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Abstract: Ensuring semantic interoperability between heterogeneous systems remains a challenging task due 

to the structural complexity and diversity of ontological representations. Traditional ontology alignment 

methods often focus on local features, overlooking important semantic relationships beyond direct 

neighbourhoods. Here, we introduce CNPMap, a novel alignment approach that addresses this limitation by 

capturing non-local semantic similarities using a critical node-based partitioning strategy. CNPMap operates in 

three stages. First, it generates an initial alignment using a hybrid linguistic similarity measure. Then, a graph-

based partitioning method exploits the Critical Node Detection Problem (CNDP) to divide ontologies into 

semantically coherent components. Finally, a context-aware similarity enhancement phase refines the 

alignments using a sigmoid function that modulates similarities based on both partition-level and entity-level 

relationships. We evaluated CNPMap on the OAEI 2023 Conference track. The approach improved the F-

measure on several ontology pairs by 3% to 6% compared to baseline lexical matchers. For instance, the F-

measure increased from 0.69 to 0.74 on the cmt–conference pair and from 0.76 to 0.82 on the cmt–sigkdd pair. 

CNPMap also achieved a precision of 0.75, outperforming most participating systems. However, its recall was 

slightly lower due to the conservative threshold used during the initial alignment phase. Our study reveals that 

integrating partition-based context into similarity computation significantly improves alignment quality, 

especially for complex ontologies. Future enhancements will focus on improving recall through adaptive 

thresholds and learning-based parameter tuning. 

Keywords: CNPMap; Critical Nodes Detection Problem; Graph matching; Ontology matching; Ontology 

partitioning; Similarity enhancement  
 

1. Introduction 

Ontologies serve as formal and explicit representations of knowledge within specific domains, 

capturing concepts and the relationships among them [1]. They are essential for data representation, 

integration, and interoperability, facilitating seamless information exchange across heterogeneous 

systems and applications. However, as ontologies continue to grow in complexity and volume, 

achieving accurate semantic interoperability through ontology alignment has become an increasingly 

challenging task. 

Ontology matching, defined as the process of identifying correspondences between entities in 

different ontologies, is a core function in the Semantic Web and knowledge integration frameworks. It 

enables the reuse and combination of distributed knowledge sources and is critical in domains such as 

e-commerce, healthcare, and biomedicine [2-3]. Numerous systems have been developed to perform 

ontology alignment, often relying on combinations of linguistic and structural techniques [4]. 

Linguistic methods focus on comparing the textual representations of entities (e.g., labels, 

comments, or descriptions). While they are effective in identifying lexical similarities, these methods 
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often fail to uncover deeper semantic correspondences. Structural approaches, by contrast, analyse the 

graph-based representation of ontologies to identify relationships between entities, such as hierarchical, 

sibling, or neighbourhoods’ relations. Hybrid techniques that combine both approaches have proven 

more effective overall. However, most existing systems limit structural similarity computations to an 

entity’s direct neighbourhoods, which can miss valuable non-local information. On the other hand, 

approaches that incorporate the entire ontology structure tend to suffer from increased computational 

overhead and may introduce noise from irrelevant or weakly related entities. 

In this work, we propose CNPMap, a novel ontology alignment approach designed to overcome 

these limitations by capturing semantic similarities beyond direct neighbourhoods. CNPMap is 

composed of three main phases: (i) an initial alignment phase based on a hybrid linguistic similarity 

measure; (ii) an ontology partitioning strategy that leverages the Critical Node Detection Problem 

(CNDP) [5-7] to decompose the ontology into semantically coherent subgraphs; and (iii) a similarity 

refinement phase that combines entity-level and partition-level similarities through a parameterized 

sigmoid function. 

A key innovation of CNPMap lies in its context-aware partitioning algorithm, which directly reuses 

the generated partitions to compute final similarities, eliminating the need for inter-partition 

correspondence computation. This not only simplifies the alignment process but also improves its 

semantic precision. Furthermore, the algorithm includes a strategy for handling isolated nodes, which 

are not initially integrated into any partition, thereby ensuring a more complete and consistent 

alignment. 

We evaluate the effectiveness of our approach using the OAEI 2023 Conference track, a benchmark 

featuring real-world ontologies with rich structural and terminological diversity. The results show that 

CNPMap significantly improves alignment quality across several ontology pairs, achieving competitive 

F-measure scores while maintaining high precision. 

The main contributions of this work are summarized as follows: 

• A hybrid linguistic similarity measure combining syntactic and semantic techniques for 

initial matching; 

• A graph partitioning algorithm based on CNDP tailored to produce balanced, semantically 

coherent ontology partitions; 

• An effective treatment of isolated nodes during partitioning to enhance alignment coverage; 

• A context-aware similarity refinement mechanism that integrates both entity and partition-

level similarities using a sigmoid-based modulation function. 

2. Background and related work 

2.1 Background 

2.1.1. Ontology and ontology matching 

An ontology is a formal and explicit specification of a shared conceptualization of a domain [1]. It 

defines the entities (concepts), their properties, and the relationships between them. Ontologies are often 

represented as graphs, where nodes denote concepts or classes, and edges represent relationships or 

properties between them. Formally, an ontology graph is defined as a labelled directed graph 𝐺 =

(𝑉, 𝐸), where 𝑉 is the set of entities and 𝐸 is the set of directed edges denoting relationships. 

Ontology matching, also referred to as ontology alignment or ontology mapping, is the task of 

determining correspondences between entities in different ontologies [4]. It enables interoperability 

across systems by bridging heterogeneous conceptual models. The output is typically a set of mappings 

𝑀 = (𝑒1, 𝑒2, 𝑐𝑜𝑛𝑓) , where 𝑒1 and 𝑒2 are entities from the source and target ontologies respectively, and 

 𝑐𝑜𝑛𝑓 ∈ [0,1] denotes the confidence score of the correspondence. 

Various similarity measures, including string-based, structural, and semantic approaches, are 

employed to compute these scores. However, most techniques are either restricted to local structural 

comparisons (e.g., direct neighbourhood) or incur significant computational cost when attempting 

global similarity propagation. 
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2.1.2. Critical Node Detection Problem (CNDP) 

Critical nodes in a graph are those whose removal significantly decreases the graph’s overall 

connectivity [6]. Detecting these nodes is the objective of the Critical Node Detection Problem (CNDP), 

which is typically formulated as an optimization problem [5]. Various connectivity metrics can be used 

to identify critical nodes, such as maximizing the number of connected components, minimizing 

pairwise connectivity, or minimizing the size of the largest connected component [7]. Identifying such 

nodes facilitates a deeper understanding of the graph’s structure, properties, and function. 

In our approach, we adopt the minimum pairwise connectivity criterion, as it directly reflects the 

effect of node removal on connectivity. As a result, the partitions obtained correspond to semantically 

coherent subgraphs, which aligns closely with the goals of ontology alignment. 

We rely on the heuristic described in [5]. in which the problem is formalized as follows: 

 

INPUT : An undirected Graph 𝐺 = (𝑉, 𝐸) 𝑎𝑛𝑑 𝑎𝑛 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝐾; 

OUTPUT : 𝐴 = 𝐴𝑟𝑔𝑚𝑖𝑛 ∑ 𝑈𝑖𝑗(𝐺(𝑉\𝐴))𝑖,𝑗∈(𝑉\𝐴) ∶ |𝐴| ≤ 𝐾 

                            𝑈𝑖𝑗 = {
1, 𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝐺(𝑉 𝐴),⁄

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The term ∑ Uij i,j∈G(V\A)  measures the overall pairwise connectivity of the residual graph. An 

equivalent formulation of the objective function is given by: 

𝑓(𝑠) = ∑
𝛿𝑖(𝛿𝑖 − 1)

2
𝐶𝑖∈𝐺(𝑣\𝑠)

                                                                                                                        (1) 

where 𝛿𝑖 denotes the size of the 𝐶𝑖𝑡ℎ connected component. 

Figure 1 shows an example of a graph to which the heuristic was applied. The output is the set of 

nodes {S4, S8}, whose removal decomposes the graph into three connected components: 

                              𝐺 \ {𝑆4, 𝑆8}  =  {{𝑆2, 𝑆1, 𝑆3}, {𝑆5, 𝑆6, 𝑆7}, {𝑆9, 𝑆10, 𝑆11, 𝑆12}} 

Figure 1. Example of Graph Partitioning through Critical Node Detection 

2.2. Related work 

Several ontology alignment approaches go beyond simple lexical comparison by incorporating 

structural and contextual information to improve similarity estimation. These methods can be broadly 

grouped into three categories: profile-based and context-based similarity, propagation-based 

similarity, and vector space models. 

2.2.1. Profile-Based and Context-Based Similarity 

These approaches enrich the representation of entities by leveraging their local and extended 

context—such as ancestors, descendants, and annotations—resulting in more semantically informed 

similarity computations. For instance, CFA [8] formulates profile-based similarity in biomedical 

ontologies and applies a firefly optimization algorithm to improve matching quality. CroMatcher [9] 

extracts semantic context from annotated descendant classes, building richer profiles for each entity. 

ServOMap [10] adopts an information retrieval perspective by generating two virtual documents per 



AETiC 2025, Vol. 9, No. 3 72 

www.aetic.theiaer.org 

entity (direct and extended context) to evaluate similarity through textual analysis and Lucene scoring. 

YAM++ [11] combines graph indexing with supervised learning to capture both local and contextual 

features for candidate pair generation. PoMap [12] and MC-ESM [13] further enhance context-aware 

matching by modeling entity neighborhoods using structural and lexical signals. 

Recent advancements also explore deep representation learning. For example, [14] introduces a 

dual-attention mechanism that captures multifaceted context by leveraging both textual semantics and 

structural signals within ontologies. Meanwhile, [15] proposes hybrid embeddings that integrate 

ontological structure and textual semantics for robust cross-ontology similarity. Additionally, anchor-

based partitioning guided by relevance-driven genetic programming [16] provides scalable context 

exploitation mechanisms suitable for large ontologies. 

2.2.2. Propagation-Based Similarity 

Propagation-based methods refine similarity values by diffusing them across the ontology graph, 

allowing indirect relationships to influence the alignment process. Similarity Flooding [17] propagates 

similarity iteratively based on topological relations, reinforcing correspondences through mutual 

structural support. Anchor-PROMPT [18] improves efficiency by restricting propagation to subgraphs 

anchored on high-confidence matches. Anchor-Flood [19] extends this by combining lexical-based 

anchor generation with graph-based propagation and structural filtering. 

These methods are particularly effective at increasing recall by identifying semantically distant yet 

related matches. However, they require careful tuning of propagation parameters to prevent noise and 

over-alignment, particularly in large or sparsely connected graphs. 

2.2.3. Vector Space Approaches 

In vector-based ontology alignment, entities are projected into high-dimensional vector spaces 

using lexical, structural, or learned features. Similarity is then computed via distance metrics or machine 

learning algorithms. Traditional vector models [20-22] encode concept features into structured vectors, 

facilitating rapid alignment computation. In [22], discrete optimization and compact evolutionary 

algorithms are employed to enhance the alignment process within the vector space. 

Although these approaches offer strong performance in specific domains, they often demand 

extensive feature engineering or training data, and may underperform when ontologies involve deep 

hierarchies, semantic inconsistencies, or sparsely labelled entities. 

2.3. Limitations of Existing Methods and Positioning of CNPMap 

Many existing ontology alignment systems suffer from inherent limitations related to how they 

handle structural context. A common drawback is their local focus, relying exclusively on direct 

neighbours to compute similarity. This restricted view often overlooks semantically relevant 

information that exists beyond the immediate neighbourhoods of entities. In contrast, methods that take 

the entire ontology structure into account may capture broader relationships but typically face 

significant challenges in terms of scalability and noise amplification, as irrelevant or weak signals are 

included in the computation. 

Another key limitation is that most systems treat ontology partitioning as a preprocessing step, 

used solely to reduce the search space. They seldom integrate the partition structure into the final 

similarity computation, thereby missing the opportunity to model contextual coherence more 

effectively. 

To address these shortcomings, CNPMap introduces a novel ontology alignment framework that 

combines critical node-based partitioning with context-aware similarity refinement. Unlike traditional 

methods that decouple partitioning from matching, CNPMap integrates partition structure directly into 

the final alignment process, enhancing both semantic precision and computational efficiency. 

This integration enables CNPMap to: 

• Capture semantic similarities beyond direct neighbourhoods, 

• Leverage the semantic coherence of partitions to provide contextual boundaries, 

• Preserve scalability by avoiding unnecessary cross-partition computations. 
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By incorporating heuristics from the Critical Node Detection Problem (CNDP) and combining 

them with a hybrid linguistic matcher and a sigmoid-based similarity modulation function, CNPMap 

offers a novel and effective contribution to the field of ontology alignment. Its design directly tackles 

the limitations of existing systems while providing a scalable, context-sensitive alternative. 

3. CNPMap Methodology 

CNPMap is a three-phase ontology alignment framework designed to capture semantic similarities 

beyond direct structural neighbourhoods. It integrates linguistic similarity computation, critical node-

based ontology partitioning, and context-aware refinement to produce more informed and coherent 

alignments. 

The approach consists of the following phases: 

• Phase 1 – InitialMatching: An initial set of correspondences is computed using a word-level 

linguistic similarity function. This yields a high-precision set of anchor pairs that serve as 

guidance for the structural decomposition of the ontologies. 

• Phase 2 – Ontology Partitioning via Critical Node Detection: Each ontology is partitioned by 

solving the Critical Node Detection Problem (CNDP), which identifies and removes nodes that 

play a central role in graph connectivity. The resulting partitions form structurally coherent 

subgraphs that define localized semantic contexts. 

• Phase 3 – Context-Aware Similarity Refinement: Within each aligned pair of partitions, entity-

level similarity scores are refined using a sigmoid function that integrates both lexical similarity 

and partition-level context. This process enables the detection of semantically related entities 

that may not be directly connected in the graph. 

By leveraging both linguistic and structural signals, CNPMap aims to enhance the semantic 

relevance of alignments, particularly in cases where relationships extend beyond immediate 

neighbourhoods. Figure 2 provides an overview of the approach, and the following sections describe 

each phase in detail. 

Figure 2. Three-Phase Architecture of CNPMap 

3.1. Initial Matching 

The method begins by computing an initial alignment using a linguistic similarity measure with a 

predefined threshold 𝜶𝑰𝒏𝒊. This measure analyses the words forming the annotations of two entities. To 

prepare these annotations, we apply a preprocessing pipeline consisting of: (1) removing numbers, 

punctuation, and stop words; (2) segmenting labels into individual words and converting them to 

lowercase; and (3) applying stemming. This process produces two sets of words, denoted 𝑤𝑖
𝑠 and 𝑤𝑖

𝑡, 

corresponding to the source and target entities respectively. 
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The linguistic similarity 𝑆𝑖𝑚𝑙𝑖𝑛𝑔(𝑑𝑖
𝑠, 𝑑𝑗

𝑡) is then computed between the two word sets 𝑤𝑖
𝑠 and  𝑤𝑖

𝑡  as 

follows: 

𝑆𝑖𝑚𝑙𝑖𝑛𝑔(𝑑𝑖
𝑠, 𝑑𝑗

𝑡) =
1

𝑀𝑖𝑛(|𝑤𝑖
𝑠|, |𝑤𝑗

𝑡|)
∑ ( max

𝑉𝑙∈𝑊𝑗
𝑡
(𝑆𝑖𝑚𝑤(𝑣𝑘, 𝑣𝑙)))

𝑉𝑘∈𝑊𝑖
𝑠

                                                (2) 

Here, 𝑆𝑖𝑚𝑤(𝑣𝑘 , 𝑣𝑙) evaluates the similarity between two individual words using two methods: 

• Syntax-based similarity, via the Levenshtein distance [23], which counts the minimum 

number of edit operations (insertions, deletions, substitutions) to transform one string into 

another. 

• Semantic similarity, using JWNL Distance [24], based on WordNet [25], which combines 

information content and edge-counting to assess conceptual closeness. 

The final word-level similarity is defined as: 

𝑆𝑖𝑚𝑤(𝑣𝑘, 𝑣𝑙) = 𝑚𝑎𝑥(Levenshtein(𝑣𝑘, 𝑣𝑙), JWNLDistances(𝑣𝑘, 𝑣𝑙))                                             (3) 

Only correspondences with a similarity score exceeding 𝛂𝐈𝐧𝐢 are retained in the initial alignment 

set. 

3.2. Ontology partitioning 

The objective of this phase is to decompose each ontology into multiple partitions based on 

semantic information. The underlying principle is to group semantically related entities within the same 

partition. 

3.2.1. Ontology transformation 

In this study, we propose an ontology matching approach that leverages graph algorithms from 

the literature. Specifically, ontologies are represented as undirected graphs, where concepts are 

transformed into nodes and relationships into edges. We focus exclusively on hierarchical relationships, 

as they represent a fundamental aspect of ontological structure. To facilitate this transformation, we 

employ the Jena Framework [10], a robust tool for parsing and manipulating ontologies. By leveraging 

Jena's capabilities, we convert ontologies into graph structures suitable for analysis and comparison 

using graph-based techniques. 

3.2.2. Graph partitioning 

In the field of ontology matching, ontology partitioning is widely used in large ontology alignment 

systems [10, 26-29], and it is a crucial step to reduce the complexity of the matching process. The main 

objective of graph partitioning is to divide the ontology graph into smaller and more manageable 

components, while preserving the semantic relationships between the nodes. In the literature, various 

algorithms have been proposed for ontology partitioning, such as AHSCAN [30], PATO [31], Karger 

[29, 32], and CP (Clique Percolation) [29, 33]. However, most of these algorithms rely on local search 

strategies, which may not always lead to optimal partitioning. 

The proposed approach adopts a global search strategy for graph partitioning, aiming to produce 

structurally and semantically similar partitions across heterogeneous ontologies. The algorithm 

systematically explores possible partitioning configurations and applies heuristic techniques to 

determine an optimal graph division that preserves semantic coherence. A key objective of this method 

is to minimize variance among partitions, ensuring a balanced and meaningful distribution of entities. 

By aligning partitions of comparable structure, the approach improves the likelihood of identifying 

correct correspondences, thereby enhancing the accuracy and reliability of the ontology matching 

process. 

To achieve similar partitions, our approach relies on a clear yet effective principle: the more two 

partitions share similarities, the higher their level of similarity. However, it is essential that each 

partition from the source ontology shares exclusive similarities with only one partition from the target 

ontology, and vice versa. This constraint ensures that the resulting mappings are both unique and 

semantically relevant. To implement this, we developed a variant of the CC-CNP algorithm [34], 

enhanced with a new constraint in the form of a predefined list of nodes that must not appear within 
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the same partition. This addition reinforces semantic cohesion within partitions while preserving their 

distinctiveness, ultimately enabling more precise and meaningful alignments. 

To operationalize this strategy, we propose a constrained variant of the CC-CNP algorithm, 

detailed in Algorithm 1. 

Algorithm 1. CNPMap Algorithm 
Procedure ConstrainedCriticalNode (G, β, LIST) 

1. MIS ← MaximalIndepSet(G)  
2. NoAdd ← 0 
3. while  (𝑁𝑜𝐴𝑑𝑑 =  |𝑉 |−|𝑀𝐼𝑆|) do 

4.      𝑖 ← 𝑎𝑟𝑔𝑚𝑖𝑛 { ∑
𝛿ℎ(𝛿ℎ−1)

2
 :ℎ∈𝑀𝑗

 𝑗 ∈ 𝑉\𝑀𝐼𝑆 }  

5.     If ( |ℎ| ≤ 𝛽   ∀ℎ ∈ 𝐻𝑖 ⊆ 𝐺 (𝑀𝐼𝑆 ∪  {𝑖})) then 
6.          if ( 𝑝 ∈ ℎ 𝑵𝑨𝑵𝑫 𝑘 ∈ ℎ / ∀ℎ ∈ 𝐻𝑖 ⊆  𝐺(𝑀𝐼𝑆 ∪ {𝑖})  ∶  𝑝 , 𝑘 ∈  𝐿𝐼𝑆𝑇) then 
7.                𝑀𝐼𝑆 ←  𝑀𝐼𝑆 ∪  {𝑖} 
8.          else 
9.                 𝑁𝑜𝐴𝑑𝑑 ←  𝑁𝑜𝐴𝑑𝑑 + 1 
10.          end if 
11.     end if  
12. end while 
13. IsolatedNodesTreatment() 
14. Return G(MIS) / ∗set of graph components ∗ / 

End procedure ConstrainedCriticalNode 

Algorithm 1 presents the pseudo-code of our constrained CC-CNP variant applied to graph 

partitioning. The algorithm takes three main inputs: an undirected ontology graph 𝐺 = (𝑉, 𝐸), an integer 

𝛽 specifying the maximum allowed size of each partition, and a predefined list of nodes, referred to as 

𝐿𝐼𝑆𝑇, which must not be assigned to the same partition. This list typically includes anchor entities 

identified during the initial matching phase. By incorporating this additional constraint, the algorithm 

aims to produce partitions that are both semantically cohesive and structurally distinct, thereby 

enabling more accurate and context-aware ontology alignment. 

3.2.2.1. Computation of the Maximum Independent Set (Line 1) 

The Maximum Independent Set (MIS) is defined as a set of nodes in a graph that are mutually non-

adjacent. The construction of the MIS begins with an empty set. Initially, a single node is added. The 

algorithm then iteratively examines the remaining nodes, adding any node that is not adjacent to those 

already included in the MIS. This process continues until no further nodes can be added. The resulting 

set is considered maximal because no additional nodes can be included without violating the 

independence condition. 

3.2.2.2. Calculation of partitions (lines 3 to 12) 

After identifying the MIS, we introduce a variable called 𝑁𝑜𝐴𝑑𝑑 that tracks the number of nodes 

whose inclusion could potentially violate the predefined maximum size limit of partitions (𝛽). This 

variable serves a dual purpose: it ensures that the partitioning process adheres to the predefined 

constraints and acts as a termination condition for the algorithm. 

The algorithm then evaluates each node exhaustively within the set (𝑉 ∖ 𝑀𝐼𝑆𝑉) to determine its 

suitability for reintroduction into the graph while maintaining the prescribed objective function (1). The 

algorithm enters a loop spanning lines 2 to 5, employing a greedy approach to identify a node 𝑖 from 

the set 𝑉 that is not currently part of the MIS. The goal of this selection is to minimize the objective 

function for the graph 𝐺(𝑀𝐼𝑆 ∪ {𝑖}), where 𝑖 can be any node in the set 𝑉. 

The selection process for adding node 𝑖 to the MIS is governed by two crucial conditions, as 

outlined in lines 5 and 6 of the algorithm. The first condition requires that the size of each partition ℎ in 

the graph 𝐺(𝑀𝐼𝑆 ∪ {𝑖}) does not exceed the predefined limit 𝛽. This ensures that the partitioning process 

maintains a balanced distribution of nodes among the partitions. 

The second condition stipulates those nodes listed in 𝐿𝐼𝑆𝑇 must not share common partitions. This 

constraint is essential to guarantee that each partition in the source ontology corresponds to at most one 

partition in the target ontology, thereby maximizing the relevance of the matching process. 

Deviations from these conditions trigger the incrementation of 𝑁𝑜𝐴𝑑𝑑, and this iterative process 

continues until 𝑁𝑜𝐴𝑑𝑑 equals ∣ 𝑉 ∣ −∣ 𝑀𝐼𝑆∣. 
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3.2.2.3. Treatment of isolated nodes 

Isolated nodes are those which are not part of a partition. Consequently, the nodes concerned 

include the partitions of dimension 1 as well as the critical nodes. The isolated node is denoted as 𝑁𝑖𝑠𝑜. 

The objective of this phase lies in determining the partition which will accommodate the isolated node 

among those connected to it. We reapply the objective function to the graph 𝐺(𝑀𝐼𝑆 ∪  {𝑁𝑖𝑠𝑜}) during 

the process of selecting the appropriate partition. Unlike the previous phase (phase 2), for the calculation 

of "pairwise connectivity", only the links to a single partition are added to the graph 𝐺(𝑀𝐼𝑆 ∪  {𝑁𝑖𝑠𝑜}). 

This is done to avoid the merging of several partitions, thus making it possible to only increase the 

"pairwise connectivity" of the selected partition. Therefore, the objective function minimization aims to 

incorporate the isolated node into the partition that requires the fewest additional nodes. 

Figure 3 illustrates a critical node, V6, which is connected to two partitions, 𝐶2 and 𝐶4. To 

determine the appropriate partition for this isolated node, the objective function is computed twice: 𝑓(𝑠) 

and 𝑓(𝑠)′. In 𝑓(𝑠), only the relations with 𝐶4 are retained, whereas in 𝑓(𝑠)′, only the relations with 𝐶2 

are considered. Since 𝑓(𝑠) yields a lower value than 𝑓(𝑠)′, node 𝑉6 is assigned to partition 𝐶4. 

3.3. Similarity Enhancement 

After generating an initial set of correspondences and partitioning the ontologies, it becomes 

necessary to refine similarity scores by integrating structural and contextual relationships among 

entities. This step helps uncover semantically meaningful correspondences that may not be apparent 

through lexical similarity alone. 

3.3.1. Partitions similarity 

Once the source and target ontologies are partitioned, it is necessary to assess the similarity 

between corresponding partitions  𝐶𝑖
𝑠∈𝑂𝑠 and 𝐶𝑗

𝑐∈𝑂𝑡. To this end, we introduce a novel similarity 

measure, 𝑆𝑖𝑚𝐶𝐶, which evaluates the similarity between partitions based on the entities they contain. 

Specifically, 𝑆𝑖𝑚𝐶𝐶 computes the similarity score by aggregating the similarities between the 

constituent nodes of each partition pair. The formula used for this computation is provided in Equation 

(4). 

𝑆𝑖𝑚𝐶𝐶(𝐶𝑖
𝑠, 𝐶𝑗

𝑐) =
1

𝑀𝑖𝑛(|𝐶𝑖
𝑠|, |𝐶𝑗

𝑐|)
∑ (𝑚𝑎𝑥

𝑉𝑙∈𝐶𝑗
𝑐
(𝑆𝑖𝑚𝑙𝑛(𝑉𝑘, 𝑉𝑙)))

𝑉𝑘∈𝐶𝑖
𝑠

                                                    (4) 

Where: 

• 𝐶𝑖
𝑠 and 𝐶𝑗

𝑐 are the source and target partitions, respectively. 

• |𝐶𝑖
𝑠| and |𝐶𝑗

𝑐| represent the number of entities in each partition. 

• 𝑆𝑖𝑚𝑙𝑛(𝑉𝑘, 𝑉𝑙) is the linguistic similarity score between entities 𝑉𝑘 ∈  𝐶𝑖
𝑠  and 𝑉𝑙 ∈  𝐶𝑗

𝑐. 
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+
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+
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=  7 

Figure 3. Illustration of the treatment of an isolated node during the partitioning process 
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Linguistic similarities are calculated by comparing the textual descriptions of classes. For this 

purpose, we apply the string comparison method described in [35], which evaluates similarity by 

combining commonality, difference, and refinement components: 

𝑆𝑖𝑚𝑙𝑛(𝑉𝑖, 𝑉𝑗) = 𝑐𝑜𝑚𝑚(𝑑𝑖 , 𝑑𝑗) − 𝑑𝑖𝑓𝑓(𝑑𝑖 , 𝑑𝑗) + 𝑤𝑖𝑛𝑘𝑙𝑒𝑟(𝑑𝑖, 𝑑𝑗)                                                    (5) 

Where: 

• 𝑑𝑖 (respectively 𝑑𝑗) denotes the description of the entity 𝑉𝑖 (respectively 𝑉𝑗). 

• 𝑐𝑜𝑚𝑚(𝑑𝑖 , 𝑑𝑗) measures the commonality between the two descriptions. 

• 𝑑𝑖𝑓𝑓(𝑑𝑖 , 𝑑𝑗) measures the difference between them. 

• 𝑤𝑖𝑛𝑘𝑙𝑒𝑟(𝑑𝑖 , 𝑑𝑗) applies a refinement based on the Winkler method, as introduced in [35]. 

𝑆𝑖𝑚𝐶𝐶 compares two sets of entities: 𝐶𝑖
𝑠 from the source ontology and 𝐶𝑗

𝑐 from the target ontology. 

It computes the similarity between these sets by aggregating the maximum pairwise similarity scores 

𝑆𝑖𝑚𝑙𝑛 between their respective entities. The final similarity score is normalized by the minimum 

cardinality of the two sets, i.e., 𝑚𝑖𝑛(|𝐶𝑖
𝑠|, |𝐶𝑗

𝑐|). 

3.3.2. Context-based similarity 

In the final phase of our ontology alignment process, we refine the similarity scores between 

entities belonging to similar partitions. This step aims to enhance alignment quality by identifying new 

correspondences that were not evident in the initial matching. We treat partitions as semantic contexts 

for the entities they contain and adjust the entity-level similarity computation accordingly, leveraging 

the similarity between their respective partitions. 

To compute the final similarity score, denoted as 𝑆𝑖𝑚𝑐𝑜𝑛𝑡𝑒𝑥𝑡 , we introduce a parameterized variant 

of the sigmoid function (Equation 6). Widely used in neural networks, the sigmoid function is valued 

for its smooth, bounded, and differentiable nature, making it ideal for modulating confidence scores 

derived from heterogeneous similarity signals. In our approach, the sigmoid curve is modulated by the 

inter-partition similarity 𝑆𝑖𝑚𝐶𝐶, which governs how strongly partition-level similarity influences the 

final similarity score between entities: 

𝑆𝑖𝑚𝑐𝑜𝑛𝑡𝑒𝑥𝑡 =
1

1 + 𝑒−(𝑓×𝑆𝑖𝑚𝐶𝐶)×𝑆𝑖𝑚𝑙𝑛
                                                                                                       (6) 

Where: 

• 𝑆𝑖𝑚𝑙𝑛  is the initial linguistic similarity between two entities (as defined in Equation 5), 

• 𝑆𝑖𝑚𝐶𝐶 is the similarity between their respective partitions (Equation 4), 

• 𝑓 is a scaling factor used to normalize the impact of 𝑆𝑖𝑚𝐶𝐶. 

By adjusting the slope of the sigmoid function through 𝑓 × 𝑆𝑖𝑚𝐶𝐶 , we dynamically control the 

function’s sensitivity to similarity variations. A shallow curve (low 𝑆𝑖𝑚𝐶𝐶) filters out weak matches, 

whereas a steep curve (high 𝑆𝑖𝑚𝐶𝐶) amplifies even moderate similarities, encouraging alignment. This 

mechanism ensures that contextual information significantly influences the final similarity score, 

improving both the precision and coherence of the alignment. 

As shown in Figure 3, setting 𝑓 = 4.3 allows entity similarities ≥ 0.5 to be considered valid 

alignments, whereas 𝑓 = 2.5 restricts this to similarities ≥ 0.9. In our design, the similarity between 

entities serves as the input to the function, and the curve’s steepness is regulated by the similarity 

𝑓 = 4.3 

𝑓 = 2.5 

Figure 4. Impact of the scaling factor 𝑓 on the sigmoid curve. 
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between their respective partition. This parametric control enhances both the precision and 

interpretability of the similarity scores. 

The parameter f was selected through empirical tuning based on performance across benchmark 

datasets. Nevertheless, a more systematic approach to parameter optimization, potentially leveraging 

learning-based methods, represents a promising avenue for future research. 

4. Experimental study and results discussion 

In the experiments, we utilize the benchmark track provided by the Ontology Alignment 

Evaluation Initiative (OAEI 2023)1 to assess the performance of our approach. Each test case in the 

benchmark track consists of two ontologies, one serving as the source ontology and the other as the 

target ontology, along with a reference alignment used to evaluate the effectiveness of the ontology 

matcher. To enable comparisons with various matching techniques, we evaluate the alignment's quality 

in this study using recall, precision, and the F-measure [36]. 

Given a reference alignment 𝐴𝑟𝑒𝑓, the definitions of recall (R), precision (P), and F-measure (F) for 

an alignment A are as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙(𝐴) =
|𝐴 ∩ 𝐴𝑟𝑒𝑓|

|𝐴𝑟𝑒𝑓|
                                                                                                                              (7) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐴) =
|𝐴 ∩ 𝐴𝑟𝑒𝑓|

|𝐴|
                                                                                                                       (8) 

𝐹 − 𝑚𝑒𝑠𝑢𝑟𝑒(𝐴) =
2 × 𝑅𝑒𝑐𝑎𝑙𝑙(𝐴)  ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐴)

𝑃𝑒𝑐𝑎𝑙𝑙(𝐴)  +  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐴)
                                                                          (9) 

4.1. Experiment configuration 

In this work, we use the following parameters: 

• 𝜶𝑰𝒏𝒊 = 0.95: Threshold for the initial similarity between entities in the source and target 

ontologies. 

• 𝜷 = 6: Maximum allowed size for each partition. 

• 𝒇 = 5: Curve factor controlling the slope of the sigmoid function. 

The choice of these parameter values follows several guiding principles: 

• A high threshold (𝜶𝑰𝒏𝒊) was selected to ensure high-quality initial alignments. This is 

crucial, as the subsequent partitioning phase directly depends on the accuracy of this initial 

alignment. Reliable anchors serve as the foundation for effective and semantically coherent 

partitions. 

• The value of 𝜷 directly impacts computational complexity. As the number of nodes in a 

partition increases, so does the processing time. To identify a suitable value, we conducted 

preliminary experiments on the OAEI 2023 track by systematically varying 𝜷 and observing 

its effect on runtime and alignment quality. 

• The parameter 𝒇 governs the steepness of the sigmoid curve used in the final similarity 

computation. A larger value of 𝒇 leads to a steeper curve, allowing moderate similarity 

values to reach the alignment threshold. This parameter was set empirically based on its 

observed influence on F-measure during pre-experiments. 

We conducted a pre-experimental study on the OAEI 2023 benchmark to observe the impact of 

these parameters on alignment quality. Our findings indicate that the chosen configuration yields the 

best performance across the tested ontology pairs. 

The experiments were run on a machine with the following specifications: 

• Processor: Intel Core i7-10750H 

• Clock Speed: 2.60 GHz × 6 cores 

• RAM: 16 GB 

                                                           
1 https://oaei.ontologymatching.org/2023/conference/ 



AETiC 2025, Vol. 9, No. 3 79 

www.aetic.theiaer.org 

The detailed experimental results are presented in the next section. 

4.2. Evaluation of our approach in terms of Recall, Precision and F-measure 

To evaluate our ontology alignment approach, we selected the OAEI 2023 Conference track. This 

choice is motivated by the fact that this track includes real-world ontologies characterized by diverse 

terminology and complex structures, making it particularly suitable for assessing context-aware and 

structure-based alignment methods. Additionally, as a widely adopted benchmark in the ontology 

matching community, it allows for rigorous and reproducible comparisons with state-of-the-art 

systems. Its moderate size also makes it ideal for detailed evaluation, without the computational burden 

often associated with larger datasets such as Anatomy or LargeBio. 

In our experiments, we compared the initial alignments, based purely on lexical similarity, with 

the refined alignments generated by our complete approach. The results, presented in Table 1, show 

that our method leads to tangible improvements in alignment quality for several ontology pairs. For 

example, the alignment between the cmt and conference ontologies showed a noticeable increase in F-

measure from 0.69 to 0.74, while the alignment between cmt and sigkdd improved from 0.76 to 0.82. A 

more moderate gain was observed between edas and ekaw, where the F-measure rose from 0.60 to 0.63. 

However, the alignment between cmt and ekaw experienced a slight degradation, with a drop of 3% in 

the F-measure. 

Although the performance remained stable for the majority of ontology pairs, these results 

illustrate that our method can yield significant gains when contextual information plays a decisive role. 

The observed improvements confirm the relevance of the Conference track as a benchmark and 

underscore the value of our context-driven approach for enhancing alignment precision. 

4.3. Evaluation of results with different partition size 

According to our hypothesis, unlike traditional systems, structural similarity should not be 

computed solely based on entities in the immediate neighbourhoods. Instead, we propose extending 

the structural context to include all entities within the same partition. We argue that this broader context 

enhances the precision and reliability of ontology alignment. To validate this assumption, we conducted 

additional experiments focusing specifically on alignments that improved during the similarity 

enhancement phase. In each experiment, we varied the maximum allowed partition size β from 1 to 10. 

Table 1. Evaluation of our approach in terms of Recall, Precision and F-measure 

  Initial Alignment  Enhanced Alignment    

 Source ontology Target Ontology R P F  R P F Enhancement 

cmt conference 0.6 0.81 0.69 0.67 0.83 0.74 5% 

cmt confOf 0.31 0.83 0.45 0.31 0.83 0.45 0% 

cmt edas 0.62 0.89 0.73 0.62 0.89 0.73 0% 

cmt ekaw 0.55 0.75 0.63 0.55 0.67 0.6 -3% 

cmt iasted 1 0.67 0.8 1 0.67 0.8 0% 

cmt sigkdd 0.67 0.89 0.76 0.75 0.9 0.82 6% 

conference confOf 0.67 0.83 0.74 0.67 0.83 0.74 0% 

conference edas 0.53 0.75 0.62 0.53 0.75 0.62 0% 

conference ekaw 0.44 0.58 0.5 0.44 0.58 0.5 0% 

conference iasted 0.43 0.55 0.48 0.43 0.55 0.48 0% 

conference sigkdd 0.67 0.83 0.74 0.67 0.83 0.74 0% 

confOf edas 0.47 0.75 0.58 0.47 0.75 0.58 0% 

confOf ekaw 0.7 0.88 0.78 0.7 0.88 0.78 0% 

confOf iasted 0.78 0.64 0.7 0.78 0.64 0.7 0% 

confOf sigkdd 0.57 0.8 0.67 0.57 0.8 0.67 0% 

edas ekaw 0.52 0.71 0.6 0.57 0.72 0.63 3% 

edas iasted 0.47 0.64 0.55 0.47 0.64 0.55 0% 

edas sigkdd 0.47 1 0.64 0.47 1 0.64 0% 

ekaw iasted 0.7 0.58 0.64 0.7 0.58 0.64 0% 

ekaw sigkdd 0.73 0.89 0.8 0.73 0.89 0.8 0% 

iasted sigkdd 0.73 0.73 0.73 0.73 0.73 0.73 0% 
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Table 2 presents the variation in F-measure as a function of β for different ontology pairs. For the 

first alignment (cmt–conference), the improvement occurred when β = 3, with the F-measure rising from 

0.69 to 0.74. However, in this case, it is unclear whether the improvement stems from our method, since 

the similarity computation might still rely solely on the direct neighbourhoods. In contrast, for the cmt–

sigkdd and edas–ekaw alignments, improvements were only observed starting from β = 6. The F-

measure increased from 0.76 to 0.82 for cmt–sigkdd and from 0.60 to 0.63 for edas–ekaw, indicating that 

entities beyond the immediate neighbourhoods contributed to the discovery of new correspondences. 

These results support our hypothesis: expanding the structural context to include all entities within 

a partition enables the identification of additional meaningful alignments that would otherwise be 

missed. Nonetheless, the optimal value of β appears to be ontology-dependent, suggesting that further 

experimentation is needed to adapt partition granularity to the characteristics of each ontology pair. 

Table 2. Evaluation of Alignment Performance with Varying Partition Size (β) 
 The maximum partition size ( β ) 

Ontologies β=1 β=2 β=3 β=4 β=5 β=6 β=7 β=8 β=9 β=10 

cmt-conference 69% 69% 74% 74% 74% 74% 74% 74% 74% 74% 

cmt-sigkdd 76% 76% 76% 76% 76% 82% 82% 82% 82% 82% 

edas-ekaw 60% 60% 60% 60% 60% 63% 63% 63% 63% 63% 

4.4. Comparison with OAEI 2023 Systems 

To assess the performance of our approach, we compared CNPMap against several systems that 

participated in the OAEI 2023 Conference track. As shown in Table 3, CNPMap achieved an F-measure 

of 0.66, indicating a strong balance between precision (0.75) and recall (0.61). 

Although this result demonstrates the competitiveness of our method, there remains potential for 

improvement, particularly in terms of recall. Increasing recall would enable the system to capture a 

broader set of correct correspondences, thereby improving the completeness of the alignments without 

compromising the current level of precision. 

Table 3. Comparison of Proposed Approach with OAEI 2023 Participants' Approaches 
Matchers R P F 

GraphMatcher[37] 0.77 0.71 0.74 

CNPMap 0.61 0.75 0.66 

SORBETMtch[38] 0.61 0.73 0.66 

LogMap[39] 0.56 0.76 0.64 

Matcha[40] 0.62 0.62 0.62 

OLaLa[41] 0.61 0.59 0.60 

ALIN[42] 0.44 0.82 0.57 

LogMapLt[39] 0.47 0.68 0.56 

LSMatch[43] 0.41 0.83 0.55 

AMD[44] 0.41 0.82 0.55 

TOMATO[45] 0.47 0.57 0.52 

PropMatch[46] 0.08 0.86 0.15 

In terms of precision, CNPMap outperforms many of the compared systems, highlighting its 

effectiveness in generating accurate mappings. Notably, CNPMap ranks second in terms of overall F-

measure, underscoring its robustness and reliability for ontology alignment, especially when contextual 

and structural features are critical. 

In conclusion, CNPMap demonstrates strong alignment capabilities, particularly through its 

precision-driven matching process. With future enhancements focused on recall, the approach has the 

potential to further increase its alignment coverage while maintaining its high-quality results. This 

makes CNPMap a promising solution for scalable and context-aware ontology alignment. 

5. Conclusion 

In this study, we introduced CNPMap, an innovative ontology alignment approach that leverages 

the Critical Node Detection Problem (CNDP) to partition ontologies and compute similarities beyond 

direct neighbourhoods. By integrating both structural and contextual information, CNPMap addresses 

a key limitation of traditional methods that often rely exclusively on local features. 
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Our approach was evaluated on the OAEI 2023 Conference track, a benchmark composed of real-

world ontologies with rich structures and diverse terminologies. The experimental results 

demonstrated notable improvements in alignment quality. For example, the F-measure increased from 

0.69 to 0.74 for the cmt-conference alignment, from 0.76 to 0.82 for cmt-sigkdd, and from 0.60 to 0.63 for 

edas-ekaw. These improvements validate the effectiveness of our context-based similarity refinement 

strategy, particularly in cases where local structural information alone is insufficient. 

We also analyzed the role of the partition size parameter (𝛽) and observed that values greater than 

5 are necessary to capture non-local similarities. This supports our hypothesis that semantically 

coherent partitions facilitate the discovery of additional valid correspondences, even among non-

adjacent entities in the ontology graph. 

In comparison with systems participating in OAEI 2023, CNPMap achieved a precision of 0.75 and 

an F-measure of 0.66, ranking second overall. These results underscore the robustness and reliability of 

our method in maintaining a strong balance between precision and recall. 

Nevertheless, recall remains a challenge, primarily due to the strict configuration used during the 

initial alignment phase (α_Ini = 0.95). While this threshold ensures high-precision anchor 

correspondences and improves partitioning reliability, it also filters out many potentially valid but 

lower-confidence matches. Additionally, the strict contextual segmentation induced by partitioning can 

limit the discovery of cross-partition alignments. 

To address these limitations, we propose several future research directions: 

• Implement adaptive thresholding mechanisms to retain a broader range of candidate 

correspondences. 

• Explore multi-context propagation techniques that permit controlled overlap between 

partitions, enhancing recall. 

• Explore machine learning techniques to automatically calibrate the sigmoid parameter 𝑓 

enabling dynamic adaptation of similarity modulation across diverse datasets and 

domains. 

• Develop scalable implementations using parallel computing or graph summarization 

techniques to handle large ontologies efficiently. 

• These enhancements aim to improve the scalability, recall, and alignment coverage of 

CNPMap while preserving its high precision. 

In summary, CNPMap represents a promising and effective framework for context-aware ontology 

alignment. With further refinement, it can become a high-performance solution for aligning complex, 

large-scale ontologies across diverse domains and applications. 
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