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Abstract: The protection of intellectual property has become critical due to the rapid growth of three-dimensional 

content in digital media. Unlike traditional images or videos, 3D point clouds present unique challenges for 

copyright enforcement, as they are especially vulnerable to a range of geometric and non-geometric attacks that can 

easily degrade or remove conventional watermark signals. In this paper, we address these challenges by proposing 

a robust deep neural watermarking framework for 3D point cloud copyright protection and ownership verification. 

Our approach embeds binary watermarks into the singular values of 3D point cloud blocks using spectral 

decomposition, i.e. Singular Value Decomposition (SVD), and leverages the extraction capabilities of Deep 

Learning using PointNet++ neural network architecture. The network is trained to reliably extract watermarks even 

after the data undergoes various attacks such as rotation, scaling, noise, cropping and signal distortions. We 

validated our method using the publicly available ModelNet40 dataset, demonstrating that deep learning-based 

extraction significantly outperforms traditional SVD-based techniques under challenging conditions. Our 

experimental evaluation demonstrates that the deep learning-based extraction approach significantly outperforms 

existing SVD-based methods with deep learning achieving bitwise accuracy up to 0.83 and Intersection over Union 

(IoU) of 0.80, compared to SVD achieving a bitwise accuracy of 0.58 and IoU of 0.26 for the Crop (70%) attack, which 

is the most severe geometric distortion in our experiment. This demonstrates our method's ability to achieve 

superior watermark recovery and maintain high fidelity even under severe distortions. Through the integration of 

conventional spectral methods and modern neural architectures, our hybrid approach establishes a new standard 

for robust and reliable copyright protection in 3D digital environments. Our work provides a promising approach 

to intellectual property protection in the growing 3D media sector, meeting crucial demands in gaming, virtual 

reality, medical imaging and digital content creation. 

Keywords: 3D point cloud; copyright protection; digital watermarking; deep learning; robust watermark extraction; 

singular value decomposition; spectral decomposition. 
 

1. Introduction 

The swift rise in the popularity of three-dimensional (3D) digital content and improvements in 3D 

scanning technology have completely changed how digital media works, enabling new possibilities in fields 

such as computer graphics, gaming, virtual and augmented reality, autonomous vehicles, medical imaging 

and more [1-4]. Amongst various 3D representations, point clouds have emerged as a widely adopted 

format owing to their simplicity and versatility in capturing geometric structures without reliance on 
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explicit connectivity information [5-6]. As 3D point clouds become increasingly common in both 

commercial and research settings, concerns regarding unauthorised use, replication and distribution have 

intensified, highlighting the urgent need for robust copyright protection and ownership-verification 

mechanisms [7]. 

However, effective intellectual property protection for 3D point clouds presents unique challenges 

compared to traditional 2D images or videos. Point clouds are inherently unordered, lack a regular grid 

structure and are highly susceptible to a variety of geometric and non-geometric transformations [8]. 

Conventional digital watermarking techniques, which have proven effective for images and videos, often 

fail when applied to point clouds, as embedded signals can be easily degraded or erased by attacks such as 

rotation, scaling, noise addition, cropping and random reordering of points [9]. Furthermore, the increasing 

sophistication of attacks aimed at evading copyright enforcement underscores the need for more advanced, 

resilient and robust watermarking strategies. 

In response to these challenges, we propose a robust deep neural watermarking framework, 

specifically tailored for 3D point clouds to enable enhanced copyright protection and ownership 

verification. Our approach integrates a classical spectral decomposition method—Singular Value 

Decomposition (SVD)—for imperceptible and resilient watermark embedding, with the extraction 

capabilities of a modern deep neural network, i.e. PointNet++. For the proposed watermarking approach, 

detailed in the simplified workflow diagram in Figure 1, Singular Value Decomposition (SVD) is ideal for 

watermark embedding in 3D point clouds. This is due to its capacity to compactly represent the essential 

geometric structure of data blocks while preserving perceptual quality. Embedding watermarks in the 

singular values ensures that the alterations remain imperceptible yet resilient, as these values are less 

sensitive to minor distortions and noise [10]. This makes SVD a robust choice for spectral-domain 

watermarking and an effective foundation for further enhancement with deep learning-based extraction. 

 
Figure 1. Simplified workflow diagram for the deep neural 3D point cloud watermarking 

For watermark extraction, we opted for PointNet++, given its widespread adoption as a deep neural 

network architecture tailored for 3D point clouds. Unlike conventional convolutional neural networks, 

which rely on structured grid data (such as images), PointNet++ can directly process unordered and 

irregular point sets [11]. It extends the original PointNet architecture by incorporating a hierarchical feature 

learning strategy, enabling the extraction of both local and global geometric features from point clouds [12]. 

This hybrid solution is designed to withstand a comprehensive range of geometric and signal-level attacks, 

ensuring reliable watermark extraction and ownership verification even under severe adversarial 

conditions.  

The primary aim of this paper is to advance robust copyright protection and ownership verification 

for 3D point cloud data by introducing a novel hybrid watermarking framework. In contrast to previous 

approaches that exclusively rely on any one of  classical signal processing, deep learning techniques or 
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mesh-based watermarking, our method uniquely integrates block-wise Singular Value Decomposition 

(SVD) watermark embedding with a deep learning-based PointNet++ decoder, operating directly on 3D 

point clouds. This approach leverages the complementary strengths of both paradigms and capitalises on 

the intrinsic properties of point cloud data. The novelty of our method lies in its ability to achieve high-

fidelity, imperceptible watermark embedding whilst substantially enhancing resilience to a wide range of 

geometric and non-geometric attacks, particularly those that disrupt point ordering or cause severe data 

loss. Through rigorous experimentation on the ModelNet40 dataset1 that was developed by Zhirong Wu et 

al. [13], it is evident that our hybrid system preserves the integrity and perceptual quality of 3D point clouds 

whilst enabling highly accurate watermark recovery and ownership verification even under adverse 

conditions. The purpose of this research is to bridge the gap between classical robustness and modern 

machine learning adaptability, thereby establishing a new benchmark for practical, scalable and secure 3D 

content protection in real-world applications. 

2. Literature Review 

The challenge of copyright protection for 3D content has gained increasing research interest in recent 

years, driven by the rapid growth of applications of 3D models across diverse domains such as 

entertainment, manufacturing and virtual reality. Digital watermarking remains a cornerstone technology 

for ensuring copyright protection and content authentication in digital media. Recent advances illustrate 

how these techniques are evolving to safeguard cutting-edge 3D representations without compromising 

visual quality, as exemplified by the universal watermarking framework proposed for 3D Gaussian 

Splatting [14]. While watermarking strategies for 2D images and video are well-matured, their adaptation 

to three-dimensional (3D) data, particularly point clouds, poses unique technical challenges [15]. Early 

efforts focused predominantly on polygonal mesh representations, exploiting the connectivity and surface 

structure of 3D models to embed watermarks [16]. Typical approaches include vertex coordinate 

modulation, edge flipping and quantisation of surface features, which can be effective for mesh data but are 

generally inapplicable to point clouds due to their lack of topological information and unordered nature 

[17]. Before deep learning and machine learning models became popular, 3D watermarking focused on 

mesh-based and volumetric representations, using spatial [18], frequency [19], or spectral domains [20] for 

watermark embedding. Several studies have applied vertex perturbation [21], surface normal modification 

[22] and quantisation techniques [23] to hide information in 3D meshes. These methods, while effective 

against some basic attacks, often suffer from poor robustness when exposed to aggressive geometric 

operations, such as resampling, cropping, affine transformations and random point removal. Moreover, 

many classical algorithms are tightly coupled to mesh connectivity, limiting their applicability to raw point 

cloud data, which lacks explicit topology [24]. These traditional digital watermarking techniques have 

demonstrated effectiveness for 2D images and video, have been extensively explored and adapted for 3D 

data with varying degrees of success, but they are now being replaced by various neural watermarking 

techniques due to their robustness and resiliency. 

2.1. Spectral and SVD-Based Watermarking 

Spectral decomposition of mesh geometry is a well-established technique, first introduced by Taubin 

[25] for geometry processing, and still remains highly relevant. This approach has been widely extended 

for various tasks, such as compression and watermarking of 3D triangle mesh geometry [26]. Spectral 

methods leverage the mathematical properties of 3D data by transforming models into the frequency or 

spectral domain, providing more imperceptible and potentially robust spaces for watermark embedding. 

Singular Value Decomposition (SVD) is particularly attractive for watermarking as it decomposes 

matrices constructed from local point cloud coordinates or mesh patches into orthogonal bases and singular 

values. The singular values encapsulate intrinsic geometric features and small modifications to these values 

can embed watermark signals with minimal perceptual distortion [27]. SVD-based watermarking schemes 

are renowned for their stability and resilience to random noise and small-scale distortions due to the global 

nature of singular values. However, these approaches are vulnerable to geometric transformations—such 

 
1 Princeton, ModelNet40, Available: https://www.kaggle.com/datasets/balraj98/modelnet40-princeton-3d-object-dataset. 
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as global rotation, cropping or reordering of points—that can unpredictably alter singular value 

distributions and reduce watermark extraction reliability [28]. Some studies attempt to address this 

limitation by adopting block-wise or local SVD embedding, but robustness remains challenged by non-

uniform attacks and point order permutations. 

2.2. Point Cloud-Specific Watermarking 

Unlike meshes, point clouds lack explicit connectivity, making geometric feature extraction and 

manipulation non-trivial. Early watermarking schemes for point clouds often attempted to extend mesh-

based strategies, e.g., directly perturbing coordinates or exploiting spatial distribution statistics [29]. More 

advanced methods have either incorporated invariant descriptors (e.g., shape distributions, radial-basis 

features) or utilised graph-based Laplacian spectral transforms to improve attack resilience [30]. 

Nonetheless, the unordered and irregular sampling of the points implies that even simple operations—such 

as shuffling, non-uniform sampling, or block cropping—can dramatically degrade classical watermark 

signals. Robust point cloud watermarking therefore requires embedding strategies that are resilient to such 

deformations. 

2.3. Deep Learning for 3D Watermark Extraction 

Recent advances in 3D deep learning have provided powerful tools for feature learning, directly from 

raw point clouds. The introduction of PointNet [31] and its hierarchical extension, PointNet++ [32], allowed 

networks to consume unordered point sets and aggregate both global and local geometric information 

through permutation-invariant architectures. Deep learning-based watermark extraction leverages this 

ability, training neural networks to recover embedded information even after complex attacks. State-of-the-

art works have demonstrated that neural networks, when trained with extensive attack augmentation 

(including noise, rotation, cropping and combined attacks), can generalise well and extract robust features 

for watermark recovery [33]. Some approaches have combined deep networks with classical watermarking, 

using neural networks either to guide the embedding or to robustly extract from traditionally embedded 

watermarks [34]. 

However, many deep watermarking approaches either focus on mesh data or overlook the spectral 

and structural properties of point clouds during embedding. Their robustness is often constrained by the 

limited diversity of attack models used during training, as well as by their reduced ability to generalise to 

real-world distortions. 

2.4. Robustness and Attack Models 

Robustness evaluation is fundamental to watermarking research, as practical deployment must 

withstand both intentional removal and accidental degradation. In this context, a wide variety of attack 

models are used to systematically test the limits of watermark survivability [35]. These include: 

a) Additive noise: Random Gaussian or uniform noise disrupts embedded signals, challenging 

the noise immunity of the method. 

b) Geometric transformations: Rotations (fixed and arbitrary axes), scaling and translation 

simulate common manipulations in processing pipelines. 

c) Cropping and point removal: These simulate partial visibility or occlusion, a severe challenge 

for point cloud watermarking. 

d) Quantisation and signal distortions: Reflect compression, rounding and practical signal-chain 

degradations. 

e) Shuffling and permutation: Unique to point clouds, this tests the invariance of embedding and 

extraction to reordering. 

f) Compound attacks: Realistic settings where multiple attacks occur simultaneously. 

Most classical approaches, including those based on SVD, DWT or direct spatial embedding, tend to 

show rapid degradation in watermark recovery rates under adversarial conditions [36]. In contrast, recent 

studies demonstrate that deep learning-based extraction methods, particularly when trained with attack 

augmentation and extensive data diversity, can achieve significantly higher watermark recovery rates and 
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improved generalisation to unseen attack scenarios [37]. This robustness is attributed to the ability of neural 

architecture to learn invariances and subtle correlations in point cloud data that are inaccessible to purely 

analytical methods.  

2.5. Related Work 

Hybrid watermarking approaches that integrate classical signal processing methods, such as Singular 

Value Decomposition (SVD), with deep learning-based extraction have emerged to address the limitations 

of each paradigm when used in isolation. Classical SVD-based methods are well-regarded for their 

mathematical interpretability, computational efficiency and ability to embed information in a robust yet 

imperceptible manner by perturbing dominant singular values [38]. However, such schemes can be 

vulnerable to severe geometric distortions, loss of point correspondence, or non-rigid deformations, all of 

which are common in 3D data transmission and editing [39]. 

To overcome these challenges, recent works have proposed hybrid pipelines in which SVD is employed 

for watermark embedding while a deep neural network that is typically designed for unordered data, is 

trained to decode the embedded watermark from potentially attacked or altered point clouds [40-41]. This 

approach leverages the strengths of both domains: SVD’s stability and minimal perceptual distortion in the 

embedding stage and the neural network’s capacity for learning invariances to geometric transformations, 

noise, shuffling and even partial data loss during extraction. 

For example, Yang et al. [42] propose a system for 3D point cloud copy detection, which first aligns 

two-point clouds and then computes their similarity using multiple measures. Their method is designed to 

be robust against manipulations, such as similarity transformations and smoothing. Comprehensive 

experiments demonstrate its effectiveness under various attack scenarios. Other studies have adapted 

similar frameworks to mesh and volumetric data, showing that learning-based decoders generalise 

effectively to a wider range of real-world perturbations when combined with well-understood embedding 

schemes [43]. This synergy enables the system to maintain watermark integrity in scenarios where either 

SVD or deep learning alone would fail. 

Despite the promise of such hybrid approaches, further research is warranted in several areas: 

improving generalisation to extremely severe or compound attacks, developing principled adversarial 

training schemes and establishing rigorous benchmarks on large, diverse 3D datasets. 

2.6. Research Gap 

Clear and persistent research gaps exist as classical SVD-based methods provide strong 

imperceptibility and moderate robustness but cannot cope with severe or non-uniform geometric attacks. 

Conversely, purely deep learning-based extraction methods often do not leverage the spectral or geometric 

structure of point clouds during embedding, and their success heavily depends on the diversity of training 

data and augmentation schemes [44]. There is a clear need for hybrid frameworks that exploit both spectral-

domain embedding and deep learning-based extraction to handle unordered 3D point clouds. This paper 

addresses this research gap by proposing a novel method that embeds watermarks in the SVD domain of 

local point cloud blocks and trains PointNet++ to recover watermarks after a diverse set of attacks, achieving 

superior robustness and fidelity. 

3. Methodology 

This section details our hybrid watermarking framework for 3D point cloud copyright protection and 

ownership verification. All experiments were conducted on the publicly available Princeton ModelNet40 

dataset and early testing was done on ModelNet10 dataset and the popular Stanford Bunny2 model, 

comprised of mesh models in ‘.off’ and ‘.ply’ formats. Each mesh was pre-processed by uniform point 

sampling to obtain point clouds of precisely 1,024 points per sample. For data consistency, each point cloud 

was centred to zero mean and scaled to a unit maximal Euclidean norm. Any mesh failing to meet these 

criteria (e.g., due to file corruption or insufficient points) was automatically excluded from the dataset.  

 
2 Greg Turk and Marc Levoy, “Stanford Bunny”, Stanford 3D Scanning Repository, 1994, Available: 

https://graphics.stanford.edu/data/3Dscanrep. 
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The full dataset was split into distinct training and testing sets, guaranteeing zero overlap to prevent 

data leakage, as confirmed programmatically. A total of 3,991 training samples (~81.5%) and 908 testing 

samples (18.5%) were used from the ModelNet40 dataset. The list of valid file paths was dynamically 

generated, and all point clouds were preloaded into system memory to optimise input/output (I/O) 

performance during model training and evaluation. All the codes were implemented in Python, leveraging 

PyTorch and Open3D, as detailed in our implementation3. 

3.1. Watermark Embedding and Extraction via Block-SVD 

To achieve robust and blind watermarking, we designed a block-based Singular Value Decomposition 

(block-SVD) mechanism for both embedding and extraction. We lexicographically sorted each 3D point 

cloud by coordinate, then partitioned it into n equal-sized blocks (n representing the number of watermark 

bits; in this case, n=2). Within each block, SVD was performed, and the largest singular value was shifted 

by a scalar alpha (embedding strength, empirically set to alpha=2.0) according to the assigned watermark 

bit. This perturbation is imperceptible in most geometric measures but robustly retrievable. 

During extraction, the block-wise SVD was recomputed for the potentially attacked point cloud. The 

difference in the dominant singular values, normalised by alpha, was then thresholded to recover the 

embedded bits. To quantify fidelity and resilience, we computed bitwise extraction accuracy, intersection-

over-union (IoU), bit error rate (BER), peak signal-to-noise ratio (PSNR) and symmetric Chamfer distance. 

3.2. Data Augmentation 

To improve the robustness and generalisability of the deep learning-based decoder, we applied a series 

of data augmentation techniques to the point clouds during training. Each time a point cloud is sampled 

from the training set, it is subjected to a stochastic augmentation pipeline. The augmentations applied (in 

random order and combination) include Gaussian noise (σ=0.01), random scaling (0.95-1.05), random 

rotation, random dropout (10%) and re-normalisation. These augmentations are only applied during 

training and not during validation or testing. This on-the-fly data augmentation strategy increases the 

diversity of the training data and helps prevent overfitting, enabling the PointNet++ decoder to learn 

features that are invariant to common geometric transformations, noise and sampling variations. 

3.3. Deep Learning-Based Watermark Decoding (PointNet++) 

In addition to the classical SVD-based decoder which we used as the baseline, we trained a deep neural 

network for robust watermark extraction. The network is based on the PointNet++ architecture, which 

consists of a hierarchy of set-abstraction modules with local and global feature aggregation [46]. The 

encoder receives a normalised point cloud and predicts the watermark bits as output logits. The model was 

trained using binary cross-entropy loss, with Adam optimisation and a learning rate scheduler to facilitate 

convergence. Training was performed for up to 150 epochs, with a batch size of 32 and an initial learning 

rate of 2e-3, using mini-batch processing and validation after each epoch. The bitwise accuracy and per-bit 

performance were tracked throughout training. The best-performing PointNet++ checkpoint (the model 

instance that achieved the highest validation accuracy, saved as best_model.pt) was selected for the final 

evaluation. 

3.4. Adversarial Attacks 

To systematically evaluate the watermark robustness, we implemented a comprehensive suite of both 

geometric and non-geometric attacks. These attacks were carefully selected to be representative of real-

world 3D processing pipelines, encompassing a wide range of transformations and degradations that 3D 

point clouds commonly undergo in practical applications. The goal was to rigorously test the watermark's 

ability to withstand diverse forms of manipulation and distortion, ensuring its persistence and detectability 

even under challenging conditions. Table 1 details the specific types of attacks employed and their 

associated parameter values, providing a clear overview of the test conditions. 

 
3 Khandoker Ashik Uz Zaman, Mahdi H. Miraz, Mohammad Zahangir Alam and Mohammad Ali, “Deep Neural Watermarking”, 

Zenodo, 2025, DOI: 10.5281/zenodo.15756083, Available: https://zenodo.org/records/15756083. 
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Table 1. Attacks used for model evaluation and their parameters 

Type of Attack Parameters 

Additive Gaussian Noise σ=0.01 

Additive Gaussian Noise σ=0.03 

Gaussian Smoothing k=16, σ=0.05 

Random isotropic scaling Range: 0.8, 1.2 

Random Rotation Random 

Random rotation (about fixed and arbitrary axes) Random 

Random translation  Max shift: 0.05 

Point dropout Removal of up to 10% points 

Shuffle Random 

Random cropping 70% retention 

Affine distortion Axis-wise scaling 

Quantisation Step size: 0.01 

Jittering Gaussian, σ=0.005 

Chunk removal, Gaussian smoothing Fraction: 20% 

Combined attacks (Noise & Dropout) σ=0.02, 0.15 

All attacks were applied to watermarked test point clouds prior to watermark extraction. Both the SVD 

and PointNet++ models were utilised to extract the watermark from which we calculated the bitwise 

accuracy, intersection-over-union (IoU) between ground truth and predicted watermark, bit error rate 

(BER), Chamfer distance and peak signal-to-noise ratio (PSNR), to assess geometric distortion. Aggregate 

statistics, including mean and standard deviation for each metric under every attack scenario, were 

compiled, refer to section 4 (Results and Discussion). Detailed accuracy tables and bar plots were generated 

to visualise the results, and ownership verification was tested via receiver operating characteristic (ROC) 

analysis to demonstrate the discriminative capability of the model in authenticating watermarked point 

clouds. All the codes were implemented in Python using PyTorch, NumPy and Open3D. All the 

experiments were run on google colab pro, using an NVIDIA L4 GPU with high-RAM acceleration. 

4. Results and Discussion 

Prior to training, dataset integrity and class balance were confirmed. The dataset comprised 4,899 

unique point clouds, partitioned into 3,991 for training and 908 for testing, with each normalised to zero 

mean and unit scale (see Table 1). Eight unique watermark bit patterns were present in the training set, 

ensuring sufficient diversity for effective learning. 

The PointNet++ decoder was trained for 150 epochs using the Adam optimiser and a 

ReduceLROnPlateau learning-rate schedule, which led to a steady reduction in loss. The final train loss 

reached as low as 0.08 and validation loss as low as 0.07. Figure 2A presents the evolution of training and 

validation loss across epochs, indicating rapid convergence and generalisation after epoch 50. Figure 2B 

depicts the corresponding training and validation accuracy, which plateaued at approximately 97% by 

epoch 130, confirming stable model learning. 

 
Figure 2. A) Train and validation loss curve, B) Train and validation bitwise accuracy 
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Per-bit validation accuracy for all three watermark bits (see Figure 3) was consistently high, with each 

bit exceeding 96% accuracy by the end of training. For randomly selected test samples, the model achieved 

perfect bitwise decoding in several cases, demonstrating high fidelity in watermark embedding and 

decoding on clean data. 

 
Figure 3. Per-bit validation accuracy curve 

 
Figure 4. Watermark recovery accuracy under 3D attacks Part A 

 
Figure 5. Watermark recovery accuracy under 3D attacks Part B 
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To comprehensively evaluate watermark recovery, we subjected the watermarked point clouds to a 

wide spectrum of geometric and non-geometric attacks. Figures 4 and 5 illustrate the recovery accuracies 

for both the block-wise SVD baseline and the proposed deep learning model under diverse attack scenarios. 

Table 2 further quantifies the accuracy gap between these two approaches across all attack types. 

Table 2. Accuracy gaps between baseline and proposed model under different attack scenarios 

Type of Attack SVD PointNet++ Accuracy Gap 

Additive Gaussian Noise (0.01) 0.950 0.778 -0.175 

Additive Gaussian Noise (0.03) 0.903 0.777 -0.173 

Gaussian Smoothing 0.957 0.795 -0.162 

Random isotropic scaling 0.955 0.772 -0.183 

Random Rotation 0.955 0.633 -0.322 

Random rotation (arbitrary axes) 0.955 0.582 -0.373 

Random translation  0.955 0.780 -0.175 

Quantisation 0.955 0.788 -0.167 

Jittering 0.953 0.778 -0.175 

Affine distortion 0.867 0.773 -0.093 

Shuffle 0.588 0.780 +0.192 

Random Cropping 0.580 0.818 +0.230 

Point dropout 0.572 0.820 +0.248 

Chunk removal 0.588 0.818 +0.230 

Combined attacks (Noise & Dropout) 0.572 0.810 +0.238 

Beyond simple accuracy, we assessed robustness using Chamfer Distance (CD), Bit Error Rate (BER) 

and Peak Signal-to-Noise Ratio (PSNR)—standard metrics for 3D fidelity and watermark reliability. Mild 

attacks, such as Gaussian smoothing, quantisation and translation, resulted in low Chamfer Distances 

(~0.10) and high PSNR values (≥21 dB), indicating minimal geometric distortion and strong watermark 

integrity. Correspondingly, both the SVD method and deep model maintained bit error rates (BERs) below 

5% in these scenarios. However, under more destructive attacks, such as random shuffling, cropping and 

point dropout, the block-wise SVD method exhibited sharp increases in BER (up to 42% in some cases) and 

significant drops in PSNR, reflecting the loss of watermark information. In these challenging cases, the deep 

learning decoder consistently delivered lower BER and higher PSNR than the SVD baseline, evidencing its 

greater resilience. For instance, with a 10% point dropout attack, the deep model achieved a BER of 18% 

(accuracy 82%), compared to 43% BER (accuracy 57%) for SVD. Mean BER across all attacks was 18% for 

the deep model and 22% for SVD, while mean PSNR values were generally higher for the neural approach 

under severe distortions. Across all attack types, the mean SVD accuracy was approximately 82%, while the 

deep-learning model averaged 77%. However, the deep model consistently outperformed SVD under 

severe distortions, where robustness is most critical. Despite both methods being challenged by 

compounded attacks (such as combined noise and dropout, or random cropping), the deep model reliably 

narrowed the performance gap. These trends (detailed in Table 3) are also reflected in the average Chamfer 

Distance, which remained acceptably low for both models under mild attacks but notably increased under 

severe geometric manipulations. 

Table 3. Chamfer distance, PSNR and BER comparison under different attack scenarios 

Type of Attack Chamfer_SVD Chamfer_DL PSNR_SVD PSNR_DL BER_SVD BER_DL 

Additive Gaussian Noise (0.01) 0.105 0.105 21.9 21.9 0.05 0.22 

Additive Gaussian Noise (0.03) 0.109 0.109 20.8 20.7 0.10 0.26 

Gaussian Smoothing 0.104 0.104 22.1 22.1 0.04 0.21 

Random isotropic scaling 0.105 0.105 22.0 22.0 0.05 0.23 

Random Rotation 0.266 0.255 7.89 8.34 0.05 0.22 

Random rotation (arbitrary axes) 0.328 0.339 7.71 7.35 0.05 0.42 

Random translation  0.105 0.105 22.0 22.0 0.05 0.37 

Quantisation 0.105 0.105 22.0 22.0 0.05 0.21 

Jittering 0.105 0.105 22.0 22.0 0.47 0.22 

Affine distortion 0.111 0.110 21.7 21.5 0.13 0.23 

Shuffle 0.105 0.105 4.14 4.15 0.41 0.22 

Random Cropping 0.110 0.110 4.12 4.13 0.42 0.17 

Point dropout 0.106 0.106 4.15 4.14 0.43 0.18 

Chunk removal 0.108 0.107 4.14 4.13 0.41 0.18 

Combined attacks 0.109 0.109 4.19 4.17 0.43 0.19 
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The summary tables and bar plot indicate that the SVD method demonstrates high robustness to mild 

attacks such as Gaussian smoothing, quantisation and translations, achieving approximately 95% accuracy 

in these scenarios. Although the deep learning-based approach, i.e. PointNet++, typically matches or slightly 

lags behind the SVD baseline under mild distortions, it significantly outperforms SVD when subjected to 

severe attacks that disrupt the spatial structure of the point cloud, including point dropout, random 

shuffling or  cropping. For example, in the case of a 10% dropout attack, the deep learning model attained 

approximately 82% accuracy, compared with only 57% for SVD. Across all attack types, the mean SVD 

accuracy was around 82%, while the deep learning model averaged about 77%. Despite both approaches 

finding combined and random shuffle/crop attacks particularly challenging, the deep model consistently 

narrows the performance gap in these difficult conditions. 

For ownership verification, the discriminative capacity of the deep decoder was assessed via ROC 

analysis (see Figure 6). The area under the ROC curve (AUC) reached 0.67, demonstrating that the model 

can distinguish between authentic and random watermarks with reasonable reliability; however further 

improvement is needed. 

 
Figure 6. Ownership Verification ROC Curve (PointNet++) 

The results demonstrate that block-wise SVD watermarking is robust to a wide range of mild geometric 

distortions, but sensitive to attacks that break point cloud ordering or remove significant portions of the 

data. The deep learning-based decoder shows excellent generalisation, with high per-bit accuracy, and is 

particularly effective at recovering watermarks from attacked clouds that defeat SVD-based extraction. 

Nonetheless, the remaining challenges include enhancing resilience to the most destructive attacks, e.g. 

chunk removal, random crop, etc. and further improving the ownership verification pipeline, where AUC 

can likely be boosted via ensemble methods or larger and more diverse training data. To address this, one 

approach could be to use both SVD and DL models and compare their predictions to determine the final 

ownership verification, while another approach could be to use a better deep learning model. However, the 

latter would require substantially more training data, computational power and time. 

5. Concluding Discussion and Future Research Directions 

In this work, we introduced a robust watermarking framework for 3D point clouds, combining classical 

block-wise SVD-based embedding with a deep learning-based decoder. Through extensive experiments and 

a diverse suite of geometric and non-geometric attacks, we demonstrated that the proposed method 

achieves high watermark-recovery accuracy and strong generalisation, particularly when using the 

PointNet++ architecture for watermark extraction. The SVD baseline offers remarkable robustness to mild 

perturbations, while the deep network excels under severe or disordered conditions that typically defeat 

conventional approaches. The experimental results validate the effectiveness of our joint methodology and 

highlight its potential for practical, secure ownership verification in 3D data. 
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While our approach demonstrates promising results, several challenges remain. First, enhancing 

resilience to highly destructive attacks—such as random cropping, chunk removal and point-cloud 

shuffling—requires further research, potentially by developing advanced architectures tailored for 

unordered or incomplete point sets. Future work could explore more robust hybrid verification pipelines 

that combine the strengths of both SVD and deep learning models, for example by fusing or assembling 

their outputs to improve reliability. Additionally, scaling up to a larger and more varied datasets, 

incorporating self-supervised or contrastive learning strategies and optimising computational efficiency for 

deployment are valuable avenues. Ultimately, strengthening the ownership-verification pipeline and 

further boosting the AUC, perhaps through model ensembles or uncertainty quantification, remain key 

directions for advancing practical and robust 3D watermarking solutions. 
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