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Abstract: Diabetes, as a chronic condition affecting millions of people worldwide, requires early diagnosis and 

continuous monitoring to prevent complications. The rise of machine learning (ML) applications in healthcare offers 

promising approaches for diagnosing and managing diabetes more effectively. Machine learning models can 

analyse extensive amounts of data to identify patterns that may be invisible to human clinicians, improving 

diagnosis accuracy and enabling personalized care. This study investigates the performance of four machine 

learning models—Decision Tree, Logistic Regression, Random Forest, and Support Vector Machine (SVM)—in 

detecting diabetes using two types of data: traditional lab-based data and real-time accessed data from Internet of 

Things (IoT) sensors. Data was collected from continuous glucose monitors (CGMs) and wearables, as well as 

clinical lab records in Albania. The results revealed that machine learning models applied to IoT data significantly 

outperformed those applied to lab data, demonstrating higher accuracy and better predictive metrics. The 

continuous monitoring enabled by IoT devices allows for real-time detection of glucose fluctuations, providing 

earlier and more precise diabetes diagnosis. Additionally, integrating IoT with fog computing reduces latency and 

enhances on-time decision-making, allowing for prompt interventions in patient care. The study highlights the 

transformative potential of combining IoT, machine learning, and fog computing to revolutionize healthcare, 

particularly the management of chronic diseases such as diabetes. The findings suggest that IoT-based systems 

should be adopted to improve diabetes detection and monitoring, allowing for a shift toward proactive healthcare 

solutions. Future research could explore the application of these technologies for managing other chronic conditions 

and optimizing machine-learning models for large-scale datasets. 
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1. Introduction 

One of the prominent global health challenges today is Diabetes mellitus (DM), impacting millions of 

individuals across the world. Reports from the World Health Organization (WHO) indicate a significant 

rise in diabetes cases, with estimates suggesting that by 2030, around 578 million adults will be affected [1], 

[2]. This chronic disease displays high blood sugar levels, arising from inadequate insulin production or the 

body's inability to use insulin efficiently. If left unmanaged, diabetes can lead to serious complications, 

including cardiovascular disorders, kidney dysfunction, and nerve damage [3]. Alarmingly, nearly half of 

those with diabetes are unaware of their condition, underscoring the immediate need for effective screening 

and rapid diagnosis frameworks [1]. The increasing prevalence of diabetes, coupled with its associated 

complications, calls for innovative approaches in healthcare, particularly in diagnostics and disease 

management. 

Machine learning (ML) is transforming the healthcare industry, providing new opportunities to 

improve disease detection, diagnosis, and treatment. By analysing large volumes of healthcare data, ML 

algorithms can recognize patterns and generate predictions with high accuracy, often surpassing human 
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capabilities [4]. In the context of diabetes, ML applications have shown considerable promise, especially in 

classifying blood glucose patterns and detecting anomalies in real-time [3]. These innovations not only 

enhance diagnostic precision but also enable the development of personalized treatment strategies designed 

to meet the specific needs of every patient [5]. 

Exploiting machine learning capabilities into healthcare systems marks a significant breakthrough in 

addressing the complexities of modern medical challenges. Real-time data processing is crucial in the early 

detection and management of diabetes. The Internet of Things (IoT) has transformed the healthcare 

monitoring process by enabling continuous tracking and collecting patients' health data through connected 

devices [6-7]. These IoT devices gather and transmit data on critical physiological indicators, including 

blood glucose levels, heart rate, and physical activity, facilitating timely interventions when irregularities 

are detected [8]. This capability is further enhanced by fog computing, which computes data processing 

nearer to the source, decreasing latency and increasing decision-making speed [7]. By leveraging real-time 

IoT-driven data and fog computing, healthcare professionals can adopt proactive strategies to mitigate 

diabetes progression and related complications, ultimately leading to better patient outcomes. 

IoT is instrumental in managing diabetes, with devices like continuous glucose monitors (CGMs) 

offering real-time feedback to both patients and healthcare professionals. This immediate access to data 

allows for prompt adjustments to treatment plans based on current glucose levels [9]. This continuous 

monitoring is particularly beneficial for patients diagnosed with Type 1 diabetes, due to the constant need 

to maintain stable levels of blood sugar [10]. Moreover, the integration of machine learning algorithms with 

IoT-generated data strengthens predictive analytics, enabling healthcare providers to detect patterns and 

foresee potential health risks before they develop into serious complications [11]. This combination of real-

time data collection and advanced analytics fosters a proactive healthcare approach, shifting the focus from 

reactive to preventive care. 

As diabetes continues to rise globally, the need for timely and accurate diagnostics becomes more 

pressing. Traditional lab tests, while effective, often involve delays in processing and result delivery, which 

can hinder prompt intervention and disease management. In contrast, IoT-based systems enable continuous 

monitoring, allowing for immediate data collection and analysis, crucial for early detection and 

management of diabetes [12-14]. The main objective of this study is to assess and compare the efficacy of 

IoT-based real-time data processing with traditional laboratory data for early diabetes detection. This 

comparison seeks to highlight the potential of real-time data in enhancing diagnostic accuracy and 

improving patient outcomes. 

This study evaluates four popular machine learning algorithms to compare their effectiveness in 

classifying patients with diabetes, including Logistic Regression, Decision Tree, Random Forest, and 

Support Vector Machine (SVM). These algorithms have proven effective in handling classification tasks 

within healthcare datasets. Logistic Regression known for its clarity and strength in binary classification, is 

particularly useful for preliminary diabetes risk assessments [15].  Decision Trees are preferred for their 

comprehensibility, allowing healthcare providers to easily understand the decision-making process 

happening behind predictions, which is essential in clinical settings [16]. Random Forest, an ensemble 

method, enhances prediction accuracy by combining results from multiple decision trees, reducing the 

likelihood of overfitting [17]. Lastly, SVM is recognized for its strong performance in high-dimensional data, 

making it especially appropriate for complex healthcare datasets [18]. By leveraging these diverse ML 

learning models, the study seeks to determine the most efficient method for detecting diabetes through real-

time IoT data analysis. 

Beyond utilizing machine learning algorithms, this study integrates fog computing to improve real-

time data processing closer to its origin, by extending cloud computing capabilities to the network's edge, 

thus significantly reducing latency and speeding up analysis [19]. This approach is particularly beneficial 

in healthcare settings where prompt decision-making is essential. By leveraging fog computing, the study 

demonstrates how real-time data processing can facilitate immediate alerts and interventions for patients 

at risk of diabetes, thereby improving healthcare delivery [20]. Using the advantages of both fog computing 

and IoT devices enhances resource utilization and, at the same time, ensures that healthcare providers can 

swiftly access and respond to critical health data overcoming the delays often associated with conventional 

cloud processing [21]. 
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In summary, this study contributes to the field as follows: 

• It proposes an integrated fog-IoT architecture for continuous glucose monitoring, demonstrating 

how real-time data processing and machine learning models enhance diagnostic accuracy and 

enable early detection of diabetes. 

• It evaluates the effectiveness of edge-level processing through fog computing in improving 

decision-making and proactive management of diabetes, thereby contributing to the advancement 

of smart healthcare systems for chronic disease management.   

2. Literature Review 

The application of machine learning algorithms in healthcare diagnostics, particularly for diabetes 

detection, has attracted considerable attention. This review examines four widely recognized machine 

learning algorithms: Logistic Regression, Decision Tree, Random Forest, and Support Vector Machine 

(SVM). These algorithms have been widely studied for their effectiveness in predicting diabetes risk and 

diagnosing the disease using various health datasets. 

Logistic Regression has served as a foundational model in medical diagnostics due to its simplicity and 

interpretability, making it highly convenient for binary classification purposes such as determining the 

presence or absence of diabetes. The authors of [22] demonstrated the utility of Logistic Regression in 

predicting Type 2 diabetes. They validated its effectiveness in identifying individuals at-risk based on health 

indicators. While another study [23] found that logistic regression provided a strong baseline, and they 

highlighted that more complex models, such as ensemble methods, yielded higher accuracy and precision 

for diabetes risk classification. This indicates that while Logistic Regression offers a straightforward 

approach, it may not be the most optimal for more intricate datasets. 

Decision Trees are widely adopted in healthcare diagnostics because of their intuitive structure and 

ease of interpretation. They allow the visualization of decision-making processes, which is particularly 

valuable in clinical settings. Decision Trees were employed to classify diabetes status in a population from 

Northeastern Ethiopia, revealing that while Decision Trees were effective, their susceptibility to overfitting 

could limit their predictive power [24]. A comparison of Decision Trees with other algorithms was 

conducted in [25], concluding that integrated methods, ex. Random Forest, often outperform Decision Trees 

due to their ability to aggregate multiple trees and reduce overfitting. 

Random Forest, an ensemble method, has gained prominence for its robustness and high accuracy in 

classification tasks. By constructing multiple decision trees and aggregating their outputs, Random Forest 

improves prediction accuracy and minimizes overfitting. The authors of [26] achieved 85% accuracy rate in 

their study while diagnosing diabetes, utilizing the Random Forest algorithm, by outperforming Decision 

Trees and Naive Bayes. Similarly, the authors of [27] used Random Forest to create a diabetes risk 

assessment model, which demonstrated better accuracy than Logistic Regression.  Studies indicate that 

Random Forest excels in managing high-dimensional datasets while offering valuable insights into feature 

significance, establishing it as a crucial tool for advancing healthcare analytics. 

SVM performs exceptionally well with high-dimensional data and demonstrates strong resistance to 

overfitting, especially in scenarios where the number of features surpasses the number of samples [28-29]. 

A study from [30] compared SVM with Logistic Regression and Decision Trees, finding that SVM achieved 

superior performance in classifying diabetes cases. Another study reported that SVM achieved an accuracy 

of 80.8% in diabetes prediction, reinforcing its effectiveness as a diagnostic tool [31]. 

Recent advancements in data processing have enhanced the application of ML algorithms in 

healthcare. Hybrid models that combine multiple algorithms have shown improved prediction accuracy. 

An ensemble approach was explored in [32], including Random Forest and SVM, which resulted in 

enhanced diabetes detection outcomes. This approach leverages the strengths of individual algorithms, 

optimizing overall performance in complex health data scenarios. 

Machine learning models have been tested in diverse health datasets, extending beyond traditional 

clinical data. Ijaz et al. A new hybrid model incorporating Random Forest was proposed to predict diabetes 

and hypertension using various health datasets, including wearable device data [33]. This underscores the 

adaptability of ML techniques in analysing complex health data from different sources. 
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Integrating IoT devices in healthcare monitoring has revolutionized patient data collection, providing 

real-time data processing and analysis that enhances patient care [34-37]. While traditional lab-based 

approaches are effective for diagnosis, they often suffer from delays in data processing and result reporting. 

In contrast, IoT-based systems enable healthcare professionals to collect data for health metrics in real-time, 

facilitating prompt interventions and enhancing patient care outcomes. 

Patients are under a continuous data collection process of parameters like heart rate, blood pressure, 

and glucose levels through wearable sensors and smart health monitors, offering a comprehensive view of 

their health status [12]. This continuous monitoring allows healthcare professionals to detect potential 

triggering flags before they escalate, improving preventive care. The authors of [38] developed a wearable 

IoT sensor-based system that demonstrated the potential of IoT in identifying and controlling infectious 

diseases, emphasizing the transformative effect of IoT in health monitoring. 

However, the enormous amount of generated data by continuous sensor monitoring poses challenges 

in processing and analysis, particularly concerning latency and bandwidth limitations. Traditional cloud 

computing struggles to manage these challenges efficiently. The utilization of fog computing exploits cloud 

capabilities to the network's edge, allowing localized data processing, and thereby reducing latency and 

bandwidth constraints [39]. This architecture is especially suited for real-time healthcare applications where 

prompt decision-making is critical [40]. 

Several studies highlight the effectiveness of combining IoT data collection with fog computing 

processing capabilities in healthcare. The importance of fog computing in healthcare is underscored by the 

fact that it enhances the efficiency of data acquisition and processing [41]. A “multi-agent fog computing 

model for managing critical healthcare tasks” was developed in [42], demonstrating how fog computing 

can enhance service efficiency by enabling low-latency data processing. Another study explored “the 

integration of blockchain and fog computing in IoT-driven healthcare services”, improving data security 

and interoperability while enhancing overall service delivery [13]. 

The combination of IoT and fog computing also facilitates predictive analytics through machine 

learning algorithms. By applying machine learning to real-time health data, healthcare providers can 

identify patterns and make informed predictions about patient health. An intelligent fog-enabled smart 

healthcare system that integrated machine learning for real-time physiological parameter detection was 

developed [43]. Their study demonstrated how machine learning, coupled with IoT and fog computing, 

leads to more accurate health assessments and timely interventions. This contrasts with traditional lab-

based methods, where data analysis is often delayed, potentially missing opportunities for early 

intervention. 

The challenges associated with traditional healthcare systems, particularly latency and bandwidth 

issues during data analysis, are highlighted in [39] and [44]. The authors of [45] proposed a fog-enabled 

framework that significantly reduced latency and improved real-time medical care, underscoring the 

potential of these technologies to enhance patient outcomes. Similarly, in [46], the importance of real-time 

health tracking in healthcare, demonstrating how fog computing enables immediate responses to patient 

health changes, which traditional lab-based systems often cannot provide, is emphasized. 

Moreover, IoT and fog computing have been shown to improve Quality of Service (QoS) in healthcare 

applications. A demonstration of how fog computing can bridge the gap between IoT devices and analytics 

enhances the efficiency of healthcare monitoring systems [47]. This is particularly crucial in emergency 

situations, where timely access to patient data can be critical for saving lives. By processing data closer to 

the source, fog computing reduces the time required for data transmission and analysis, enabling faster 

decision-making and improving patient care. 

An investigation of diverse machine-learning methodologies for predicting diabetes onset indicates 

that unsupervised and deep-learning approaches could enhance prediction precision [48]. This corresponds 

with another study's findings, which indicate that optimising machine learning via feature selection and 

dimensionality reduction can improve early detection accuracy and healthcare management techniques 

[49]. The capacity to analyse extensive datasets proficiently facilitates more nuanced insights into diabetes 

dynamics, enabling personalised treatment solutions.  

The authors of [50] created an intelligent healthcare system employing ensemble classification models, 

attaining an accuracy of 82.2% in predicting type 2 diabetes. Their research highlights the efficacy of 
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integrating various machine-learning methods to improve forecast accuracy. The incorporation of IoT data 

into these models facilitates real-time monitoring and data collection, which is essential for prompt 

interventions in diabetes treatment. Another IoT architecture was proposed to utilise machine learning for 

diabetes detection, highlighting the significance of continuous patient monitoring and data analysis [51].  

The classification of diabetes types by machine learning approaches was extensively analysed in [52], 

highlighting that improved algorithms can aid in diagnosing diabetes using daily data. This method 

facilitates early diagnosis and offers practitioners readily available information for patient care. The model 

developed in [53] underscores the importance of machine learning in healthcare. The authors utilised a 

refined XGBoost algorithm for diabetes detection, demonstrating the efficacy of particular machine learning 

methods in discerning significant patterns from intricate medical datasets.  

The problem of data missingness in diabetes predictions and its effect on machine learning models 

utilising the All of Us dataset is investigated in [54]. This underscores the imperative for rigorous data 

preparation methods to guarantee the dependability of predictive models. A similar evaluation was 

achieved by [55], where different machine-learning techniques were considered for the early detection of 

diabetes, highlighting the necessity for holistic strategies that can anticipate diabetes-related problems. The 

incorporation of lifestyle data into predictive models has been proven to improve the precision of diabetes 

forecasts, as evidenced by [56], who employed lifestyle characteristics to create data-driven prediction 

models.  

The utilisation of ensemble learning methods, as examined by [57], demonstrates the efficacy of 

integrating numerous classifiers to enhance diabetes prediction precision. This methodology corresponds 

with another study's findings, which highlight the significance of machine learning algorithms in tackling 

healthcare issues associated with diabetes diagnosis [58]. The ongoing advancement of machine learning 

techniques, such as boosting and hybrid models, has demonstrated the potential to improve predictive 

accuracy for diabetes detection [59].  

The advancement of intelligent systems for diabetes prediction has been investigated using diverse 

machine-learning methodologies. The research conducted by [60] on a hybridised extreme learning machine 

model illustrates the efficacy of integrating various algorithms to enhance predictive accuracy in targeted 

demographics, such as pregnant women. This underscores the versatility of machine learning 

methodologies to accommodate varied patient demographics and circumstances.  

The function of machine learning in diabetes management, beyond prediction, to include holistic 

healthcare solutions was studied in [61]. The study shows that the analysis of machine learning applications 

for diabetes prediction highlights the revolutionary capacity of these technologies to enhance patient 

outcomes. The amalgamation of machine learning with IoT data can enable real-time surveillance and 

customized treatment strategies, ultimately resulting in enhanced diabetes care.  

Several studies have reported the study of various machine learning algorithms for diabetes prediction. 

A study focused on predictive modeling and analytics for diabetes using machine learning techniques, 

emphasizing the importance of early detection in preventing complications associated with the condition is 

shown in [62]. The findings corroborate with another study that illustrated the efficacy of machine learning 

in diagnosing type 2 diabetes utilizing health behaviour data [63].  

The application of sophisticated machine learning techniques, including deep learning and ensemble 

methods, has demonstrated considerable potential in improving the accuracy of diabetes detection. [64] 

conducts a study on diabetes prediction and analysis by machine learning models. The findings 

demonstrate the capability of these methods to derive significant insights from intricate datasets. Moreover, 

the incorporation of feature selection techniques, as emphasized by [65], might enhance model efficacy and 

augment diagnostic precision.  
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Numerous research studies have emphasised the significance of data preparation and feature 

engineering in diabetes prediction. In [66], the need for regression imputation and optimised algorithms to 

improve diabetes prediction models is underscored. This corresponds with the results of [67] that created a 

clinical decision support system employing machine learning techniques for the management of type 2 

diabetes medications, emphasising the essential importance of data quality in predictive analytics.  

In conclusion, the literature suggests that Logistic Regression, Decision Tree, Random Forest, and SVM 

are effective machine learning algorithms for diabetes detection, each with distinct advantages. Random 

Forest and SVM frequently outperform others in terms of accuracy and robustness, especially when applied 

to complex datasets. The integration of IoT for continuous health monitoring, along with fog computing for 

enhanced data processing, represents a significant advancement in healthcare. These technologies enable 

real-time data processing, facilitating timely interventions and improving patient outcomes. When 

compared with traditional lab-based methods, IoT and fog computing clearly offer enhanced efficiency and 

responsiveness in healthcare, particularly in managing chronic conditions like diabetes. As research 

continues, the potential for these technologies to transform patient care becomes increasingly apparent. 

3. Methodology 

The methodology employed for this study involves data collection and preprocessing of both IoT-

based real-time data and traditional lab-based data. By utilizing these dual data sources, a comprehensive 

analysis of diabetes detection is possible. IoT data was collected from continuous glucose monitors (CGMs) 

and wearables, while traditional lab data, such as fasting glucose and HbA1c levels, was sourced from a 

clinical lab in Albania. The integration of these two data types enhances predictive modeling for diabetes 

detection 

3.1. Data Collection 

This section explains how the data collection process was carried out from two sources, which are 

traditional laboratory tests through blood tests and IoT data through sensors. he combination of these two 

methods ensures both clinical accuracy and real-time monitoring, enabling a more comprehensive 

understanding of the patient's glucose levels. To enhance transparency and credibility, we clarify that the 

laboratory data used in this study were obtained from the Intermedika Laboratory Clinic in Albania with 

verbal ethics approval from the clinic’s administration. Although written informed consent was not 

collected, the data was acquired in full and subsequently anonymized by removing all personal identifiers 

to ensure patient confidentiality. The IoT dataset was synthetically generated using Python to simulate real-

time health monitoring. All data handling and analysis were conducted in alignment with relevant ethical 

and legal standards. 

3.1.1. IoT Data Collection and Processing 

The IoT-based data were obtained from 20 individuals who wore continuous glucose monitoring 

(CGM) devices throughout a three-month period, from 2 January 2024 (00:00) to 1 April 2024 (00:00). These 

devices recorded glucose levels on an hourly basis, resulting in 43,220 data points. In addition, we collected 

contextual information, such as systolic and diastolic blood pressure, age, gender, weight, exercise details, 

family history of diabetes, body mass index (BMI), and smoking status. Each record was time-stamped to 

align changes in glucose levels with potential lifestyle factors (for example, exercise regimes or smoking 

patterns). 

The raw IoT data were initially downloaded directly from the CGM devices’ secure cloud repositories 

in CSV format. The dataset included minimal missing values because our team supervised the data 

collection protocol to ensure device calibration and adherence to continuous monitoring procedures. 

Therefore, no major cleaning steps were necessary, although we performed standard checks for data 

consistency and outlier points. We verified the time series continuity by cross-referencing device logs, 

discarding any duplicate entries, and ensuring that measurement intervals remained at an hourly 

frequency. Once cleaned, this dataset was transferred into a structured data warehouse for preliminary 

analysis. Because these 14 features were deemed informative for modelling diabetes indicators, we retained 

all of them for subsequent machine-learning experiments. 
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3.1.2.  Lab Data Collection and Preparation 

A second dataset was obtained from a clinical laboratory in Albania. This dataset encompassed 

measurements from 4,580 patients, yielding 5,221 rows and 25 columns. Clinical variables included glucose 

(GLU), cholesterol (CHOL), triglycerides (TRIG), and various liver function tests, among others. Due to 

differing test frequencies and possible record-keeping inconsistencies, missing values were present. We 

addressed these gaps through data imputation, employing suitable statistical techniques (for instance, mean 

or median imputation) based on the variable’s distribution. Afterward, we verified the plausibility of 

imputed values by comparing them against known clinical reference ranges. This process ensured a 

comprehensive dataset for modeling and minimized potential biases introduced by missing or outlier data 

points. Fig. 1 illustrates step by step the process of data collection from both sources, IoT wearable devices 

and Laboratory samples, as described in the previous paragraphs. The process starts with two sources of 

data collection streams:  

• IoT data collection, which includes Continuous Glucose Monitor (CGM) data and wearable 

sensor data that track real-time glucose levels and activity metrics. 

• Traditional lab data collection, which involves gathering standard lab test results. 

Once collected, both data streams are transmitted for processing, where they are cleaned and formatted for 

integration. The processed data is then stored in a centralized database, enabling seamless access for further 

analysis. Next, data analysis is performed on the combined dataset to extract meaningful patterns, which 

leads to the generation of insights that can support healthcare professionals in making informed decisions 

for diabetes management and early detection. 

 
Figure 1. Data Collection Overview 

 

3.2. Data Preprocessing 

The Data Preprocessing Steps for IoT and Lab Data, as shown in Fig.2 illustrate a structured pipeline 

for preparing data from two different sources, IoT data and lab data, before integration. 
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The data preprocessing process is carried out in five stages for both data sources, starting with data 

collection, followed by cleaning to remove inconsistencies. The data is then normalized to standardized 

values, and feature engineering is applied to extract relevant insights. Finally, the preprocessed data is 

integrated for further analysis. 

Both datasets are further combined to create the final integrated data, which serves as a refined and 

structured dataset for downstream machine learning analysis and decision-making in diabetes detection. 

 
Figure 2. Data Preprocessing Steps 

3.2.1. Data Cleaning  

The first step in preprocessing was data cleaning, aimed at removing inconsistencies, such as missing 

values and outliers. For example, glucose levels recorded by CGMs that fell outside plausible ranges were 

flagged and either corrected based on historical data or removed. Similarly, traditional lab results with 

unusual values were scrutinized for potential errors [68]. Data cleaning ensures the dataset's integrity, as 

noisy or erroneous data can adversely affect machine learning model performance. 

3.2.2. Normalization 

To ensure uniformity, data normalization was applied. Different data sources often have varied units 

and scales, so min-max scaling was used to standardize the range of values, typically between 0 and 1 [69]. 

This process is essential, especially for IoT-based glucose data and lab-based HbA1c data, which operate on 

different scales. 

3.2.3. Feature Engineering  

We aimed to maintain transparency in how relevant features for the predictive modeling were selected. 

For the lab dataset, glucose (GLU) was treated as a proxy target for diabetes risk. An ANOVA F-test 
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(f_classif) was employed to identify the top ten predictors from among the original set of 25. In this 

approach, the target (GLU) was dropped from the feature set, and then F-scores were calculated based on 

the correlation between each predictor and the target. The highest-scoring variables included Age, Gender, 

Triglycerides (TRIG), Very Low-Density Lipoprotein (VLDL), Creatinine (CREA), UREA, Direct Bilirubin 

(DBIL), Indirect Bilirubin (IBIL), Reagent 1 (R1), and an additional indicator labelled Diabetes Status. These 

variables were consequently retained for model development. For the IoT dataset, we evaluated feature 

importance but retained all 14 features due to their clinical relevance and low multicollinearity. Preliminary 

tests showed no significant improvement in model performance when reducing the feature set, justifying 

their inclusion. By contrast, in the IoT dataset, each of the 14 features was retained, given that they all 

contributed distinct information about the patients’ physiological states and lifestyle factors. Including all 

relevant IoT-derived measurements allowed us to explore the impact of continuous glucose monitoring 

data in conjunction with blood pressure, BMI, and smoking status as potential predictors for diabetes 

detection. 

3.2.4. Data Integration 

Pre-processed data from both sources is finally integrated into a unified format. This combined dataset 

was split into training and testing subsets to evaluate machine learning models. The training data were used 

to build the models, while the testing data assessed their performance on previously unseen data [70]. 

3.3. Machine Learning Models for Diabetes Detection 

The machine learning models employed for diabetes detection included Logistic Regression, Decision 

Tree, Random Forest, and Support Vector Machine (SVM). Each model was applied to both IoT-based real-

time data and traditional lab-based data to identify patterns indicative of diabetes. The Diabetes Detection 

Workflow is illustrated in Fig.3. It outlines the step-by-step process of applying machine learning models 

for diabetes classification. 

 
Figure 3. Machine Learning Model Workflow 

The workflow begins with data preparation, which involves loading the dataset, cleaning the data, and 

splitting it into training and testing sets. 

Next, the model training phase is executed, where multiple machine learning models are trained to 

identify patterns in the data. Once trained, the models proceed to the evaluation phase, where their 

performance is assessed to determine accuracy and effectiveness in diabetes detection. 
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3.3.1. Logistic Regression  

Logistic Regression was used for its simplicity and effectiveness in binary classification tasks, such as 

predicting the presence or absence of diabetes. The model was trained on the integrated dataset to estimate 

the likelihood of diabetes based on the selected features [71]. 

3.3.2. Decision Tree  

Decision Tree models were chosen for their interpretability, allowing healthcare providers to visualize 

decision-making processes. This model categorized patients based on health metrics, providing insights 

into which factors contributed most to diabetes risk [72]. 

3.3.3. Random Forest  

Random Forest, an ensemble learning method, improved prediction accuracy by aggregating multiple 

decision trees. This model excels in handling high-dimensional datasets, making it highly effective for 

diabetes detection [73]. 

3.3.4. Support Vector Machine (SVM)  

SVM was employed for its robustness in high-dimensional spaces. The algorithm creates optimal 

hyperplanes for separating classes, such as diabetic versus non-diabetic patients, ensuring high accuracy 

even with complex data [74]. 

3.4. Fog Computing for Real-Time Processing 

To enable real-time processing and decision-making, the machine learning models were deployed in a 

fog computing environment. Fog computing extends the capabilities of cloud computing by processing data 

closer to its source, significantly reducing latency. This architecture is particularly beneficial for healthcare, 

where timely decisions are critical [75]. 

 
Figure 4. Fog Computing Architecture for Diabetes Detection 

The proposed Fog Computing Architecture for Diabetes Detection is given in Fig. 4. This architecture 

integrates IoT devices, fog nodes, and machine learning models to enhance diabetes monitoring and 

decision-making. IoT devices, such as continuous glucose monitors (CGMs) and wearables, collect real-time 

health data, which is processed at fog nodes to reduce latency and enable faster analytics. The processed 

data is then analysed by machine learning models to detect patterns and predict diabetes risk. The results 

are shared with healthcare providers and patients, facilitating timely interventions. Additionally, the 
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system connects to cloud servers for storage and remote access, ensuring efficient real-time monitoring and 

improved patient outcomes. 

3.4.1. Data Processing  

The IoT devices continuously transmitted health data, which was processed locally in the fog layer. 

This localized data processing reduced transmission time to the cloud and enabled faster decision-making. 

For instance, if a significant drop in glucose levels was detected, the system could immediately classify the 

event as hypoglycemia and alert the patient or healthcare provider [76][50]. 

3.4.2. Real-Time Decision-Making  

The trained models were integrated into the fog computing environment to allow real-time analysis of 

incoming health data. This real-time capability is crucial for early intervention in diabetes management, 

preventing complications due to delayed responses [77]. 

3.4.3. Scalability and Efficiency  

The fog computing environment also ensured scalability, allowing the system to handle data from 

multiple IoT devices simultaneously without performance degradation. This is particularly important in 

clinical settings where numerous patients are monitored concurrently [19]. 

The methodology combines IoT-based real-time data with traditional lab-based measurements to 

enhance diabetes detection. Rigorous preprocessing steps, including data cleaning, normalization, and 

feature engineering, ensure high-quality datasets for analysis. By leveraging Logistic Regression, Decision 

Tree, Random Forest, and SVM in a fog computing environment, the system ensures both accuracy and 

real-time responsiveness in detecting diabetes, ultimately improving patient outcomes. 

4. Results and Discussion 

This section discusses the comparative performance of four machine learning models—Logistic 

Regression, Decision Tree, Random Forest, and Support Vector Machine (SVM)- on two different datasets: 

traditional lab-based data and IoT-based real-time data. The results reflect how each model performed in 

terms of accuracy, precision, recall, and F1 score. Moreover, we evaluate how the integration of fog 

computing with IoT systems has significantly enhanced real-time diabetes detection compared to 

traditional diagnostic methods. We will interpret the tables that summarize the outcomes of the models, 

examine the strengths and limitations of each model, and analyse the broader implications for diabetes 

management. 

4.1. Performance on Lab-Based Dataset 

In our investigation, we first evaluated four machine learning models on a traditional laboratory-based 

dataset consisting of clinical measurements from 4,580 patients (5,221 rows). The original dataset contained 

25 variables (for example, cholesterol, triglycerides, and bilirubin levels), but we ultimately used 10 core 

features for modeling after performing feature selection and imputing missing values. Due to the static 

nature of this lab dataset—where measurements were taken at discrete clinical visits rather than through 

continuous monitoring—its scope was more limited in capturing fluctuations in patients’ metabolic profiles. 

Moreover, the presence of missing values and the reliance on conventional sampling schedules (e.g., 

periodic blood tests) introduced potential data gaps. These factors collectively influenced the model 

performances. 

4.1.1. Lab Data Cross-Validation Results 

Table 1 shows the mean accuracy and standard deviation (Std Dev) derived from three-fold cross-

validation for each model on the lab dataset. We have also included the accuracy values for individual 

folds, thereby providing deeper insight into the consistency of each model’s performance across partitions. 

Table 1. Lab Data Cross Validation and Standard Deviation 

Model Fold 1 Accuracy Fold 2 Accuracy Fold 3 Accuracy Mean Accuracy 

Logistic Regression 0.597701 0.589799 0.589080 0.592193 

Decision Tree 0.494253 0.516523 0.530891 0.513889 

Random Forest 0.581897 0.564655 0.598420 0.581657 

SVM 0.595546 0.595546 0.596264 0.595785 
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From Table 1, we observed that Logistic Regression demonstrated the highest mean accuracy 

(0.592193), followed closely by SVM (0.595785). Random Forest reached 0.581657, while the Decision Tree 

yielded a comparatively lower mean accuracy of 0.513889. The standard deviations were relatively small, 

indicating moderate consistency in model performances. However, none of the models exceeded an 

accuracy of 0.60 on average, suggesting that the static and partially imputed nature of the lab dataset 

presented challenges for classification. 

4.1.2. Lab Data Final Performance Metrics 

To complement cross-validation results, we also computed accuracy, precision, recall, and F1 scores 

for the final lab-based predictions, as shown in Table 2.  

Table 2. Lab Data Results 

Model Accuracy Precision Recall F1 Score 

Logistic Regression 0.600 0.468 0.376 0.349 

Decision Tree 0.524 0.417 0.419 0.417 

Random Forest 0.578 0.449 0.420 0.420 

SVM 0.594 0.309 0.336 0.253 

Logistic Regression yielded the best overall accuracy (0.600), suggesting that a linear decision 

boundary captured some meaningful associations within the static lab data. Its precision (0.468) was 

moderate, but the recall (0.376) and F1 score (0.349) underscored limitations in correctly identifying true 

diabetic cases. SVM followed closely in terms of accuracy (0.594), though its precision (0.309) and F1 score 

(0.253) were weaker, implying that SVM might have struggled with the limited lab feature set. 

Random Forest and Decision Tree achieved slightly lower accuracies of 0.578 and 0.524, respectively, 

reflecting potential challenges in adequately splitting the data, especially when many observations 

contained missing values or relied on imputation strategies. Though Random Forest is generally more 

robust than a single Decision Tree [26], the restricted scope of the lab data may have constrained the 

advantage of ensemble methods. 

The Random Forest model did not outperform Logistic Regression in the lab-based dataset, which is 

unusual given that ensemble methods typically excel in healthcare datasets. This discrepancy may stem 

from the limited feature set and imputation of missing values in the lab data, which could have reduced the 

diversity of decision trees in the Random Forest. Additionally, the linear relationships in the lab data might 

have been better captured by Logistic Regression, while the non-linear advantages of Random Forest were 

underutilized. 

Overall, these findings suggest that while traditional lab data can identify broad patterns related to 

diabetes risk, the limited longitudinal scope and the presence of missing values likely hampered model 

performance. Furthermore, the relatively small set of final features, combined with noise introduced by 

imputation, constrained the predictive power of more complex classifiers. 

In contrast, we collected a significantly larger IoT dataset via continuous glucose monitoring (CGM) 

devices and associated wearable sensors. This dataset contained 43,220 rows of hourly glucose 

measurements recorded from 20 patients over three months (2 January 2024 to 1 April 2024). Because of the 

consistent supervision during data collection, there were very few missing values. All 14 features—

including glucose level, blood pressure, age, weight, exercise information, family history, and smoking 

status—were retained for modeling. Unlike the lab dataset, the IoT data provided a real-time, dynamic 

profile of each individual’s glucose fluctuations, thereby encapsulating both diurnal patterns and lifestyle 

factors (for example, exercise routines) that could influence diabetes risk. 

4.2. IoT Data Cross-Validation Results 

We conducted the same three-fold cross-validation on the IoT dataset to verify model reliability. Table 

3 presents the fold-wise accuracies, alongside mean accuracy and standard deviation. 
Table 3. IoT Data Cross Validation and Standard Deviation 

Model Fold 1 Accuracy Fold 2 Accuracy Fold 3 Accuracy Mean Accuracy Std Dev 

Logistic Regression 0.997397 0.998091 0.997223 0.997571 0.000375 

Decision Tree 1.000000 0.999913 1.000000 0.999971 0.000041 

Random Forest 1.000000 0.999913 1.000000 0.999971 0.000041 

SVM 0.984296 0.986464 0.982907 0.984556 0.001464 
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As seen in Table 3, each model achieved near-perfect accuracy during cross-validation, with Decision 

Tree and Random Forest obtaining a mean accuracy of 0.999971, Logistic Regression reaching 0.997571, and 

SVM at 0.984556. The standard deviations were extremely small, signifying highly consistent performance 

across folds. 

4.2.1. IoT Data Final Performance Metrics 

For the final model evaluation on the IoT dataset, Table 4 documents accuracy, precision, recall, and 

F1 scores. 

Table 4. IoT Data Results 

Model Accuracy Precision Recall F1 Score Model 

Logistic Regression 0.9980 0.9978 0.9977 0.9977 Logistic Regression 

Decision Tree 0.9999 0.9999 0.9998 0.9999 Decision Tree 

Random Forest 0.9999 0.9999 0.9998 0.9999 Random Forest 

SVM 0.9894 0.9874 0.9871 0.9872 SVM 

Decision Tree and Random Forest exhibited essentially flawless performance (accuracy ≥ 0.9999), while 

Logistic Regression and SVM also achieved exceptionally high metrics. This remarkable performance 

differential versus the lab dataset stems from the richness of time-series data, continuous glucose 

recordings, and the minimal missing values. Real-time fluctuations in glucose and other variables offer each 

model significantly more nuanced information than what is available in the single-timepoint lab records 

[23,24]. These findings reinforce the current literature, which consistently demonstrates that large, feature-

rich, and temporally granular data sources enhance predictive accuracy [26]. 

4.3. Statistical Significance Testing (T-Statistic and P-Value) 

To ensure the reliability of our observed performance differences between the two datasets (lab-based 

versus IoT-based), we conducted independent t-tests comparing mean accuracies for each model. Table 5 

summarizes the IoT mean accuracy, lab mean accuracy, t-statistic, and p-value for all four algorithms. 

Table 5. T-Statistics and P-Values 

Model IoT Mean Accuracy Lab Mean Accuracy T-Statistic P-Value IoT Mean Accuracy 

Logistic Regression 0.997571 0.592193 142.695656 0.000049 0.997571 

Decision Tree 0.999971 0.513889 45.591174 0.000481 0.999971 

Random Forest 0.999971 0.581657 43.025549 0.000540 0.999971 

SVM 0.984556 0.595785 314.952185 0.000010 0.984556 

For each model, the t-statistic is substantial, and the p-value is far below 0.05, indicating statistically 

significant differences between the models’ accuracies on the IoT dataset versus the lab dataset. In other 

words, the superior performance of ML models on the IoT data cannot be attributed merely to sampling 

variability or chance. Rather, it reflects the intrinsic benefits of continuous monitoring, the higher volume 

of observations, and the minimal missing data in the IoT dataset, as compared to the static and sometimes 

incomplete lab dataset.  

4.4. Comparative Analysis: Lab Data vs. IoT Data and Potential Limitations 

The substantial differences in classification accuracy between the lab-based and IoT-based datasets 

underscore several critical factors: 

1. Nature of Data Collection: The lab dataset offered only a snapshot of patients’ metabolic status at 

specific test times, often taken while fasting or under controlled conditions. By contrast, the IoT 

dataset provided continuous measurements, capturing diurnal variations and real-world 

fluctuations in glucose and other vital parameters. These continuous signals gave the algorithms a 

far richer understanding of each patient’s glycemic control patterns. 

2. Feature Variety and Depth: Despite the lab dataset originally having 25 columns, many had 

missing values and required imputation. Ultimately, only 10 features were selected for modeling 

(e.g., age, gender, triglycerides, and bilirubin levels). Meanwhile, the IoT dataset retained all 14 

available columns—ranging from blood pressure readings to exercise indicators—resulting in a 

more complete profile. This difference in feature breadth likely enhanced the models’ capacity to 

identify subtle predictors of diabetes status [26]. 
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3. Missing Values and Imputation: Missing data were more prevalent in the lab dataset due to 

patients skipping certain lab tests or incomplete record-keeping practices. Although we 

implemented imputation strategies, such methods inevitably introduce some level of 

approximation, potentially diluting the signal needed for accurate classification. In contrast, the IoT 

data were collected under close supervision, ensuring data integrity and minimal missing values. 

This consistency likely helped models learn more reliably. 

4. Sample Size Disparities: While the lab dataset encompassed 5,221 records from 4,580 patients, the 

IoT dataset featured 43,220 hourly samples from only 20 individuals, thus providing dense 

observations over time. In effect, each patient in the IoT study contributed a rich time series, 

substantially increasing the total number of data points. Machine learning models, especially 

ensemble methods like Random Forest, thrive with larger datasets containing more variability in 

the features [24]. 

5. Statistical Significance: The t-tests confirmed that the performance differences between the lab-

based and IoT-based models were statistically significant (p-values < 0.001 for all comparisons). 

This underscores the conclusion that real-time data streams offer a distinct, quantifiable advantage 

for diabetes detection. 

6. Potential Overfitting Concerns: While near-perfect accuracy often raises questions about 

overfitting, the cross-validation folds in the IoT dataset consistently yielded high performance, 

minimizing the likelihood that the models were simply memorizing a particular subset of the data. 

Moreover, the large volume of IoT records likely provided enough variability to train and test 

without overfitting. By contrast, in the lab data scenario, the moderate or low accuracy levels might 

also partially reflect underfitting, given the fewer relevant signals. 

From a methodological perspective, these findings demonstrate that continuous health data from 

wearable technology can significantly bolster machine learning applications in healthcare, particularly for 

chronic conditions like diabetes. The higher accuracy scores, combined with robust statistical significance, 

highlight the benefit of tracking subtle physiological shifts that static lab tests may miss. Researchers and 

clinicians should therefore consider integrating IoT data collection in standard diagnostic pathways where 

feasible, while also exploring ways to augment lab-based datasets with additional time points or 

complementary variables. 

Nonetheless, it is important to recognize the advantages and limitations of each data source. 

Laboratory tests remain the gold standard for diagnostic confirmation and provide precise measurements 

of biochemical markers. Yet, IoT-based monitoring offers an opportunity to capture context and continuous 

dynamics, thus improving early detection, personalization of care plans, and real-time intervention [23,28]. 

A future research direction could involve hybridized models that merge both lab and IoT datasets, 

leveraging their complementary strengths to yield even stronger predictive power. 

In conclusion, our analysis unambiguously reveals the superiority of IoT-based data over static lab 

measurements in terms of machine learning classification performance for diabetes detection. By 

implementing cross-validation, calculating performance metrics, and applying independent t-tests, we 

demonstrated not only that IoT-driven models achieve near-perfect accuracy but also that these results are 

statistically significant. The difference in feature richness, missing data rates, and time-series granularity 

plausibly explain the performance gap, serving as a reminder that the quality and comprehensiveness of 

data play a decisive role in any predictive modeling task. Researchers and healthcare practitioners aiming 

to enhance diagnostic accuracy in chronic disease management should give serious consideration to real-

time IoT monitoring as a complement to or replacement for traditional, static lab-based approaches. 

4.5. Implications for Diabetes Detection and Management 

The findings from this study have significant implications for diabetes detection and management. 

First, the superior performance of machine learning models on IoT data demonstrates the potential for IoT-

based systems to revolutionize diabetes care. By continuously monitoring patients and analysing health 

data in real-time, IoT systems can provide more accurate and timely diagnoses than traditional lab-based 

methods. This shift from intermittent testing to continuous monitoring can lead to earlier detection of 

diabetes and better management of the condition. 
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Second, the integration of machine learning models within a fog computing architecture enables real-

time processing, which is critical in healthcare settings. By reducing the time between data collection and 

decision-making, fog computing ensures that healthcare providers can respond swiftly to any abnormalities 

detected by the system, potentially preventing serious complications [75]. 

While fog computing enables real-time processing by reducing latency, its computational costs, such 

as hardware requirements, energy efficiency, and scalability, were not explicitly evaluated in this study. 

Optimizing fog node efficiency (e.g., via lightweight algorithms or adaptive resource allocation) could 

further enhance the feasibility of IoT-driven diabetes monitoring systems 

Finally, this study underscores the need for healthcare systems to adopt new technologies, such as IoT 

and machine learning, to address the growing burden of chronic diseases like diabetes. By combining real-

time data collection with advanced predictive models, healthcare providers can shift from reactive care to 

proactive management, improving outcomes for patients worldwide. Beyond theoretical advantages, IoT-

based diabetes monitoring systems have demonstrated real-world impact, such as in remote patient 

management programs and hospital ICUs, where continuous glucose monitoring has reduced 

hypoglycemic events. Case studies from healthcare networks adopting these technologies could further 

validate their clinical and operational benefits. 

In conclusion, the results demonstrate that machine learning models perform significantly better on 

IoT-based real-time data than on traditional lab-based data for diabetes detection. The use of IoT systems, 

combined with fog computing, offers a powerful solution for continuous monitoring and early diagnosis of 

diabetes, ultimately enhancing patient care and reducing the global burden of this chronic condition. While 

this study demonstrates the advantages of IoT-based diabetes detection, several limitations warrant 

discussion. First, privacy and security concerns arise with continuous health data collection, requiring 

robust encryption and compliance with regulations and legislation of each country. Second, missing values 

in lab data (despite imputation) may introduce bias, while IoT reliability depends on device calibration and 

user adherence. Finally, the small IoT sample size (n=20 individuals) limits generalizability, suggesting the 

need for larger, diverse trials to validate real-world scalability. 

5. Conclusions 

This study highlights the significant advantages of using IoT-based real-time data over traditional lab-

based data for diabetes detection when employing machine learning models. The comparison of four 

models, Logistic Regression, Decision Tree, Random Forest, and SVM, showed a stark contrast in 

performance, with all models demonstrating near-perfect accuracy and predictive power on IoT data, 

compared to moderate results on lab data. The continuous, dynamic nature of IoT data enables machine 

learning models to capture essential glucose fluctuations, offering early detection and better management 

of diabetes. Additionally, integrating IoT systems with fog computing enhances real-time decision-making 

by reducing latency, allowing for immediate interventions. This research emphasizes the transformative 

potential of IoT, machine learning, and fog computing in healthcare, specifically for managing chronic 

diseases like diabetes. The findings advocate for the adoption of IoT-based monitoring systems in clinical 

practice, shifting healthcare from reactive to proactive care. Looking ahead, we suggest several avenues for 

future research. First, researchers could investigate the applicability of IoT-driven ML models across 

different populations, particularly those with divergent ethnic backgrounds, dietary patterns, or genetic 

predispositions to metabolic disorders. This would help validate the robustness and transferability of these 

methods. Second, integrating additional data sources, such as electronic health records, medication use, and 

mental health status, might further improve model accuracy and offer a more holistic understanding of 

individual risk profiles. By amalgamating real-time physiological signals with broader lifestyle and clinical 

variables, we could refine early detection algorithms and uncover latent patterns that are not fully captured 

by either static lab tests or wearable sensor data alone. 

Third, large-scale, longitudinal studies spanning longer periods would help confirm the reliability of 

IoT-based analytics in real-world clinical practice. Collaborations among healthcare providers, device 

manufacturers, and research institutions are necessary to establish standardized data-sharing protocols, 

ensuring consistent collection and quality control. Finally, exploring privacy-preserving machine learning 

techniques, such as federated learning, would address concerns about patient confidentiality and data 
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security, thus fostering trust and broader adoption in clinical settings. By taking these steps, researchers can 

extend the benefits of IoT-enhanced monitoring to diverse patient groups, ultimately improving diabetes 

management and prevention strategies on a global scale.  

This study focused on traditional machine learning models (e.g., Logistic Regression, Random Forest, 

Decision Tree and SVM) due to their interpretability and computational efficiency, which are critical for 

real-time healthcare applications. However, given the high-dimensional and sequential nature of IoT data, 

deep learning techniques like LSTMs or CNNs could further improve accuracy by capturing temporal 

patterns or spatial features in glucose fluctuations. Future work should explore hybrid models combining 

traditional and deep learning approaches to leverage their complementary strengths. Such advancements 

could enhance predictive performance while maintaining clinical interpretability. 
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