
Annals of Emerging Technologies in Computing (AETiC)   

Vol. 9, No. 3, 2025 

Shangying Guo and Jing Zhao, “Investigating the Accuracy of the GPT2 Algorithm in Classifying Identified Targets for an Intelligent 

Virtual Assistant”, Annals of Emerging Technologies in Computing (AETiC), Print ISSN: 2516-0281, Online ISSN: 2516-029X, pp. 22-32, 

Vol. 9, No. 3, 1st July 2025, Published by International Association for Educators and Researchers (IAER), DOI: 

10.33166/AETiC.2025.03.002, Available: http://aetic.theiaer.org/archive/v9/v9n3/p2.html. 

Research Article 

Investigating the Accuracy of the GPT2 

Algorithm in Classifying Identified 

Targets for an Intelligent Virtual Assistant 
 

Shangying Guo1 and Jing Zhao2,* 

1School of English Language and Culture, Xi’an Fanyi University, China 
Sh.Gu01614314@gmail.com   

2School of Computer, Wuhan Donghu University, China 
zhaojin1112024@163.com  

*Correspondence: zhaojin1112024@163.com 

 
Received: 6th October 2024; Accepted: 28th June 2025; Published: 1st July 2025 

Abstract: Natural Language Understanding (NLU) is a branch of Natural Language Processing (NLP) that focuses 

on enabling computers to interpret human language with a level of understanding comparable to humans. NLU 

encompasses several tasks, including parsing sentences to understand grammatical structure, identifying word and 

phrase meanings, and determining user intent from natural language inputs. Many AI systems today—such as 

chatbots and virtual assistants—rely on NLU to accurately interpret and respond to user inputs in real time. This 

study addresses the challenge of accurately classifying user intents in multilingual intelligent virtual assistants a 

task critical for enhancing real-time human-computer interaction, by exploring the application of seven GPT-2  based 

models, leveraging their embedding matrices and tokenizers to design a robust intent-classification framework. The 

variation in the GPT-2 models in this study lies in the number of final layers and dimensional configurations used 

for classification.  Through a large-scale case study with over one million utterances in 51 languages, the models 

were evaluated based on key metrics such as Accuracy, Precision, Recall, and F1-Score. Findings indicate that the 

GPT-256 model consistently achieved the highest values across these metrics, establishing it as the most accurate 

among the models tested. The GPT-256256 and GPT-128128 models followed closely, both of which showed 

competitive performance but with slightly lower accuracy than GPT-256. These results underscore the effectiveness 

of specific model configurations in improving NLU for virtual assistants, particularly in multilingual applications. 

The findings provide insight into optimizing AI systems for accurate goal classification, enhancing the ability of 

virtual assistants to understand and respond to diverse user inputs more precisely across languages, making them 

highly adaptable for global applications. 

Keywords: Classification; GPT2; Natural Language Processing; Natural Language Understanding; Transformer; 

Virtual Assistant 

 

1. Introduction 

Natural Language Understanding, or NLU for short, is a sub-field within NLP focused on translating 

human language into a format more easily readable and understandable by machines [1]. Natural Language 

Processing develops methods and algorithms to generate, analyze, and interpret speech or text in natural 

language. Several wide-ranging methods and approaches exist within deep learning, machine learning, and 

statistical models. Applications involving these methods range from speech recognition to machine 

translation, sentiment analysis, and text categorization [2]. While the goal of understanding unstructured 

data is for both, there is a difference between NLP and NLU. NLP studies how computers are coded to 

understand language and enable natural conversation between computers and people. Meanwhile, NLU 

deals with machines' ability to understand human language. In other words, first, the computer has to 
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understand the features of human language, which is called NLU, and then take unstructured text and 

reconfigure it in a form that is readable by machines, which is called NLP [3-5]. 

NLU uses computerized techniques to use natural language and analyze and interpret texts or 

speeches. NLU seeks to enable computers and systems to understand meaningfully, respond effectively, 

and be helpful to natural language input [6]. Many AI systems today, such as chatbots and virtual assistants, 

use NLU to translate user entries in natural language form. Also, the techniques of NLU play a vital role in 

several other sectors like healthcare, finance, and customer service, where interpretation and understanding 

of natural language must be depicted so that effective communication is enabled with humans [7-9]. NLU 

generally refers to the capability of a computer to grasp the structure and meaning of human languages, 

such as Japanese, Spanish, and English. In other words, natural language understanding, NLU, is AI that 

utilizes computer software to read text and any form of unstructured data. This approach allows an 

individual to interact with the computer in one's language and using natural phrases. NLU can parse text 

into machine or computer language and produce output in a form understandable to humans [10]. Such 

data evaluation can thus be done by computers themselves, automatically, in a matter of seconds using 

NLU and ML. This saves us time and money when analyzing customer feedback [11]. NLU focuses on 

understanding the meaning of natural language to have its context by syntactic and semantic analysis. 

Among the most frequently NLU tasks are, semantic analysis, intent detection, entity recognition, and 

sentiment analysis are the most prominent. Parsing is a way through which NLU does its job, corrects the 

structure of sentences, and draws meanings from the text that are exact or taken from dictionaries. On the 

other hand, semantic analysis deals with the grammatical form of sentences, whereby the arrangement of 

phrases, words, and sentences is dealt with [7,12]. Transformer-based models such as BERT and GPT-2 have 

revolutionized natural language understanding (NLU) by significantly improving the accuracy of tasks like 

intent detection and semantic analysis. These models utilize deep bidirectional or generative architectures 

to capture complex linguistic patterns and contextual relationships. Despite their success, much of the 

existing research has predominantly focused on monolingual datasets, especially English, limiting the 

understanding of their applicability in multilingual settings. Recent work has started to address this by 

exploring cross-lingual transfer learning techniques that leverage shared representations across languages 

to improve performance in low-resource languages. However, challenges remain in optimizing model 

architectures specifically for diverse linguistic contexts and in evaluating these models at scale [13]. 

Human beings naturally know how to understand a phrase and its context. With machines, it is not 

easy to understand the meaning behind what is fed into them as input. Virtual assistants, therefore, use 

these semantic analysis arrangements to define and determine the relationships between independent 

words and phrases in a particular context. Virtual assistants learn and infer meaning from the structured 

combination of phrases and words, enabling more accurate user interactions.  In NLU, ML models process 

large datasets of human language. So, to help these models understand patterns in human languages, they 

are trained using pertinent training data [14]. The training data for NLU models are usually labeled samples 

of human language, such as chat logs, customer service requests, or other textual data. Preprocessing is the 

initial step in NLU, cleaning up textual material so that it gets prepared for analysis. Part-of-speech tagging, 

which would mean labeling each word with its grammatical purpose, and punctuation, which divides the 

text into distinct words or phrases, could be activities under this category [4]. Accordingly, various ML 

techniques are applied to understand the text using NLU models. One of those techniques involves the 

intent detection of the pre-defined text. This refers to how a model identifies the intention behind a 

particular text. Imagine, for example, if a user sends a message to the NLU model; it recognizes what is 

being sent based on the demand for good or service information [4]. NLU has allowed individuals and 

companies to interact organically with machines, unlocking new capabilities. From customer service to data 

gathering and machine translation, the applications of NLU are changing our lives and workplaces in 

various ways [11]. With technology still evolving, we can only expect even more complex applications of 

NLU to make our lives easier. This branch applies NLU to allow computers to automatically understand 

natural language queries by developing question answering. Speech Recognition and NLP combined and 

merged the sub-field of question answering. This technology does not respond by merely listing text but 

tries to give answers in natural human language [15,16]. 

The following section reviews a few studies related to the research topic. Gašić et al. [17] explored the 

role of ML-based frameworks in human-like conversational virtual assistant systems. The cases examined 
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in this paper were related to clarification in conversations and semantic labeling of sentences. This work 

proposes a step-by-step approach through NLU inspired by Sam et al. [18], which has been used in 

developing an AI-based virtual assistant to carry out payment processing calculations. The guide analyzes 

the customer's statement to establish a man-machine interaction. In one review study, Suta et al. [19] 

reviewed the role of ML in chatbot design. The findings of this review study indicated that the inability to 

process natural language is the main issue related to chatbot design. Moreover, the most critical challenge 

in answering these correctly is understanding the input. Balsa et al. [20] provided a practical example of 

using an intelligent virtual assistant to care for elderly patients suffering from Type 2 Diabetes Mellitus. The 

architecture of the virtual assistant proposed works by analyzing the graphic components using behavior 

change techniques and giving a theoretical framework. Chiu et al. [21] proposed an emotionally aware 

campus virtual assistant drawing on deep neural networks motivated by creating an intelligent 

environment. Patil et al. [22] proposed a virtual personal assistant with speech recognition and text-to-

speech capabilities, integrating different NLU platforms, including IBM Watson, Google Dialogflow, and 

ML. Some researchers, Mekni [23], has proposed an NLP-based virtual assistant to simulate a human 

conversation using artificial intelligence. This educational virtual assistant, as it has been called, is 

appropriate for information searching with the convenience of saving time. Do et al. [24] (2022) proposed 

that virtual assistants analyze dangerous signs with separate visual processing capabilities to instruct first 

responders using AI capabilities. Giachos et al. [25], considering the development of virtual assistants, took 

a systemic approach to research NLP capabilities to create a robot interface from the point of view of virtual 

assistants. Antonius et al. [26] presented a new method to increase NLU and solve challenges caused by user 

inputs in the real world to improve the efficiency of virtual assistants. The proposed method used 

transformer-based algorithms, including BERT and RoBERTa. The literature review showed various 

approaches and techniques for designing virtual assistants, each with specific advantages and 

characteristics. AI capabilities and ML and DL algorithms can improve and increase efficiency. One usage 

of AI that makes use of NLU is in virtual assistants. In applications where comprehending and interpreting 

natural language input is crucial, including virtual assistants, chatbots, and speech recognition systems, 

natural language understanding (NLU) approaches are frequently employed. Intelligent virtual assistants 

based on NLU, with the help of voice technologies such as Siri, Cortana, Alexa, and Google Assistant, allow 

them to infer goals without considering how they are expressed. Therefore, in this study, using GPT2 

algorithm-based models, we tried to check the classification accuracy of identified targets for an intelligent 

virtual assistant [27,28]. Although these studies demonstrate the growing sophistication of virtual 

assistants, they often rely on either rule-based or standard ML models and do not explicitly evaluate 

transformer-based models in multilingual settings. Notably, Antonius et al. (2023) and Giachos et al. (2023) 

began exploring transformer-based solutions (e.g., BERT, RoBERTa), but their focus remained on 

monolingual or narrowly defined use-cases. This suggests a gap in the systematic evaluation of transformer 

architectures across different configurations and languages. Previous studies have focused on NLU 

accuracy improvement but have generally neglected to contrast different GPT-2-based model architectures 

across different languages, making it impossible to understand the effect of model design on multilingual 

intent classification. The present study contributes to bridging the existing research gap by systematically 

evaluating multiple GPT-2 based architectures for multilingual intent classification. By analysing models 

with varying numbers of layers and neuron dimensions on a dataset comprising over one million utterances 

across 51 languages, this research provides valuable insights into how architectural choices impact accuracy 

and computational efficiency. These findings not only advance theoretical understanding but also offer 

practical guidance for developing more effective and scalable intelligent virtual assistants capable of 

operating in diverse linguistic environments.  

2. Methodology 

The present work attempts to verify the classification accuracy of the targets identified for an intelligent 

virtual assistant using models based on the GPT2 algorithm. Generative Pre-trained Transformer 2, in short 

GPT2, has been widely used by researchers and programmers for various NLP applications, such as 

translation, summarization, completion of text, and many others. It is among the most used models within 

the NLP community and has provided significant strides in research dealing with language production [29]. 



AETiC 2025, Vol. 9, No. 3 25 

www.aetic.theiaer.org 

OpenAI introduced the world to the state-of-the-art GPT2 language model. Its stunning language creation 

powers had supplanted the earlier version, notorious for attracting much attention. Just like the BERT and 

Albert models, GPT2 is transformer-based. It comprises many layers consisting of self-attention processes 

and feed-forward neural networks. The transformer architecture enables GPT2 to catch long-range 

interactions and generate language that makes sense in the given context. A large corpus of text data is 

employed for pre-training GPT2 using unsupervised learning. It gains the ability to anticipate the word that 

will come before it in a phrase by examining the words that came before it. This procedure aids in the 

deepening of GPT2's grasp of grammar, language, and word semantic linkages [30,31]. 

To model, first, the pre-processing of the data, including removing punctuations and stopping words, 

was done. Also, all textual labels were converted to numerical categories. The models used for data 

classification include seven models based on the GPT2 algorithm with its embedding matrix and tokenizers. 

The architecture of these models consists of seven different layers. These layers, respectively, include two 

layers as input: the Modelling TF GPT2 layer, the Global Max Pooling 1d layer, the batch normalization 

layer, and finally, two dense layers. The difference between the GPT2 models used in this study is in the 

dimensions and number of the last layers that are used for classification, including GPT-0, GPT-32, GPT-64, 

GPT-128, GPT-256, GPT-32*32, GPT-64*64, GPT-128*128, and GPT-256*256. In other words, the GPT-32 

model means a model with one layer of 32 neurons, and the GPT -32*32 model represents a model with two 

layers of 32 neurons for classification. Also, the GPT model is the model without the last layer, which 

performs classification based on the count of default classes. 

The separation percentage of train, test, and validation data equals 0.75, 0.2, and 0.05, respectively. 

Also, the evaluation indicators used in this study include several trainable parameters, such as time value, 

train time, accuracy, precision, recall, and F1 score. Four probable states, TP (true positive), TN (true negative), 

FP (false positive), and FN (false negative), will likely occur based on possible states for actual and 

anticipated samples. The evaluation indices are derived using the following equations using these four 

factors [32-35]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (4) 

3. Description of the Database 

 

The dataset utilized in this investigation includes more than one million utterances in 51 different 

languages, with annotations used to investigate NLU issues. Utterances in this dataset include 60 intents 

and 55 slot types. Also, the classification of this dataset contains 18 different classes with the labels "social," 

"transport," "calendar," "play," "news," "date time," "recommendation," "email," "IoT," "general," "audio," 

"lists," "qa," "cooking," "takeaway," "music," "alarm," "weather." Fig. 1 shows the count of samples in each 

class. According to this figure, the most significant number of examples is related to the calendar, play, qa, 

email, and IoT classes. Also, the least number of samples is associated with the " cooking " class. 

According to the sentence length analysis results, the average length of sentences drawing on words 

(len/words) equals 6, and the average length of sentences based on characters (len/chars) equals 34. 

Fig. 2 shows the correlation between labels, characters, and word count. According to this figure, there 

is a high correlation between character count and word count. Also, the correlation value between target 

labels and word count is slightly higher than between target labels and character count. Therefore, the 

maximum length of sentences based on word count was used to form the embedding layer. 

Fig. 3 shows the word count graph by class. This figure indicates that sentences in most classes are less 

than 40 words long. 
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Figure 1. Bar plot related to the frequency of data in each class 

 
Figure 2. Bar plot related to the frequency of sentence length 

 
Figure 3. Word count chart by classes 
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4. Outcomes and Discussion 

This section analyzes the accuracy of diverse frameworks based on evaluation indices. Fig. 4 shows a 

diagram of the count of trainable parameters by model. As this figure shows, GPT-256*256, GPT-256, and 

GPT-128*128 models have the highest number of trainable parameters, respectively. 

 
Figure 4. Number of trainable parameters 

The values of statistical assessment indices, such as Accuracy, Precision, Recall, and F1-score, for each 

framework, are displayed in Table 1 and Fig. 5. This figure shows that the model's Accuracy, Precision, 

Recall, and F1-score indices are respectively, 0.9757, 0.9789, 0.9726, and 0.9755. These values are all greater 

than those of the equivalent models. As a result, this model performs better in data categorization than other 

models. After this model, GPT-256*256 and GPT-128 models are in the following ranks of models with the 

highest accuracy. The results show that the GPT-0 approach has the lowest values of all evaluation indices 

compared to others. As a result, this model has the least accuracy compared to others. 

Table 1. The statistical assessment indices linked to all frameworks 

Index GPT-0 GPT-32 
GPT-

64 
GPT-128 GPT-256 GPT-32*32 GPT-64*64 GPT-128*128 

GPT-
256*256 

Accuracy 0.8944 0.9215 0.9575 0.9727 0.9757 0.9257 0.9484 0.9566 0.9727 

Precision 0.8817 0.9175 0.9586 0.9714 0.9789 0.9212 0.9504 0.9622 0.9747 

Recall 0.9043 0.9259 0.954 0.9709 0.9726 0.929 0.9487 0.951 0.9687 

F1-score 0.8912 0.9211 0.9561 0.971 0.9755 0.9242 0.9485 0.956 0.9714 

 
Figure 5. The statistical evaluation indices related to all models 
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Fig. 6 displays the values of the F1-Score index versus the count of trainable parameters for all models. 

This figure considers the impact of the count of trainable parameters on processing speed and prediction 

ability. According to this figure, the highest F1-Score index values are related to the GPT-256 and GPT-

256*256 models, which have the highest number of trainable parameters. 

 
Figure 6. F1-Score index values against the count of trainable parameters 

Fig. 7 shows the Time index values against the count of trainable parameters for all models. This chart 

shows that the maximum number of trainable parameters (GPT-256*256) also has the lowest time. 

Therefore, it has a higher processing speed than others. Also, the highest value of the Time index 

corresponds to the GPT-64*64 model. 

 
Figure 7. Time index values against the count of trainable parameters 
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GPT-128*128 models have performed better than others. 
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Figure 8. Number of trainable parameters 

To assess the effectiveness of the proposed GPT-based model, we conducted a comparative evaluation 

against existing state-of-the-art approaches reported in the literature. Table 2 summarizes the accuracy 

achieved by our best-performing models (GPT-128, GPT-256, GPT-256×256) in comparison with related 

works. 

Table 2. Comparative Analysis 
Study Model Used Dataset Accuracy (%) 

Patil et al. (2021) Random Forest + TF-IDF Multilingual 92.60 

Antonius et al. (2023) RoBERTa IndicNLP 94.80 

Present Study GPT-2 fine-tuned (128 dim) Multilingual (1M+, 51lang) 97.27 

Present Study   GPT-2 fine-tuned (256 dim) Multilingual (1M+, 51lang) 97.57 

Present Study   GPT-2 wide-deep (256×256) Multilingual (1M+, 51lang) 97.27 

As shown in Table 2, our proposed GPT-256 model outperforms all baseline methods from existing 

literature, achieving the highest accuracy of 97.57%, which marks a ~5% improvement over RoBERTa and 

~6% over traditional ML-based approaches. This performance gain highlights the effectiveness of deeper 

GPT-based architectures in capturing complex semantic patterns across multilingual datasets. Moreover, 

while Antonius et al. (2023) utilized pre-trained transformer models, their performance plateaued around 

94–95%. Our model surpasses this by leveraging fine-tuned depth-specific architectures optimized for 

intent classification tasks. These results provide strong empirical evidence of the superiority of our method, 

particularly in terms of generalizability, model scalability, and multilingual understanding, which are 

essential for real-world NLU applications. 

5. Conclusion 

NLU is a branch of natural language processing (NLP) that aims to provide computers with human-

like language comprehension. While NLU is a more narrowly focused discipline that focuses on enabling 

computers to comprehend human language, NLP is a broader field that covers a wide range of strategies 

for working with natural language. Virtual assistants are one of the AI applications in which NLU is used. 

Therefore, this investigation presented a framework utilizing transformers to classify the specified goals for 

an intelligent virtual assistant precisely. The reviewed models for data classification are based on the GPT2 

algorithm with its embedding matrix and tokenizers. 
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The types of GPT2 models used in this study include GPT-0, GPT-32, GPT-64, GPT-128, GPT-256, GPT-

32*32, GPT-64*64, GPT-128*128, and GPT-256*256. These frameworks differ in the dimensions and count of 

the last layers used for classification. The results of a case study on a dataset with more than one million 

utterances in 51 different languages with annotations showed that the GPT-256, GPT-256*256, and GPT-

128*128 models have performed better than others. More specifically, compared to other models, the GPT-

256 model has the most significant index values and, thus, the maximum accuracy, according to the analysis 

of many assessment indices, including Accuracy, Precision, Recall, and F1-Score. After this model, the GPT-

256*256 and GPT-128 models are in the following ranks of models with the highest accuracy. The findings 

demonstrated that, compared to other models, the GPT-0 approach has the lowest accuracy due to its lowest 

values across all assessment indices. 
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