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Abstract: Leaf disease in tomatoes is one of the most common and treacherous diseases. It directly affects the 

production of tomatoes, resulting in enormous economic loss each year. As a result, studying the detection of 

tomato leaf diseases is essential. To that aim, this work introduces a novel mechanism for selecting the most 

effective hyperparameters for improving the detection accuracy of deep CNN. Several cutting-edge CNN 

algorithms were examined in this study to diagnose tomato leaf diseases. The experiment is divided into three 

stages to find a full proof technique. A few pre-trained deep convolutional neural networks were first employed to 

diagnose tomato leaf diseases. The superlative combined model has then experimented with changes in the 

learning rate, optimizer, and classifier to discover the optimal parameters and minimize overfitting in data 

training. In this case, 99.31% accuracy was reached in DenseNet 121 using AdaBound Optimizer, 0.01 learning rate, 

and Softmax classifier. The achieved detection accuracy levels (above 99%) using various learning rates, 

optimizers, and classifiers were eventually tested using K-fold cross-validation to get a better and dependable 

detection accuracy. The results indicate that the proposed parameters and technique are efficacious in recognizing 

tomato leaf disease and can be used fruitfully in identifying other leaf diseases. 

Keywords: Convolutional Neural Network; Deep Learning; Disease Recognition; Multi-label Classification; 

Tomato Leaves 
 

1. Introduction 

Biologically called Solanum Lycopersicon, tomato is a commonly harvested crop around the world, 

which is high in principle antioxidants like Vitamin ‘C’ and ‘A’ accompanying beta carotene. There is an 

increasing trend in the production and consumption of tomatoes throughout the globe resulting in 38.54 

million tons of production for the year 20201. Tomatoes can be grown in any well-drained wet soil with a 

                                                            
1 ”WPTC preliminary 2020 global crop estimate”, last modified 2020, https://www.tomatonews.com/en/wptc-preliminary-2020-

global-crop-estimate-_2_1175.html. 
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sunlight. Tomatoes help improve our immunity and for many diseases, doctors directly prescribe 

tomatoes to increase antibodies in the body. Given the necessity of this vegetable in both economic and 

nutritional contexts, it is essential to enhance the cultivation and quality of products using various 

techniques. However, diseases are a major hindrance to the production of tomatoes. Together with 

misinterpretation from farmers by over or underuse of pesticides and water, elevated moisture and 

temperature naturally favour disease development. Here, most of the diseases have visible symptoms and 

pathologists usually diagnose these diseases through practical observation of leaves. But pathologists 

require excellent observation skills to detect subtle differences between different diseases. Furthermore, 

excessive variations, differences because of climates and regions, and new types of diseases make it very 

difficult to accurately detect the right affliction. Therefore, a precise and real-time disease recognition 

technology is necessary [1, 2]. 

In recent years through self-learned mechanisms, convolutional neural networks have progressed 

significantly in classification and identification tasks. In a variety of applications, CNN has been 

successfully used, including biomedical photo analysis [3], scene text recognition [4, 5], skin lesions 

classification [6], License Plate Detection and Recognition [7], and has consistently outperformed the 

competition. Furthermore, taking into account the universal context data of regions, CNN can extricate 

more strapping and discriminative features. The result of which is the rapid emergence of many powerful 

CNN architectures such as DenseNet [8], AlexNet [9], VGGNet [10], and many more. Currently, in 

applications like plant leaf disease analysis, one of the most common practices is to use deep 

convolutional networks with a cross-entropy loss function.  As the likelihood of plant diseases developing 

is so low and it is widespread in plant disease datasets, many of them are unbalanced and in the case of 

unbalanced datasets, these techniques do not perform very well. Furthermore, huge amounts of labelled 

training data, extensive knowledge, as well as powerful computing and memory resources are required to 

train a deep neural network from scratch. In addition, problems with overfitting and convergence during 

deep CNN training typically necessitate repeated changes to the network's design or learning parameters 

in order to guarantee that all layers are advancing at a similar rate. A viable alternative to starting from 

scratch is to improve a CNN that has already been trained utilizing a huge collection of natural labeled 

images. 

In this study, we first used various convolutional neural network models namely DenseNet 121 [8], 

DenseNet 169 [8], ResNet 50 [11], VGG 16 [10], VGG 19 [10], EfficientNet b7 [12] to identify different 

diseases of tomato leaf and compared their results. After performance analysis, the architecture of 

network with the highest efficiency among those models was chosen and investigations on the effects of 

three hyperparameters (i.e. learning rate, optimizer, and classifier) were carried out in terms of accuracy. 

Based on previous experiments, we realized the network with optimized hyperparameters to talk about 

how different parameters affect recognition tasks. Lastly, K-fold cross-validation is adopted in order to 

compare the effectiveness of the networks with improved hyperparameters. To the best of our knowledge, 

this research is the first to examine and evaluate the relationship between the learning rate, optimizer, and 

classifier hyperparameters to maximize the effectiveness of deep CNN. This, we believe, makes sense for 

researchers who want to fine-tune pre-trained algorithms for those other comparable problems. 

The remainder of this work is structured as follows: The "Related work" section provides a 

comprehensive assessment of literary works published in the field of plant leaf disease detection. The 

"Materials and methods" section shows the datasets, deep neural networks, and tuning hyperparameters 

required to complete this work. The section "Experiments and Results" offers the method assessment and 

performance metrics, followed by fivefold cross-validation on the resulting metrics. The "Conclusion" 

section discusses the work's conclusions and future scope. 

2. Related Work 

The identification of plant diseases has been debated for many years. A noticeable effect of disease on 

the leaf is a sign of most plant diseases. With the use of machine learning techniques, several investigators 

created numerous acceptable structures and contributed their ideas to detect leaf diseases. The color 
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information that can be recovered from a single-color component is constrained since plant leaf pictures 

are complicated due to the background. As a result, the feature extraction approach produces less reliable 

information. Therefore, the high identification accuracy of CNN has attracted many researchers.  

Pandian et al. [13] applied an innovative 14 layered deep CNN (14-DCNN) on a massive open dataset 

of leaves. Their research indicates that 14-DCNN is well suited to automated plant disease identification. 

A customized CNN model significantly outperformed a pre-trained model, as shown by their study. 

Developing an effective CNN model to get higher detection accuracy is a difficult task. Zhang et al. [14] 

suggested a three-channel CNN model that combines RGB color components to recognize disease in 

vegetable leaves. Sibiya et al. [15] utilized CNN to classify maize plants’ diseases. They demonstrated the 

model's impact using histogram approaches. They were able to obtain an overall model accuracy of 

92.85%. For identifying diseases in tomato leaf, Zhang et al. [16] investigated a few CNN architectures 

such as ResNet, AlexNet, and GoogleNet. The maximum accuracy of ResNet was 92.28%, outperforming 

other networks. In the study presented by Amara et al. [17], the LeNet CNN model was utilized to identify 

banana leaf diseases. Here, the authors test the model using grayscale and color images utilizing the CA 

and F1- scores.  

Ferentinos [18] used AlexNet, GoogleNet, and VGG CNN architecture to compare the classification 

accuracy of the leaf disease. The VGG surpassed all other networks with the plant, obtaining 99.53 percent 

disease performance. Yamamoto et al. classified tomato diseases using CNN utilizing high, low, and 

super-resolution to compare super-resolution accuracy to other approaches [19]. The paper's results 

showed that the super-resolution approach surpassed traditional methods by a great proportion in terms 

of detection accuracy. Durmus et al. [20] used pre-trained networks AlexNet and SqueezNet V1.1 to 

classify tomato plant disease. AlexNet, on the other hand, outperforms with a disease classification 

accuracy of 95.65%. 

According to the review, deep neural networks have been effectively employed for learning in plant 

disease detection applications. The architecture of the network, where it is critical to accurately edge 

weights and map nodes from the input to the output, is the primary issue involved with developing deep 

neural networks. To train deep neural networks, it is necessary to fine-tune their network parameters 

using a procedure that maps the input layer to the output layer and gets better over time. In our work, 

some pre-trained deep models were used as a starting point and fine-tuned it using three 

hyperparameters: learning rate, optimizer, and classifier. The capability to use deep models with limited 

sample numbers is the main benefit of such transfer learning in image classification [21]. Lastly, 

outstanding values of hyperparameters that contributed the most to improving detection accuracy were 

recorded using a fivefold cross-validation approach. 

3. Materials and Methods 

In this study, images of plant leaves were used as input to neural networks. DenseNet 121, DenseNet 

169, ResNet 50, VGG 16, VGG 19, and EfficientNet b7 were among the cutting-edge neural networks 

evaluated. Based on the literature, these models performed well in image classification [8, 10-12]. 

A computer program can learn from data using deep learning. The learning process is the means 

through which the ability to conduct the classification with high precision is attained. The aim is to use 

pre-trained models to identify and classify ten types of plant disease using the ImageNet dataset. The 

classification job instructs the computer program to determine which of k categories a given input 

belongs. The learning algorithm is tasked with creating the function 𝑓:ℝ𝑛 → {1,… , 𝑘}. The model allocates 

an input defined by a vector x to a category specified by a numerical value y when 𝑦 = 𝑓(𝑥). In this study, 

ten different classes were used, nine of which were for leaf illnesses and one for healthy leaves.3.1. Dataset 

The dataset of diseased tomato plant leaves was collected from the well-known Plant Village dataset2. 

The dataset contains 56,048 images of plant leaves of 14 different species such as Apple, Blueberry, 

Cherry, Corn, and Grape. Among these, we chose tomato leaves in this experiment. The dataset of tomato 

                                                            
2 ”Plant disease detection”, last modified 2020, https://github.com/kevalnagda/plant-disease-detection. 

https://github.com/kevalnagda/plant-disease-detection
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leaf is composed of images of 9 non-identical classes and 1 healthy class as shown in Table 1 along with a 

brief information. The 9 diseased classes are Early blight, Bacterial spot, Leaf mold, Late blight, Septoria 

leaf spot, Target spot, Two-spotted spider mite, Tomato yellow leaf curl virus, and Tomato mosaic virus. 

There are 18,160 images in total, and 1591 of them are images of healthy tomato leaves.  

Table 1. Tomato leaf disease dataset 

Label Category No. of samples Symptoms Illustration 

1 Bacterial 

Spot 

2127 Spots are dark brown to black; spots 

rarely develop to more than 3mm in 

diameter. 

 

 

2 Early Blight 

 

 

 

1000 There are black or brown dots, and leaf 

spots frequently have a yellow or green 

concentric ring pattern. 

 

3 Healthy  1591 Bright green color and grown leaves are 

generally 10 inches in length, new leaves 

can be 3 inches in length. 

 

4 Late Blight 1909 The water-soaked region emerges and 

quickly expands to produce purple-

brown, oily-looking patches. 

 

5 Leaf mold 952 Pale greenish-yellow spots, normally 

smaller than .25 inches. Olive-green to 

brown velvety mold on the lower part. 

 

6 Septoria 

leaf spot 

1771 Spots are circular, marginal brown, 

chlorotic yellow. 1/16 to ¼ in diameter 

with a dark brown margin. 

 

7 Two 

Spotted 

Spider 

Mites 

1676 Numerous yellow or white tiny, 

granulated spots, blade black netting. 

 

8 Target Spot 1404 Small necrotic lesions with light brown 

cores and black borders grow from spots. 

 

9 Tomato 

Mosaic 

virus 

373 On the leaves, the mittens are light and 

dark green. Curled, deformed, or 

swollen leaves are possible. 
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10 Yellow leaf 

curl virus 

5357 Stunting, decrease in leaf size, upward 

cupping or curling of leaves, and 

chlorosis on leaves and flowers are all 

symptoms of severe stunting. 

 

In the first and second part of the experiment, the dataset was split into training and testing datasets 

in an 8:2 ratio by randomizing pictures from the dataset based on the group label ratio. In the third part of 

the research, we did five-fold cross-validation. For that, the whole dataset was equally divided into five 

folders, where one of the folders was used for validation and the other four for training. In all cases, the 

images have all been downsized to the target size (64 × 64). The dataset was normalized before being 

divided into training and validation sets. 

3.2. State-of-the-art CNN Architectures Analysis 

In the first part of the research, we evaluated six well-known pre-trained convolutional neural 

network architectures to detect and classify disease in tomato leaves. The models are DenseNet 121 [8], 

DenseNet 169 [8], ResNet 50 [11], VGG 16 [10], VGG 19 [10], EfficientNet b7 [12]. The following is a quick 

summary of these pre-trained models: 

3.2.1. DenseNet 

DenseNet was first introduced in the paper [8]. In a feed-forward manner, it connects each layer to 

any other layer. This network has L(L+1) direct connections between each layer and its following layer, 

whereas most conventional convolutional networks have just one link in between layer and its following 

layer. DenseNet design provides several advantages, including improving feature propagation, relieving 

the vanishing gradient problem, and, most importantly, lowering the parameter count. 

3.2.2. ResNet 

In the paper [11] ResNet was first introduced. This architecture was proposed primarily to solve the 

problem of numerous non-linear layers not being able to learn identity mapping and to address the 

degradation problem. There are three types of layers in the ResNet model, and they are 50, 101, and 152. 

Among those, ResNet50 is the most efficient and effective. 

Thus, in this experiment, we choose ResNet50. This is a network-within-a-network design built on a 

large number of stacked residual units. Residual units serve as the foundation of the ResNet design. 

Convolution and pooling layers make up these residual units. This is kind of similar to the VGG [10] 

architecture but 8 times deeper. In this experiment, we loaded the pre-trained network and finally added 

a softmax layer in the end to perform image classification. 

3.2.3. VGG 

VGG [10], developed by the University of Oxford's Visual Geometry Group, placed second in the 

classification assignment at the ILSVRC-2014. The most astonishing feature of this architecture is that it 

consistently has the same convolution layer that uses 3X3 filters. We employed two of the best performing 

VGG architectures, VGG 16 and VGG 19, in this experiment. VGG-16 contains 13 convolution layers 

followed by 3 completely connected layers, whilst VGG-19 has a stack of 19 convolutional layers linked to 

a fully connected layer. In this case, we loaded pre-trained VGG-16 and VGG-19 weights and created an 

output layer with ten dimensions, which correspond to the ten tomato disease classes. 

3.2.4. EfficientNet 

EfficientNet [12] was introduced first to achieve more effective performance by evenly scaling width, 

depth, and resolution parameters utilizing a remarkably effective composite coefficient while scaling 

down the model. Unlike other CNN models, which employ ReLU as the activation function, this one 

proposes a unique activation function called Switch. EfficientNet has eight models ranging from B0 to B7. 

When the number of models increases the accuracy increases considerably while the quantity of estimated 

parameters does not increase that much. In this experiment, we have used the latest one, EfficientNet B7. 



AETiC 2023, Vol. 7, No. 1 6 

 

 

www.aetic.theiaer.org 

The inverted bottleneck MBConc is the primary building block of the EfficientNet. Under similar FLOPS 

constraints, EfficientNet performs much better than most other neural network models by giving 

significantly better accuracy numbers. Here, we used the native model architecture to extract features for 

the output FC layer. 

3.3. Hyperparameters Tuning 

Hyperparameters are a set of parameters that can influence the model's learning. These parameters 

include the number of epochs, layers, activation functions, optimizers, learning rate, etc. The hyper-

parameter configuration utilized in the second half of the investigation is detailed below. After multiple 

tries, the authors advanced the effective learning rate, optimizer, and the activation function to the third 

stage of the experiment, which is the K-fold cross-validation procedure. 

3.3.1. Learning rate 

A hyperparameter, the main purpose of which is to change the model concerning the approximated 

error every time the weights of the model are updated is known as the Learning rate. Determining a fixed 

value for the learning rate is strenuous. Selecting a very tiny value might lead to a lengthy training 

process and even can get stuck. On the other hand, choosing a too big value might lead to an unstable 

training process or too fast learning of a sub-optimal set of weights. While configuring a neural network it 

might be one of the most important hyperparameters. To combat the problem of choosing a 

hyperparameter manually for each given learning session in the learning rate schedule, there are various 

adaptive gradient descent algorithms, including Adadelta, Adam, and RMSpro. But as we have seen from 

this experiment, choosing a suitable learning rate is important even for those adaptive learning rates, 

especially while working with fewer epochs [22, 23]. 

3.3.2. Optimizer 

Optimizer plays an important role while iteratively updating the parameters of all the layers in the 

training of the deep CNN model [24, 25]. Optimization is quite important in training a neural network, as 

is responsible for reducing losses and providing the most accurate results. Gradient descent is a 

prominent approach for doing optimization in a neural network. This is used frequently in linear 

regression and classification algorithms. Moreover, the gradient descent algorithm is responsible for 

backpropagation in neural networks. Even though it is easy to implement and compute, it has a few 

drawbacks such as may often trap in local minima and requiring large memory to calculate the gradient 

descent of the whole dataset. In this article, we have worked with stochastic gradient descent, Adam, 

AdaBound, RMSProp, AdaDelta, AdaGrad, Nadam, and Ftrl to see their effect on our dataset. 

3.3.3. Activation Functions 

The main work of an Activation function or classifier is to sort data into labeled classes or categories. 

It mainly affects the outcome of deep learning models, including their performance and accuracy. The 

activation functions have a significant influence on the capacity and speed of neural networks to converge 

[26-28]. Moreover, activation functions help to normalize the output between -1 and 1 for any input. As 

weight and bias are essentially linear transformations, a neural network is simply a linear regression 

model with no activation function. Activation functions are available in a variety of forms, including 

Binary step, Linear, ReLU, Sigmoid, and many more. In the second part of the experiment, we 

experimented on Softmax, ReLU, SeLU, ELU, Exponential, Nadam, Softsign, Tanh, and Sigmoid. 

3.4. K-fold Cross-Validation 

K-fold cross-validation is a statistical method for measuring the ability of machine learning models. 

In the third part of experiment, the highest values of the hyperparameters acquired in the second part of 

the experiment were assessed using 5-fold cross-validation. This process aims to analyze the performance 

and relationship of these hyperparameters in enhancing classification accuracy. 
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4. Experiments and Results 

4.1. Algorithms Evaluation 

The CNN models considered in this study were executed in a machine equipped with Ryzen 3600x 

processor, AMD radeon RX 550, and 16 GB RAM. All codes were realized with keras 2.4.3 framework, 

written in python 3.9.5, and executed in Jupyter Notebook. For every experiment, we used categorical 

cross-entropy loss and accuracy metrics for evaluation. A similar layout was taken for every model and 

each experiment was run for 50 epochs. A dense layer "Softmax" activation function was employed for 

classification at the output. “Adam” was the optimizer we used with a learning rate of 0.01. The accuracy 

and loss of training and validation datasets are shown in Table 2. Furthermore, recall, precision, and F1 

score are also shown are of weighted average. The average time (in seconds) taken for each epoch is also 

shown in Table-2.  

Table 2. Results analysis of each pre-trained models 

Model Training set Validation Set Precision Recall F1 score Average Time per 

epoch (Seconds) Accuracy Loss Accuracy Loss 

DenseNet 121 0.9955 0.0137 0.9912 0.0460 0.991279 0.991189 0.991194 410 

DenseNet 169 0.9920 0.0256 0.9471 0.1989 0.954496 0.947137 0.945015 495 

ResNet 50 0.9892 0.0341 0.9876 0.0411 0.987682 0.987610 0.987604 570 

VGG 16 0.9752 0.0758 0.9763 0.0904 0.978826 0.978524 0.978428 600 

VGG 19 0.9840 0.0520 0.9788 0.0658 0.979296 0.978800 0.978823 575 

EfficientNet B7  0.9667 0.0993 0.9628 0.1163 0.964157 0.962830 0.962865 1380 

In the case of DenseNet 121, after 50 epochs we achieved an accuracy score of 99.55% in the training 

set and 99.12% in the validation set. The weighted average of recall, precision, and F1 score were 0.9912, 

0.9911, 0.9911 consecutively. The average time it took for each epoch to complete was 410 seconds.  

DenseNet 169 performed almost similarly to DenseNet 121. Even though this architecture has more layers 

it performed worse with it. As a result, the average time of execution of each epoch increased to 495 

seconds. After 50 epochs it achieved an accuracy score of 94.71% and loss was 19.89%. ResNet 50 has the 

closest results to the DenseNet 121. Its accuracy in both the train and validation set was almost the same, 

near 98%. In the case of the training set after 50 epochs, it achieved an accuracy of 98.92% and in the 

validation set, it achieved 98.76%. Both VGG 16 and VGG 19 performed similarly on the basis of the 

accuracy of the validation set which was close to 97%. Their average time per epoch was also almost 

adjacent. The weighted results of precision, sensitivity, and F1 score are shown in Table 3 for each type of 

diseases. 

Table 3. Test results of algorithms for each type of disease 

Model  Score Yellow 

Leaf 

Curl 

Virus 

Mosaic 

virus 

Target 

Spot 

Two-

spotted 

spider 

mite 

Septoria 

leaf 

spot 

Leaf 

Mold 

Late 

blight 

Healthy Early 

blight 

Bacterial 

spot 

DenseNet 

121 

Precision 0.9990 1 0.9704 0.9872 0.9774 1 1 0.9853 0.9829 0.9976 

Recall 0.9990 1 0.9820 0.9747 1 1 0.9817 0.9970 0.9942 0.9816 

F1 Score 0.9990 1 0.9761 0.9809 0.9886 1 0.9908 0.9911 0.9885 0.9896 

DenseNet 

169  

Precision 0.9894 1 0.9804 0.7665 0.9883 0.9597 0.9891 0.9626 0.7857 0.9817 

Recall 0.9961 0.9736 0.6017 0.9842 0.9740 0.9896 0.9505 0.9940 0.9482 0.9839 

F1 Score 0.9927 0.9866 0.7458 0.8618 0.9811 0.9744 0.9694 0.9781 0.8593 0.9828 

ResNet 50  Precision 0.9980 0.9743 0.9696 0.9809 0.9942 0.9948 0.9921 0.9627 0.9767 0.9953 

Recall 0.9970 1 0.9580 0.9747 1 0.9948 0.9843 0.9970 0.9655 0.9862 

F1 Score 0.9975 0.9870 0.9638 0.9778 0.9971 0.9948 0.9882 0.9795 0.9710 0.9908 

VGG 16  Precision 0.9932 0.9866 0.9932 0.9031 0.9939 0.9597 0.9816 0.9940 0.9367 0.9730 

Recall 1 0.9736 0.8862 1 0.9452 0.9896 0.9765 0.9970 0.9367 0.9908 

F1 Score 0.9966 0.9801 0.9367 0.9491 0.9689 0.9744 0.9791 0.9955 0.9367 0.9818 
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VGG 19  Precision 0.9951 0.9743 0.9905 0.9491 0.9824 0.9648 0.9810 0.9940 0.8864 0.9838 

Recall 1 1 0.9401 1 0.9682 0.9948 0.9427 0.9940 0.9425 0.9748 

F1 Score 0.9975 0.9870 0.9646 0.9738 0.9753 0.9795 0.9614 0.9940 0.9136 0.9793 

EfficientNet 

B7 

Precision 0.9990 0.95 0.9171 0.9656 0.9505 0.9895 0.9865 0.8842 0.8950 0.9881 

Recall 0.9922 1 0.8952 0.8864 0.9971 0.9792 0.9531 0.9970 0.9310 0.9542 

F1 Score 0.9956 0.9743 0.9060 0.9243 0.9732 0.9843 0.9695 0.9372 0.9126 0.9708 

EfficientNet B7 performed most poorly in terms of average time per epoch. Whereas other algorithms 

took less than 600 seconds to complete each epoch, EfficientNet took more than double time, around 1400 

seconds to finish each epoch. Moreover, its accuracy score in the validation set was the second lowest of 

the bunch. Similar trends can be seen in training set accuracy, loss, precision, recall, F1 score. 

The graph below (Figure 1) depicts the accuracy and loss of the models on classifying the tomato leaf 

diseases.  

 
Figure 1. Accuracy and loss of the tested models 

4.2. Performance Metrics Evaluation over Hyperparameters 

From the above result analysis, we can see that DenseNet 121 surpassed other pre-trained models for 

the Tomato leaf disease diagnosis. To do further analysis, we tried tweaking different parameters and 

tried to find out if learning rate, optimizer, or activation functions had an impact on the overall 

effectiveness of the DenseNet architecture as depicted in table 4. If so, what are the optimal metrics for 

learning rate, optimizer, and classifier hyperparameters to use for the DenseNet 121 model? For that first 

started by changing the learning rate. We started with a 0.002 learning rate and kept gradually increasing 

to 0.0009. As the results were getting worse, we stopped there and then kept gradually decreasing the 

learning rate. Then we selected the learning rate at which the pre-trained model performed best. Then we 

tried other popular optimizers out there and analyzed the results. Finally, we selected the optimizer that 

performed best among those and tried different classifiers. Results of all these are given below Table 4. 

Table 4. Results analysis of different metrics for Learning rate, Optimizer, and Classifier 

Model Name Learning Rate Optimizer Classifier Accuracy Loss Precision Recall F1 Score 

DenseNet 121 0.002 Adam Softmax 0.9725 0.0894 0.972592 0.972467 0.972244 

DenseNet 121 0.005 Adam Softmax 0.9791 0.0711 0.979726 0.979075 0.979143 

DenseNet 121 0.0001 Adam Softmax 0.891 0.3416 0.9036 0.890969 0.892355 

DenseNet 121 0.0005 Adam Softmax 0.8802 0.4666 0.901473 0.880231 0.880055 

DenseNet 121 0.0009 Adam Softmax 0.8588 0.5263 0.888472 0.858756 0.856682 

DenseNet 121 0.001 Adam Softmax 0.9631 0.1129 0.943885 0.936399 0.936122 
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DenseNet 121 0.05 Adam Softmax 0.9893 0.0432 0.99506 0.995044 0.995036 

DenseNet 121 0.01 Adam Softmax 0.9912 0.046 0.991279 0.991189 0.991194 

DenseNet 121 0.5 Adam Softmax 0.9579 0.1449 0.958487 0.957874 0.957903 

DenseNet 121 0.1 Adam Softmax 0.9876 0.0454 0.98764 0.98761 0.987561 

DenseNet 121 1 Adam Softmax 0.2817 39.8967 0.115794 0.281663 0.130671 

DenseNet 121 0.01 AdaBound Softmax 0.9931 0.0395 0.99506 0.995044 0.995036 

DenseNet 121 0.01 SGD Softmax 0.9664 0.114 0.968755 0.967236 0.967159 

DenseNet 121 0.01 RMSProp Softmax 0.9902 0.0398 0.990472 0.990363 0.990374 

DenseNet 121 0.01 AdaDelta Softmax 0.9788 0.0665 0.979477 0.9788 0.978811 

DenseNet 121 0.01 AdaGrad Softmax 0.9675 0.1095 0.968946 0.967511 0.967583 

DenseNet 121 0.01 Nadam Softmax 0.9414 0.2211 0.951478 0.941355 0.942128 

DenseNet 121 0.01 Ftrl Softmax 0.2844 2.1597 0.080893 0.284416 0.12596 

DenseNet 121 0.01 AdaMax Softmax 0.9771 0.0831 0.977674 0.977148 0.977208 

DenseNet 121 0.01 AdaBound Softplus 0.9904 0.0374 0.990562 0.990363 0.990369 

DenseNet 121 0.01 AdaBound Selu 0.3695 1.86 0.240685 0.369493 0.214595 

DenseNet 121 0.01 AdaBound Relu 0.2844 Nan 0.080893 0.284416 0.12596 

DenseNet 121 0.01 AdaBound Elu 0.3312 2.1844 0.202258 0.331222 0.229642 

DenseNet 121 0.01 AdaBound Exponential 0.2844 Nan 0.080893 0.284416 0.12596 

DenseNet 121 0.01 AdaBound Nadam 0.9413 0.2211 0.951478 0.941355 0.942128 

DenseNet 121 0.01 AdaBound Softsign 0.2901 8.7462 0.120583 0.105796 0.055687 

DenseNet 121 0.01 AdaBound Tanh 0.0985 8.7652 0.018213 0.098568 0.027964 

DenseNet 121 0.01 AdaBound Sigmoid 0.9625 0.1655 0.964853 0.961729 0.961471 

As we can see from Table 4 that for learning rate there is a range or a fixed point for which the 

algorithm performs well above which the accuracy decreases, and below which accuracy also drops. In 

our experiment, we observed the worst results when the learning rate was increased to 1. Here, accuracy 

dropped below 29%, and the F1 score was just 13%. In this study for a learning rate of 0.01, the algorithm 

performed best. Accuracy, in this case, was just above 99%, loss observed was 0.046, and F1 score was also 

above 99% mark. In the case of optimizers, seven out of nine algorithms scored more than 95%. Among 

them, Adabound's accuracy score was the highest. It had an accuracy score of 99.31% which was just 

above Adam’s 99.12%. Its loss was also less than Adam’s. Its precision, recall, and F1 score was 0.99506. 

RMSProp also performed well here, the accuracy score of which was 99.04%. Among all the classifiers 

tested Ftrl optimizer had the worst performance, with accuracy just above 28% the F1 score was just 

0.1259. After selecting 0.01 as the learning rate and Adabound as the optimize we tested on different 

activation functions. Here, in total four activation functions scored more than 90%, Softmax, Softplus, 

Nadam, and Sigmoid. Among them, the score of softmax was the highest. Tanh scored least in terms of 

accuracy with just 9.85%. So, overall, we found optimum results when the learning rate is 0.01, Optimizer 

is AdaBound, and activation function is Softmax. 

The Figure 2 below illustrates the confusion matrix of the results when the learning rate is 0.01 and 

the optimizer is AdaBound. Here, in the vertical line is the actual label of the images of each disease and 

the horizontal line is the model predicted classification of the images: 
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Figure 2. Confusion matrix when the optimizer is Adabound 

4.3. K-fold Cross Validation 

Table 4 shows 3 potential combinations of hyperparameters that produced the maximum accuracy, 

or 99%, in this case. Those are a combination of, (i) AdaBound optimizer and Softmax classifier with a 

learning rate of 0.01, (ii) Adam optimizer and Softmax classifier with a learning rate of 0.01, and (iii) 

AdaBound optimizer and Softplus classifier with a learning rate of 0.01. To check the authenticity of these 

results we further did five-fold cross validation on the dataset using hyperparameters that exhibited the 

highest performance metrics scores according to Table 4. The end result is shown in Table 5 below: 

Table 5. Performance metrics scores over hyperparameters using Five-fold cross validation 

Model Name Fold  Learning rate Optimizer Classifier Accuracy Loss Precision Recall  F1 Score 

DenseNet 121 1 0.01 Adabound Softmax 0.9929 0.0173 0.992952 0.992885 0.992895 

DenseNet 121 2 0.01 Adabound Softmax 0.9939 0.0226 0.99392 0.993889 0.993885 

DenseNet 121 3 0.01 Adabound Softmax 0.9882 0.0392 0.988344 0.988154 0.988177 

DenseNet 121 4 0.01 Adabound Softmax 0.9937 0.0168 0.993759 0.993673 0.993683 

DenseNet 121 5 0.01 Adabound Softmax 0.9734 0.4688 0.966071 0.965385 0.965499 

DenseNet 121 1 0.001 Adabound Softmax 0.9674 0.1002 0.969183 0.967433 0.967716 

DenseNet 121 2 0.001 Adabound Softmax 0.9592 0.1571 0.959167 0.959167 0.959167 
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DenseNet 121 3 0.001 Adabound Softmax 0.7573 1.0255 0.867438 0.7573 0.768661 

DenseNet 121 4 0.001 Adabound Softmax 0.8366 0.7323 0.889585 0.836589 0.836541 

DenseNet 121 5 0.001 Adabound Softmax 0.8703 0.5724 0.917959 0.879121 0.881876 

DenseNet 121 1 0.1 Adabound Softmax 0.5446 1.2905 0.424256 0.544609 0.470178 

DenseNet 121 2 0.1 Adabound Softmax 0.2972 nan 0.088341 0.297222 0.1362 

DenseNet 121 3 0.1 Adabound Softmax 0.3237 647538 0.348753 0.323691 0.28699 

DenseNet 121 4 0.1 Adabound Softmax 0.2944 nan 0.086648 0.29436 0.133885 

DenseNet 121 5 0.1 Adabound Softmax 0.2947 nan 0.08641 0.293956 0.13356 

DenseNet 121 1 0.01 Adam Softmax 0.9871 0.0668 0.936839 0.987658 0.982842 

DenseNet 121 2 0.01 Adam Softmax 0.9735 0.0975 0.883684 0.965478 0.959866 

DenseNet 121 3 0.01 Adam Softmax 0.9812 0.0728 0.926514 0.981212 0.981432 

DenseNet 121 4 0.01 Adam Softmax 0.9564 0.6998 0.912693 0.956584 0.956823 

DenseNet 121 5 0.01 Adam Softmax 0.9234 0.7249 0.894126 0.914677 0.913799 

DenseNet 121 1 0.01 AdaBound Softplus 0.9669 0.2168 0.903615 0.965743 0.963426 

DenseNet 121 2 0.01 AdaBound Softplus 0.9548 0.0878 0.899624 0.956767 0.957685 

DenseNet 121 3 0.01 AdaBound Softplus 0.9856 0.1746 0.932275 0.988796 0.983435 

DenseNet 121 4 0.01 AdaBound Softplus 0.9233 0.9987 0.862627 0.912374 0.918768 

DenseNet 121 5 0.01 AdaBound Softplus 0.8963 1.4367 0.889144 0.875587 0.885743 

Here, we can see that for our metrics in the case of all 5 folds the accuracy score was more than 97%, 

it got more than 99% accuracy in three out of five folds for learning rate 0.01, AdaBound optimizer, and 

softmax classifier. However, the accuracy score reached as high as 99.39% in the second fold. When we 

applied the same experiment for 0.001 and 0.1 learning rates, the results were much worse. Especially for 

the learning rate of 0.1, the accuracy was below 60%, and in three out of five cases; it was even below 30%. 

The other two combinations of Adam optimizer and Softmax classifier with a learning rate of 0.01, and 

AdaBound optimizer and Softplus classifier with a learning rate of 0.01 have not score more than 99% 

accuracy. Moreover, some folds of these combinations even score close to 92% accuracy. Therefore, we 

found that for learning rate 0.01, AdaBound optimizer, and softmax classifier the model performs best. 

The Figure 3 below depicts the model accuracy and model loss of each epoch while the model was 

learning from the dataset for learning rate 0.01, AdaBound optimizer, and Softmax classifier. As we can 

see from the 2nd diagram, the model loss did not change a lot after the 7th or 8th epoch and stayed almost 

the same as the train set loss. In the case of the accuracy, it fluctuated a lot before it stabilized at the 35th 

or 36th epoch, then it was almost as same as the train set accuracy. 

So, we can see that indeed for the learning rate 0.01, Softmax classifier and AdaBound optimizer the 

DenseNet performs best. 

  

Figure 3: Model Accuracy and Model loss in cross validation 
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5. Conclusions 

This paper analyzed networks that are based on pre-trained deep convolutional networks of 

DenseNet, ResNet, EfficientNet, and VGG. Here, in the first step, we compared those networks with 

Adam Optimizer, 0.01 learning rate, and Softmax Activation function. The highest result was achieved 

with DenseNet. Then a performance evaluation was done with different optimizers, learning rates, and 

classifiers that was affecting the results of the DenseNet. We found out that a range of learning rates 

between 0.001 and 0.1 gives good results where above and below are not effective. In the case of activation 

functions with Softmax and Softplus activation functions, the best results were obtained. When different 

optimizers were evaluated Adam, AdaBound, and RMSProp performed well. Here, the best overall result 

was observed with a 0.01 learning rate, Softmax activation function, and AdaBound optimizer. Our study 

reveals a significant information that there is a relationship among learning rate, optimizer, and classifier 

in improving detection accuracy. In the third part of the experiment, a K-fold cross-validation check 

further justified those parameters. Using the most effective deep CNN hyperparameters realized, this 

work might be extended to a variety of leaf disease detection applications. Despite the fact that this study 

obtained the highest detection accuracy, performance evaluation with multiple hyperparameters 

consumes a substantial amount of time and computer power. In the future, the convolutional neural 

network (CNN) pruning strategy may be explored to solve this issue. 
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