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Abstract: Millimetre wave (mmWave) systems require high beamforming gains to overcome the unfavourable 

impacts of high path losses at mmWave frequencies. Large antenna arrays enable such gains through highly 

directive narrow beams which then require multiple beams to cover the spatial directions of interest. The required 

beam management for such systems, particularly for mobile use cases such as the vehicle-to-infrastructure (V2I) 

scenarios, is challenging. Real-time optimal beam selection from codebooks consumes radio resources and incurs 

large training overheads. As a result, geolocation side information and machine learning (ML) algorithms are 

being explored to address beam management challenges. However, prior works have mostly applied their 

solutions using simulations that are based on synthetic datasets. Recently, real-world datasets based on extensive 

mmWave measurements have become available. Leveraging the real-world datasets, in this work, we evaluate and 

compare the performance of three ML (i.e., k-nearest neighbours, support vector machine and decision tree) 

algorithms on mmWave V2I beam selection aided by global positioning system latitude and longitude coordinates 

as the only two features for the ML. The results show the impact of codebook sizes on the accuracies of the ML 

algorithms under ten different scenarios. The results also reveal the limitations of the geolocation-aided beam 

prediction as average accuracy could go below 30% in some scenarios, and higher than 90% in other scenarios. 

These performance results point to the need for multi-modal approaches (involving a combination of different 

sensors' data) for efficient mmWave V2I beam prediction. 

Keywords: Beam Prediction; Decision Tree; GPS; K-Nearest Neighbour; Machine learning; mmWave; Support 

Vector Machine; V2I 
 

1. Introduction 

Millimetre-wave (mmWave) systems enable enhanced mobile broadband communication by 

exploiting larger bandwidth than available at the legacy sub-7 GHz frequency bands. However, to 

facilitate the desired multi-Gigabits-per-second (Gbps) rates, mmWave systems need to combat the high 

path losses (PL) at such high frequencies [1]. For example, according to the Friis equation, the free space 

path loss (FSPL) for a 6 GHz system at a transmitter (TX)-to-receiver (RX) separation distance of 100 m is 

88 dB. This same 88 dB is the FSPL at only 10 m separation distance for 60 GHz mmWave propagation. 

Therefore, to extend range and facilitate reliable communication, mmWave systems employ large antenna 

arrays with narrow beams that offer high beamforming gains and directivity to ensure sufficient received 

signal power. This solution is, however, not without its own challenges with respect to beam 

management, particularly for vehicle-to-everything (V2X) scenarios with mobility of both the TX and RX 

or either one of them [2-4]. 
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The challenge with narrow beams is that they cover limited spatial directions. This, therefore, 

necessitate the use of either multiple beams with predefined beamforming codebook [5-6] to cover the 

entire region of interest or field of view (FOV), or beam sweeping operations where beams cover a spatial 

area during a time instance in a predetermined way, and sweeps through another area in another time 

instance [3], using approaches based on the beam’s angle of arrival (AoA) and angle of departure (AoD) 

[7]. In addition, the beam management procedures (i.e., beam alignment, tracking, training, selection and 

steering) typically consume radio resources and are associated with large training overheads [2, 6].  

To address the radio resource challenge, many authors consider alternatives such as using 

geolocation side information (i.e., localisation and positioning systems such as the global positioning 

system (GPS)) in aiding beam management procedures and in reducing beam training overhead [2-3, 8]. 

In addition to these system-aiding alternatives, many authors also explore artificial intelligence (AI)-based 

solutions such as machine learning (ML) or deep learning (DL) in tackling beam management challenges 

[2]. Therefore, while classical approaches have been employed over the years, there is a growing adoption 

of the "AI/ML for wireless" paradigm in communication systems where ML techniques are used to tackle 

several challenges in communications systems, including beam management [9]. 

In [8], the authors employed ray tracing-based simulations to investigate the performance of support 

vector machine (SVM)-aided beam management for 5G new radio mmWave systems. The simulations 

used geolocation side information to reduce the required channel state information (CSI) feedback 

leveraging the proposed scheduler and using sum rate, latency and overhead as metrics. A similar ray-

traced simulation was undertaken in [10] that leveraged GPS signals for beam alignment in 28 GHz 

vehicular network setups. The study employed random forest classifier and multilayer perceptron as two 

supervised classification ML algorithms, compared against the baseline naïve context information (CI) 

algorithm. Performance was evaluated using accuracy, precision and recall for the optimal beam 

prediction challenge. The authors of [11] and [12] went further by employing DL for beam prediction, 

alongside the ML-based approaches. A common denominator in these state-of-the-art works is that the 

ML, DL and GPS-aided frameworks are applied on synthetic datasets which present some limitations 

when compared to real-world experimental data.  

Different from earlier approaches, the authors of [6] proposed position-aided beam prediction 

frameworks that use GPS coordinates for beam selection at the infrastructure in vehicle-to-infrastructure 

(V2I) scenarios. The authors considered three approaches for performance evaluation: (i) look-up table, (ii) 

k-nearest neighbours (KNN), and (iii) fully connected neural network. Interestingly, the frameworks are 

tested using large real-world datasets1 curated from extensive 60 GHz mmWave experiments under 

different scenarios and use cases (i.e., DeepSense6G) [13]. In [6], the results across nine different scenarios 

(Scenarios 1-9) show average beam prediction accuracy less than 40% for a 64-beam codebook and 80% for 

the downsampled 8-beam codebook. These results are less than the typical over 95% accuracy from 

synthetic datasets and this underscores how the proposed ML-based and GPS-aided solutions perform on 

real-world datasets. The solutions in [6] leave room to test other ML algorithms on the considered datasets 

and to consider other scenarios to draw further performance insights. 

The authors of [14] investigated the impacts of dataset and codebook sizes on V2I beam prediction 

using four different algorithms (KNN, SVM, DT and Naïve Bayes (NB)), using also the experimental 

datasets from DeepSense6G1. The authors investigated the impacts of the ML training-to-testing split 

ratios (80:20, 70:30 and 60:40%) and beam codebook sizes (Q = 8, 16, 32 and 64). The authors of [15] 

similarly employed KNN, SVM, DT and NB algorithms for five scenarios (i.e., Scenarios 1, 2, 5-7 of the 

DeepSense6G dataset), and further employed other metrics such as confusion matrices, area under the 

receiver operating characteristic curves, precision, recall, specificity and F1-score for performance 

evaluation. The work in [15] also investigated the impacts of data splits and codebook sizes on the beam 

prediction accuracy. However, unlike this work, the works in [14-15] only considered five scenarios (1, 2, 

5-7) and did not also consider the day and night characteristics of the datasets. The overall number of 

dataset samples in [14-15] are also considerably lower than the number of dataset samples used in this 

work. 

 
1DeepSense6G, ‘A Large-Scale Real-World Multi-Modal Sensing and Communication Dataset for 6G Deep Learning Research’. 

[Online]. Available: https://www.deepsense6g.net/ 

https://www.deepsense6g.net/
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In this work, therefore, we compare the performance of three algorithms on ten V2I scenarios from 

the DeepSense6G datasets1. The ML algorithms are the KNN, SVM and the Decision Tree (DT).  The ten 

scenarios (Scenarios 1-2, 5-7, 14, 31-34) represent different data collection locations and time of the day 

and have different datapoints or samples, as further described in subsection 2.2 (and presented in Table 2 

and Table 2). A sample scenario (i.e., Scenario 7) is shown in Figure 1 and described in subsection 2.1. 

To the best knowledge of the authors, the KNN has been explored in [6,14,15] and the SVM and DT 

algorithms have been considered in [14-15] for position-aided ML-driven beam prediction challenge using 

data from the real-world DeepSense6G datasets. However, the considered numbers of scenarios, and by 

extension the number of data samples in [6, 14-15] are limited. In addition, this study investigates the 

impacts of several parameters such as beam codebook size, number of data samples, time of the day 

aggregates, etc., on system performance considering the KNN, SVM and DT algorithms and thus provides 

further insights of the performance of the algorithms.  

The remainder of this paper is organised as follows. In Section 2, we present the system model that 

describes the network deployment layout, datasets and preprocessing operations. Section 3 then presents 

the considered ML algorithms. In Section 4, we present the results and discussion while the conclusions 

and future research directions are presented in Section 5. 

2. System Model 

In this section, we describe the considered deployment layouts, datasets and preprocessing 

operations on the datasets. Figure 1 shows a sample of the network deployment layout (i.e., Scenario 7). 

Other scenarios show similar network layouts but at different locations, and with different number of 

lanes and data samples. 

 
Figure 1. GPS View of Network Deployment (Scenario 7)1 

2.1. Deployment Layout 

As shown in Figure 1, we consider a V2I system where the TX is a vehicle equipped with a single 

(𝑁𝑡 = 1) omnidirectional antenna at 60 GHz, and a GPS sensor. Scenario 1 features two lanes where the 

vehicle (TX) traverses the lanes multiple times in both directions and sends both communication and GPS 

signals to the street-level base station (BS) or access point (AP) infrastructure on the sidewalk. The 

infrastructure then predicts the beam with the highest received power from its beam codebook for each 

sample point. Other scenarios have similar V2I deployment setups as described on the DeepSense6G 

dataset repository1. 
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The infrastructure is equipped with a phased array employing analog beamforming. The BS (i.e., RX) 

features 𝑁𝑟 = 16 uniform linear array (ULA) 60 GHz antennas and a GPS sensor receiver. The BS array 

employs an oversampled codebook with Q = 64 receive beams or beamforming vectors 𝒘𝑞 ∈ ℂ𝑁𝑟×1 or 𝑾 ∈

ℂ𝑁𝑟×𝑄 such that 𝒲 = {𝒘𝑞}𝑞=1
𝑄 . The transmit signal  𝑥 ∈ ℂ1×1 and received signal vector 𝒚 ∈ ℂ𝑄×1 are related 

by (1): 

𝑦𝑞 = 𝒘𝑞
𝑇hq

T𝑓𝑥 + 𝒘𝑞
𝑇𝒏                                                                            (1) 

where 𝒉𝑞 ∈ ℂ𝑁𝑟×1 is the complex channel vector that holds the amplitude and phase transformations 

that occur between each BS antenna and the UE antenna, 𝑓 is the TX beamformer and 𝒏 ∼ 𝒩ℂ(0, σ2) 

represents a complex normally distributed noise. The beamforming gain is 𝐺 = 𝒂𝑈𝐿𝐴(φ𝑞)
𝑇

h where the 

array response vector 𝒂𝑈𝐿𝐴 is given by (2): 

𝒂𝑈𝐿𝐴(φ𝑞) =
1

√𝑁𝑟
[1, 𝑒𝑗𝑙𝑑 sin φ𝑞 , … , 𝑒𝑗(𝑁−1)𝑙𝑑 sin φ𝑞]                                                                      (2) 

where beam 𝑞 is from the codebook Q, and φ ∈ [−π/3, π/3] represent the field of view (FoV) or φ𝑞 

represents the beamwidth of beam 𝑞, λ is the wavelength and 𝑑 is the inter-element spacing of the AP's 

ULA and 𝑙 =  2π/λ. 

The optimal beam selection problem corresponds to the selection of the beamforming vector that 

achieves the highest receive power at the infrastructure. This is formulated as in (3). However, since the 

CSI acquisition in highly mobile scenarios is challenging, real-time position coordinates can be used to aid 

the beam prediction challenge. This is what we explore in this study.  Further details on the DeepSense6G 

experimental testbed are available in [13] and on the DeepSense6G dataset repository1. 

w⋆ = arg max
w∈𝒲

|wThT𝑓|2                                                                       (3) 

2.2. Scenarios' Datasets and Preprocessing 

The dataset used for this study are from the DeepSense6G multimodal open datasets1 for mmWave 

communication [13]. The dataset is a large multimodal dataset with several scenarios, data samples and 

measurement units (i.e., devices) and measured variables. The dataset is well documented on its website 

such that users can easily access the needed information for their specific use case or scenario. The full 

dataset contains many measured variables relating to data index, GPS values, mmWave power, beam 

index, LiDAR, radar, camera images, number of satellites used, etc. The dataset contains the following 

headers, which are adequately described on the DeepSense6G repository1:  

['index', 'unit1_rgb', 'unit1_pwr_60ghz', 'unit1_loc', 'unit1_lidar', 'unit1_lidar_SCR',  

'unit1_radar', 'unit1_beam_index', 'seq_index','unit2_loc', 'unit2_direction',  

'time_stamp', 'unit2_sat_used', 'unit2_fix_type', 'unit2_DGPS', 'unit2_PDOP', 'unit2_HDOP'] 

However, in this work, we have only fetched the specific variables/columns in Table 1 below for the 

use in this work, where unit1 is the AP/infrastructure and unit2 is the vehicle (TX). The “index” refers to 

the dataset sample number in each scenario, each row of the “unit_pwr_60ghz” column contains the list of 

measured mmWave power in the 64 beams, each row of the “unit1_loc” contains the infrastructure’s GPS 

coordinates (which is same for each scenario as the infrastructure (unit1) is static for each scenario) while 

each row of “unit2_loc” column contains the GPS coordinates for the vehicle which is different per row as 

the vehicle (TX) is mobile. The beam with the highest power among the 64 beams is the ground truth 

index or class. The measured GPS coordinates for both unit1 (infrastructure or RX) and unit2 (vehicle or 

TX) allows conversion to cartesian coordinates as well as the calculation of the Euclidean distance 

between corresponding TX and RX positions for each row or datapoint as used in KNN for example or for 

the determining the hyperplane as employed in SVM. 

Table 1. Employed dataset features 

index unit1_pwr_60ghz unit1_loc unit2_loc 

1 ./unit1/mmWave_data/mmWave_power_0.txt ./unit1/GPS_data/gps_location.txt ./unit2/GPS_data/gps_location_0.txt 

2 ./unit1/mmWave_data/mmWave_power_1.txt ./unit1/GPS_data/gps_location.txt ./unit2/GPS_data/gps_location_1.txt 

3 ./unit1/mmWave_data/mmWave_power_2.txt ./unit1/GPS_data/gps_location.txt ./unit2/GPS_data/gps_location_2.txt 

4 ./unit1/mmWave_data/mmWave_power_3.txt ./unit1/GPS_data/gps_location.txt ./unit2/GPS_data/gps_location_3.txt 

. . . . 

. . . . 

. . . . 
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On data preprocessing, we convert the GPS latitude and longitude tuples into Cartesian coordinate 

values. The two-dimensional (2D) Cartesian location values are used as the two features for the ML-based 

beam prediction or selection algorithms. This feature extraction stage is equivalent to having a GPS-to-

Cartesian coordinates converter before the ML prediction module. Also, the Cartesian location 

coordinates are normalised before use as ML features, following standard ML practice. 

The dataset currently consists of forty-four different scenarios that cover different use cases. Out of 

these, V2I use cases are covered by 17 scenarios (i.e., Scenarios 1–9, 13–15, and 31–35). Scenarios 10–12 are 

for pedestrian communications, Scenario 16 is for indoor communications, Scenario 23 is for drone 

communications, Scenarios 36–39 are for vehicle-to-vehicle (V2V) communication, and Scenarios 42–44 are 

for integrated sensing and communication (ISAC) use cases. Throughout this manuscript, we have 

retained the scenario numbering exactly as used in the DeepSense6G dataset1. This is to ensure 

consistency with the source of the datasets and to ease performance comparison with other works that 

employ the same datasets. 

Considering the V2I scenarios, we have focused on only ten scenarios (i.e., Scenarios 1-2, 5-7, 14, 31-

34). These selected scenarios are without any missing data, thus easing the preprocessing and 

performance evaluation.  We have also considered only the mmWave communication and GPS data (i.e., 

without other sensor data such as Light Detection and Ranging (LiDAR), Radio Detection and Ranging 

(RADAR), and camera). Typically, vehicle localisation employs GPS signals when available and resorts to 

sensed data (e.g., LiDAR, RADAR, and camera images, etc) when GPS signals are not available [16]. In 

addition, the approach to employ only GPS signals in this work is to limit the required computational 

complexity of the system, as processing the position-based features is less computationally demanding 

than using camera/vision-based beam prediction that requires image processing, for example, or using the 

multi-modal approach that involves a combination of sensed data, which improves the system's accuracy 

but at the expense of higher computational demand. 

A summary on each of the considered ten scenarios, together with the total data (i.e., with all ten 

scenarios' samples combined) is given in Table 2. Also, the period of the day and weather condition under 

which the measurements were taken are also presented in Table 2. Also, each scenario dataset is split into 

80% training and 20% test samples using the hold-out partitioning method. The partitioning is 

randomised in each iteration, and the results are averaged over ten iterations, considered sufficient for the 

beam prediction use case under consideration. 

Table 2. Summary of scenarios' datasets 

Scenario #* Time of the Day Weather Condition 

Number of Samples 

Total 
Training 

(80%) 

Testing 

(20%) 

1 Day Clear 2411 1929 482 

2 Night Clear 2974 2380 594 

5 Night Rainy 2300 1840 460 

6 Day Clear 915 732 183 

7 Day Clear 854 684 170 

14 Night  Clear 512 409 103 

31 Day Clear 7012 5609 1403 

32 Day Clear 3235 2588 647 

33 Night Clear 3981 3184 797 

34 Night Clear 4439 3551 888 

Total Mixed Mixed 28633 22906 5727 

*We have retained the scenario numbering as in DeepSense6G1. 

2.3. Beam Codebook Downsampling 

The original codebook considered in this study is an oversampled codebook with Q = 64 beams. With 

the AP's FoV, we show in Figure 22 and Figure 33, for the ideal and real beam patterns respectively, that 

these 64-beam codebook has significant overlap. It is also more computationally complex due to the high 

 
2The ideal beam pattern is generated using the MIMO4MATLAB Toolbox available at: http://mimoformatlab.com 
3The real beam pattern is generated using the DeepSense6G measurement data and code available at: 

https://www.deepsense6g.net/data-collection/ and https://www.deepsense6g.net/tutorials/, respectively. 

http://mimoformatlab.com/
https://www.deepsense6g.net/tutorials/
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dimensional search space. For these reasons, we downsample the codebook from Q = 64 beams to Q ∈

{32, 16, 8} beams. In addition, a comparison of Figure 2 and Figure 3 underscores the difference between 

synthetic and real-world datasets. 

 
 

Q = 64                              Q = 32                                Q = 16      Q = 8 

Figure 2. Ideal multi-beam patterns for 𝑄  ∈ {64,32,16,8} [15] 

 
Q = 64                              Q = 32                              Q = 16                              Q = 8 

Figure 3. Real multi-beam patterns for 𝑄  ∈ {64, 32, 16, 8} [15] 

3. ML Algorithms 

In this work, we consider three supervised learning classification algorithms for mmWave V2I beam 

prediction. The three algorithms are described as follows:  

3.1. k-Nearest Neighbours (KNN)  

KNN is a simple, easy-to-implement and widely-used supervised learning classification algorithm 

where a sample is classified based on a specific number of its nearest neighbours [14]. It is a lazy learner 

that works by learning the training dataset and thereafter determining the label of the new sample based 

on the labels of its closest neighbours. KNN considers that the nearby samples should have the same label. 

There are several methods employed in determining the k value (i.e., the number of neighbours). The 

common method is, however, by trial and error where small, odd numbers are tested one after the other 

to obtain desirable results. Also, several distance metrics (such as the Euclidean, Minkowski, Hamming 

and Manhattan distances, etc) are employed to compute the sample’s closest/nearest neighbours [17]. 

With a predefined beam codebook, each beam covers a spatial direction within the FoV. Thus, KNN 

considers that similar or neighbour positions (using the location coordinate tuples) should have similar 

beams. Following the implementation in [6], the mode of the beams from 𝑁𝑘𝑛𝑛 nearest neighbours is 

selected as the predicted beam. The k-smallest difference in Euclidean distances is employed as the 
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parameter used in selecting the neighbours and predicting the beams. The true beam (ground truth) is the 

beam with the highest measured received power for each sample TX point. 

3.2. Support Vector Machine (SVM) 

SVMs are efficient and powerful classifiers that have found application in diverse real-world use 

cases due to their versatility and extraordinary generalization capability. SVM can be adapted for the 

specific use case leading to variants such as binary SVM and multi-class SVM, or for the type of dataset 

under consideration leading to variants such as SVM for unbalanced datasets, SVM for large datasets, etc 

[18]. The SVM algorithm employed in this work is a multi-class SVM based on the directed acyclic graph 

(DAG). The DAG-SVM was proposed in [19] and we adopt the MATLAB implementation code4. The 

DAG-SVM predicts beams using only two features (location coordinates tuples in this case) and employs 

the one-versus-one framework to transform many two-class classifiers into a multi-class classifier for the 

multi-beam/multi-label prediction challenge. For a Q-class problem, the DAG-SVM contains Q(Q-1)/2 

classifiers, one for each pair of classes. It employs a Gaussian radial basis function kernel to generate 

nonlinear boundaries or SVM hyperplane between the two classes of each combination [20]. The DAG-

SVM is hereinafter simply referred to as SVM. Despite its optimal solution and high discriminative power, 

a challenge with SVM is that it generates a large amount of data that can become prohibitive, particularly 

when the number of classes is high [18].   

3.3. Decision Tree (DT) 

The Decision Tree (DT) algorithm is a rule-based classifier that employs a top-down classification 

structure. In its tree structure, each feature is represented by a tree vertex, and each tree branch shows the 

value of the feature. The tree’s topmost vertex is known as the root of the decision tree while the vertices 

at the bottom are known as leaves., with each leaf representing a class.  The DT employs information gain 

or entropy differences for classification [20]. For the beam prediction application in this work, the DT 

supervised learning algorithm predicts the target beam by learning simple decision rules that it infers 

from the data features. The tree works as a piecewise constant approximation, can handle multi-class 

output problems and can efficiently deal with large and complicated datasets, while making no 

assumption of the underlying data distribution [14,21]. The DT classifier predicts the class of sample with 

the highest probability. In the event of multiple classes with same and highest probabilities, the class with 

the lowest index among the classes is predicted. The complexity of the tree determines its accuracy. 

4. Results and Discussion 

In this section, we evaluate the performance of the ML algorithms on the scenarios' dataset. We 

employ beam prediction accuracy as the performance metric. It should be noted that throughout this 

paper, the beam prediction accuracy refers to the testing accuracy. It is the percentage of test samples 

where the predicted beam by the ML algorithms (KNN, SVM and DT) are the same as the ground 

truth/measured optimal beam at the AP.  

For KNN, we also evaluate the top-k accuracy, with 𝑘 ∈ {1, 2, 3, 4, 5} and which measures the ratio of 

the test samples where the ground truth/measured optimal beam is within the top-k predicted beams. It is 

the percentage of hitting the optimal beam by searching the top-k beams. 

4.1. Performance Comparison of Algorithms  

Figure 4 shows the beam prediction accuracies of KNN, SVM and DT for downsampled codebooks Q 

= 32, 16 and 8 for the ten considered scenarios. The trends in Figure 4 show that the lower the beam 

codebook size Q, the better the beam prediction accuracy. This means that lower number of beams in the 

codebook with wider beamwidth per beam is beneficial for more accurate beam pairing predictions. This 

is, however, at the expense of the higher array gain realisable with narrower beams. The difference 

between the ideal beam patterns and the real beam patterns as illustrated in Figure 2 and Figure 3, 

 
4https://www.mathworks.com/matlabcentral/fileexchange/65232-binary-and-multi-class-svm 

https://www.mathworks.com/matlabcentral/fileexchange/65232-binary-and-multi-class-svm
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respectively, underscores the difference between synthetic and real-world datasets. Also, the low 

performance results are majorly for high codebook values (e.g., 32 beams and 64 beams) where due to 

significant overlap of the beams, the probability of misclassifying the optimal beams becomes higher, 

where the probability that the algorithm predicts near-optimal beams is higher, as against predicting the 

optimal beams or ground truth index which then leads to higher misclassification by the algorithms as the 

codebook size increases. 

Also, for all considered scenarios, the results also show that SVM marginally outperforms both KNN 

and DT. However, for all scenarios, codebook sizes and algorithms, no correlation can be established 

between the number of samples in each scenario and the accuracy. For example, as shown in Table 2, 

Scenario 14 has the lowest number of datapoints whereas Scenario 7 has the least performance while not 

having the highest number of data samples. Along the same line, Scenario 31 with highest number of data 

samples does not show any performance superiority over most of the scenarios with lower data samples. 

Overall, the results show that the beam prediction accuracy is scenario-specific. However, the results 

show that the accuracy is codebook size-dependent, as the higher the codebook size, the lower the 

prediction accuracy.  

 
Figure 4. Algorithms' Accuracies for Q = 32, 16 and 8 

4.2. Performance with Day and Night Aggregates 

In Figure 5(a) (KNN) and Figure 5(b) (DT), we compare the beam prediction accuracy for aggregated 

day scenarios (#1, 6, 7, 14, 31 and 32) and aggregated night scenarios (#2, 5, 33 and 34), against the total 

that includes all scenarios (i.e., containing all day and night scenarios). 

Following the same trend as in Figure 4, the results in Figure 5 also show that the lower the Q, the 

higher the accuracy. Also, the night scenarios show higher prediction accuracies than the day scenarios, 

while the total scenarios show the least accuracies. No correlation could be established from the day and 

night statistics, except that the night performance statistics were averaged over 4 scenarios, day scenarios 

were averaged over 6 scenarios while the total scenarios were averaged over 10 scenarios, where the 

number of the respective aggregates (day, night and total) could have influence on the performance 

statistics. 
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(a) Averaged Day and Night Scenarios (KNN) (b) Averaged Day and Night Scenarios (DT) 

Figure 5. Averaged Scenario Performance for KNN and DT for different codebook sizes and Time of the Day. 

 
(a) Day Scenarios using KNN Algorithm (b) Night Scenarios using KNN Algorithm 

Figure 6. Day and Night Scenarios' Performance for different codebook sizes using KNN 

Figure 6(a) shows day scenario-per-scenario, all “days” scenarios combined and all scenario 

combined (i.e., total) performances using KNN and for Q = 8 to Q = 64. Similarly, Figure 6(b) shows night 

scenario-per-scenario, all “night” scenarios combined and all scenario combined (i.e., total) performances 

using KNN and for Q = 8 to Q = 64. The results follow the same trends as those of Figure 5. 

4.3. Top-k Accuracy using KNN 

Figure 7 shows the top-k accuracy performance using KNN across the ten scenarios considered for Q 

= 8, 16, 32 and 64. The results show top-1 accuracies of 20-42% for Q = 64 and 70-90% for Q = 8. For the top-

5 accuracy, the results in Figure 7 show accuracies of 60-82% and 95-98% for Q = 64 and Q = 8, 

respectively. The results show that the higher the number of “k” neighbours, the higher the accuracy for 

the considered scenarios and values of k. A tradeoff between Q and k is therefore important for desired 

system performance. Overall, these results are consistent with the outcomes in [6, 14-15] for Scenarios 1-9. 

However, this work also provides results for Scenarios 14 and 31-34 that were not covered in [6, 14-15]. 

5. Conclusion  

In this paper, we have leveraged real-world experimental datasets to evaluate the performance of 

position-aided mmWave V2I communications.  We evaluated and compared the performance of three ML 

algorithms (i.e., KNN, SVM and DT) on mmWave V2I beam prediction using GPS coordinates as ML 

features. The results show the impact of codebook sizes on the accuracies of the ML algorithms under 

different scenarios. The results also reveal the limitations of beam prediction using geolocation side 

information only as average accuracy in some scenarios are less than 30%. Such low performances 
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underscore the difference between using synthetic and real-world experimental data. Therefore, mmWave 

V2I will benefit from a combination of sensors' data to enhance prediction accuracy results.  Future 

research works will consider other ML and DL approaches as well as multi-modal beam prediction 

approach. 

 
Figure 7. Top-k Beam Prediction Accuracy for Q = 8, 16, 32 and 64 using KNN 
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