scenarios
were averaged over 6 scenarios while the total scenarios were averaged over 10 scenarios, where the
number of the respective aggregates (day, night and total) could have influence on the performance
statistics.
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Figure 5. Averaged Scenario Performance for KNN and DT for different codebook sizes and Time of the Day.
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Figure 6. Day and Night Scenarios' Performance for different codebook sizes using KNN

Figure 6(a) shows day scenario-per-scenario, all “days” scenarios combined and all scenario
combined (i.e., total) performances using KNN and for Q =8 to Q = 64. Similarly, Figure 6(b) shows night
scenario-per-scenario, all “night” scenarios combined and all scenario combined (i.e., total) performances
using KNN and for Q =8 to Q = 64. The results follow the same trends as those of Figure 5.

4.3. Top-k Accuracy using KNN

Figure 7 shows the top-k accuracy performance using KNN across the ten scenarios considered for Q
=8, 16, 32 and 64. The results show top-1 accuracies of 20-42% for Q = 64 and 70-90% for Q = 8. For the top-
5 accuracy, the results in Figure 7 show accuracies of 60-82% and 95-98% for Q = 64 and Q = 8,
respectively. The results show that the higher the number of “k” neighbours, the higher the accuracy for
the considered scenarios and values of k. A tradeoff between Q and k is therefore important for desired
system performance. Overall, these results are consistent with the outcomes in [6, 14-15] for Scenarios 1-9.
However, this work also provides results for Scenarios 14 and 31-34 that were not covered in [6, 14-15].

5. Conclusion

In this paper, we have leveraged real-world experimental datasets to evaluate the performance of
position-aided mmWave V2I communications. We evaluated and compared the performance of three ML
algorithms (i.e., KNN, SVM and DT) on mmWave V2I beam prediction using GPS coordinates as ML
features. The results show the impact of codebook sizes on the accuracies of the ML algorithms under
different scenarios. The results also reveal the limitations of beam prediction using geolocation side
information only as average accuracy in some scenarios are less than 30%. Such low performances
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underscore the difference between using synthetic and real-world experimental data. Therefore, mmWave
V2I will benefit from a combination of sensors' data to enhance prediction accuracy results. Future
research works will consider other ML and DL approaches as well as multi-modal beam prediction
approach.
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Figure 7. Top-k Beam Prediction Accuracy for Q =8, 16, 32 and 64 using KNN
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