
Annals of Emerging Technologies in Computing (AETiC)

Vol. 7, No. 1, 2023

Md. Rajibul Islam, Md. Asif Mahmod Tusher Siddique, Md Amiruzzaman, M. Abdullah-Al-Wadud, Shah Murtaza Rashid Al Masud

et al., "An Efficient Technique for Recognizing Tomato Leaf Disease Based on the Most Effective Deep CNN Hyperparameters",

Annals of Emerging Technologies in Computing (AETiC), Print ISSN: 2516-0281, Online ISSN: 2516-029X, pp. 1-14, Vol. 7, No. 1, 1st

January 2023, Published by International Association for Educators and Researchers (IAER), DOI: 10.33166/AETiC.2023.01.001,

Available: http://aetic.theiaer.org/archive/v7/v7n1/p1.html.

Research Article

An Efficient Technique for Recognizing

Tomato Leaf Disease Based on the Most

Effective Deep CNN Hyperparameters

 Md. Rajibul Islam1,*, Md. Asif Mahmod Tusher Siddique2, Md Amiruzzaman3, M. Abdullah-

Al-Wadud4, Shah Murtaza Rashid Al Masud5 and Aloke Kumar Saha5

1Bangladesh University of Business and Technology, Dhaka, Bangladesh
md.rajibul.islam@bubt.edu.bd

2Leeds Beckett University, Leeds, United Kingdom
M.Siddique2525@student.leedsbeckett.ac.uk

3West Chester University, West Chester, Pennsylvania, USA
mamiruzzaman@wcupa.edu

4King Saud University, Riyadh, Saudi Arabia
mwadud@ksu.edu.sa

5University of Asia Pacific, Dhaka, Bangladesh
murtaza@uap-bd.edu; aloke@uap-bd.edu

*Correspondence: md.rajibul.islam@bubt.edu.bd

 Received: 26th March 2022; Accepted: 24th September 2022; Published: 1st January 2023

Abstract: Leaf disease in tomatoes is one of the most common and treacherous diseases. It directly affects the

production of tomatoes, resulting in enormous economic loss each year. As a result, studying the detection of

tomato leaf diseases is essential. To that aim, this work introduces a novel mechanism for selecting the most

effective hyperparameters for improving the detection accuracy of deep CNN. Several cutting-edge CNN

algorithms were examined in this study to diagnose tomato leaf diseases. The experiment is divided into three

stages to find a full proof technique. A few pre-trained deep convolutional neural networks were first employed to

diagnose tomato leaf diseases. The superlative combined model has then experimented with changes in the

learning rate, optimizer, and classifier to discover the optimal parameters and minimize overfitting in data

training. In this case, 99.31% accuracy was reached in DenseNet 121 using AdaBound Optimizer, 0.01 learning rate,

and Softmax classifier. The achieved detection accuracy levels (above 99%) using various learning rates,

optimizers, and classifiers were eventually tested using K-fold cross-validation to get a better and dependable

detection accuracy. The results indicate that the proposed parameters and technique are efficacious in recognizing

tomato leaf disease and can be used fruitfully in identifying other leaf diseases.

Keywords: Convolutional Neural Network; Deep Learning; Disease Recognition; Multi-label Classification;

Tomato Leaves

1. Introduction

Biologically called Solanum Lycopersicon, tomato is a commonly harvested crop around the world,

which is high in principle antioxidants like Vitamin ‘C’ and ‘A’ accompanying beta carotene. There is an

increasing trend in the production and consumption of tomatoes throughout the globe resulting in 38.54

million tons of production for the year 20201. Tomatoes can be grown in any well-drained wet soil with a

1 ”WPTC preliminary 2020 global crop estimate”, last modified 2020, https://www.tomatonews.com/en/wptc-preliminary-2020-

global-crop-estimate-_2_1175.html.

http://aetic.theiaer.org/
http://www.theiaer.org/index.htm
http://aetic.theiaer.org/archive/v7/v7n1/p1.html
mailto:md.rajibul.islam@bubt.edu.bd
mailto:M.Siddique2525@student.leedsbeckett.ac.uk
mailto:mamiruzzaman@wcupa.edu
mailto:mwadud@ksu.edu.sa
mailto:murtaza@uap-bd.edu
mailto:aloke@uap-bd.edu
mailto:md.rajibul.islam@bubt.edu.bd
https://www.tomatonews.com/en/wptc-preliminary-2020-global-crop-estimate-_2_1175.html
https://www.tomatonews.com/en/wptc-preliminary-2020-global-crop-estimate-_2_1175.html

AETiC 2023, Vol. 7, No. 1 2

www.aetic.theiaer.org

sunlight. Tomatoes help improve our immunity and for many diseases, doctors directly prescribe

tomatoes to increase antibodies in the body. Given the necessity of this vegetable in both economic and

nutritional contexts, it is essential to enhance the cultivation and quality of products using various

techniques. However, diseases are a major hindrance to the production of tomatoes. Together with

misinterpretation from farmers by over or underuse of pesticides and water, elevated moisture and

temperature naturally favour disease development. Here, most of the diseases have visible symptoms and

pathologists usually diagnose these diseases through practical observation of leaves. But pathologists

require excellent observation skills to detect subtle differences between different diseases. Furthermore,

excessive variations, differences because of climates and regions, and new types of diseases make it very

difficult to accurately detect the right affliction. Therefore, a precise and real-time disease recognition

technology is necessary [1, 2].

In recent years through self-learned mechanisms, convolutional neural networks have progressed

significantly in classification and identification tasks. In a variety of applications, CNN has been

successfully used, including biomedical photo analysis [3], scene text recognition [4, 5], skin lesions

classification [6], License Plate Detection and Recognition [7], and has consistently outperformed the

competition. Furthermore, taking into account the universal context data of regions, CNN can extricate

more strapping and discriminative features. The result of which is the rapid emergence of many powerful

CNN architectures such as DenseNet [8], AlexNet [9], VGGNet [10], and many more. Currently, in

applications like plant leaf disease analysis, one of the most common practices is to use deep

convolutional networks with a cross-entropy loss function. As the likelihood of plant diseases developing

is so low and it is widespread in plant disease datasets, many of them are unbalanced and in the case of

unbalanced datasets, these techniques do not perform very well. Furthermore, huge amounts of labelled

training data, extensive knowledge, as well as powerful computing and memory resources are required to

train a deep neural network from scratch. In addition, problems with overfitting and convergence during

deep CNN training typically necessitate repeated changes to the network's design or learning parameters

in order to guarantee that all layers are advancing at a similar rate. A viable alternative to starting from

scratch is to improve a CNN that has already been trained utilizing a huge collection of natural labeled

images.

In this study, we first used various convolutional neural network models namely DenseNet 121 [8],

DenseNet 169 [8], ResNet 50 [11], VGG 16 [10], VGG 19 [10], EfficientNet b7 [12] to identify different

diseases of tomato leaf and compared their results. After performance analysis, the architecture of

network with the highest efficiency among those models was chosen and investigations on the effects of

three hyperparameters (i.e. learning rate, optimizer, and classifier) were carried out in terms of accuracy.

Based on previous experiments, we realized the network with optimized hyperparameters to talk about

how different parameters affect recognition tasks. Lastly, K-fold cross-validation is adopted in order to

compare the effectiveness of the networks with improved hyperparameters. To the best of our knowledge,

this research is the first to examine and evaluate the relationship between the learning rate, optimizer, and

classifier hyperparameters to maximize the effectiveness of deep CNN. This, we believe, makes sense for

researchers who want to fine-tune pre-trained algorithms for those other comparable problems.

The remainder of this work is structured as follows: The "Related work" section provides a

comprehensive assessment of literary works published in the field of plant leaf disease detection. The

"Materials and methods" section shows the datasets, deep neural networks, and tuning hyperparameters

required to complete this work. The section "Experiments and Results" offers the method assessment and

performance metrics, followed by fivefold cross-validation on the resulting metrics. The "Conclusion"

section discusses the work's conclusions and future scope.

2. Related Work

The identification of plant diseases has been debated for many years. A noticeable effect of disease on

the leaf is a sign of most plant diseases. With the use of machine learning techniques, several investigators

created numerous acceptable structures and contributed their ideas to detect leaf diseases. The color

AETiC 2023, Vol. 7, No. 1 3

www.aetic.theiaer.org

information that can be recovered from a single-color component is constrained since plant leaf pictures

are complicated due to the background. As a result, the feature extraction approach produces less reliable

information. Therefore, the high identification accuracy of CNN has attracted many researchers.

Pandian et al. [13] applied an innovative 14 layered deep CNN (14-DCNN) on a massive open dataset

of leaves. Their research indicates that 14-DCNN is well suited to automated plant disease identification.

A customized CNN model significantly outperformed a pre-trained model, as shown by their study.

Developing an effective CNN model to get higher detection accuracy is a difficult task. Zhang et al. [14]

suggested a three-channel CNN model that combines RGB color components to recognize disease in

vegetable leaves. Sibiya et al. [15] utilized CNN to classify maize plants’ diseases. They demonstrated the

model's impact using histogram approaches. They were able to obtain an overall model accuracy of

92.85%. For identifying diseases in tomato leaf, Zhang et al. [16] investigated a few CNN architectures

such as ResNet, AlexNet, and GoogleNet. The maximum accuracy of ResNet was 92.28%, outperforming

other networks. In the study presented by Amara et al. [17], the LeNet CNN model was utilized to identify

banana leaf diseases. Here, the authors test the model using grayscale and color images utilizing the CA

and F1- scores.

Ferentinos [18] used AlexNet, GoogleNet, and VGG CNN architecture to compare the classification

accuracy of the leaf disease. The VGG surpassed all other networks with the plant, obtaining 99.53 percent

disease performance. Yamamoto et al. classified tomato diseases using CNN utilizing high, low, and

super-resolution to compare super-resolution accuracy to other approaches [19]. The paper's results

showed that the super-resolution approach surpassed traditional methods by a great proportion in terms

of detection accuracy. Durmus et al. [20] used pre-trained networks AlexNet and SqueezNet V1.1 to

classify tomato plant disease. AlexNet, on the other hand, outperforms with a disease classification

accuracy of 95.65%.

According to the review, deep neural networks have been effectively employed for learning in plant

disease detection applications. The architecture of the network, where it is critical to accurately edge

weights and map nodes from the input to the output, is the primary issue involved with developing deep

neural networks. To train deep neural networks, it is necessary to fine-tune their network parameters

using a procedure that maps the input layer to the output layer and gets better over time. In our work,

some pre-trained deep models were used as a starting point and fine-tuned it using three

hyperparameters: learning rate, optimizer, and classifier. The capability to use deep models with limited

sample numbers is the main benefit of such transfer learning in image classification [21]. Lastly,

outstanding values of hyperparameters that contributed the most to improving detection accuracy were

recorded using a fivefold cross-validation approach.

3. Materials and Methods

In this study, images of plant leaves were used as input to neural networks. DenseNet 121, DenseNet

169, ResNet 50, VGG 16, VGG 19, and EfficientNet b7 were among the cutting-edge neural networks

evaluated. Based on the literature, these models performed well in image classification [8, 10-12].

A computer program can learn from data using deep learning. The learning process is the means

through which the ability to conduct the classification with high precision is attained. The aim is to use

pre-trained models to identify and classify ten types of plant disease using the ImageNet dataset. The

classification job instructs the computer program to determine which of k categories a given input

belongs. The learning algorithm is tasked with creating the function 𝑓:ℝ𝑛 → {1,… , 𝑘}. The model allocates

an input defined by a vector x to a category specified by a numerical value y when 𝑦 = 𝑓(𝑥). In this study,

ten different classes were used, nine of which were for leaf illnesses and one for healthy leaves.3.1. Dataset

The dataset of diseased tomato plant leaves was collected from the well-known Plant Village dataset2.

The dataset contains 56,048 images of plant leaves of 14 different species such as Apple, Blueberry,

Cherry, Corn, and Grape. Among these, we chose tomato leaves in this experiment. The dataset of tomato

2 ”Plant disease detection”, last modified 2020, https://github.com/kevalnagda/plant-disease-detection.

https://github.com/kevalnagda/plant-disease-detection

AETiC 2023, Vol. 7, No. 1 4

www.aetic.theiaer.org

leaf is composed of images of 9 non-identical classes and 1 healthy class as shown in Table 1 along with a

brief information. The 9 diseased classes are Early blight, Bacterial spot, Leaf mold, Late blight, Septoria

leaf spot, Target spot, Two-spotted spider mite, Tomato yellow leaf curl virus, and Tomato mosaic virus.

There are 18,160 images in total, and 1591 of them are images of healthy tomato leaves.

Table 1. Tomato leaf disease dataset

Label Category No. of samples Symptoms Illustration

1 Bacterial

Spot

2127 Spots are dark brown to black; spots

rarely develop to more than 3mm in

diameter.

2 Early Blight

1000 There are black or brown dots, and leaf

spots frequently have a yellow or green

concentric ring pattern.

3 Healthy 1591 Bright green color and grown leaves are

generally 10 inches in length, new leaves

can be 3 inches in length.

4 Late Blight 1909 The water-soaked region emerges and

quickly expands to produce purple-

brown, oily-looking patches.

5 Leaf mold 952 Pale greenish-yellow spots, normally

smaller than .25 inches. Olive-green to

brown velvety mold on the lower part.

6 Septoria

leaf spot

1771 Spots are circular, marginal brown,

chlorotic yellow. 1/16 to ¼ in diameter

with a dark brown margin.

7 Two

Spotted

Spider

Mites

1676 Numerous yellow or white tiny,

granulated spots, blade black netting.

8 Target Spot 1404 Small necrotic lesions with light brown

cores and black borders grow from spots.

9 Tomato

Mosaic

virus

373 On the leaves, the mittens are light and

dark green. Curled, deformed, or

swollen leaves are possible.

AETiC 2023, Vol. 7, No. 1 5

www.aetic.theiaer.org

10 Yellow leaf

curl virus

5357 Stunting, decrease in leaf size, upward

cupping or curling of leaves, and

chlorosis on leaves and flowers are all

symptoms of severe stunting.

In the first and second part of the experiment, the dataset was split into training and testing datasets

in an 8:2 ratio by randomizing pictures from the dataset based on the group label ratio. In the third part of

the research, we did five-fold cross-validation. For that, the whole dataset was equally divided into five

folders, where one of the folders was used for validation and the other four for training. In all cases, the

images have all been downsized to the target size (64 × 64). The dataset was normalized before being

divided into training and validation sets.

3.2. State-of-the-art CNN Architectures Analysis

In the first part of the research, we evaluated six well-known pre-trained convolutional neural

network architectures to detect and classify disease in tomato leaves. The models are DenseNet 121 [8],

DenseNet 169 [8], ResNet 50 [11], VGG 16 [10], VGG 19 [10], EfficientNet b7 [12]. The following is a quick

summary of these pre-trained models:

3.2.1. DenseNet

DenseNet was first introduced in the paper [8]. In a feed-forward manner, it connects each layer to

any other layer. This network has L(L+1) direct connections between each layer and its following layer,

whereas most conventional convolutional networks have just one link in between layer and its following

layer. DenseNet design provides several advantages, including improving feature propagation, relieving

the vanishing gradient problem, and, most importantly, lowering the parameter count.

3.2.2. ResNet

In the paper [11] ResNet was first introduced. This architecture was proposed primarily to solve the

problem of numerous non-linear layers not being able to learn identity mapping and to address the

degradation problem. There are three types of layers in the ResNet model, and they are 50, 101, and 152.

Among those, ResNet50 is the most efficient and effective.

Thus, in this experiment, we choose ResNet50. This is a network-within-a-network design built on a

large number of stacked residual units. Residual units serve as the foundation of the ResNet design.

Convolution and pooling layers make up these residual units. This is kind of similar to the VGG [10]

architecture but 8 times deeper. In this experiment, we loaded the pre-trained network and finally added

a softmax layer in the end to perform image classification.

3.2.3. VGG

VGG [10], developed by the University of Oxford's Visual Geometry Group, placed second in the

classification assignment at the ILSVRC-2014. The most astonishing feature of this architecture is that it

consistently has the same convolution layer that uses 3X3 filters. We employed two of the best performing

VGG architectures, VGG 16 and VGG 19, in this experiment. VGG-16 contains 13 convolution layers

followed by 3 completely connected layers, whilst VGG-19 has a stack of 19 convolutional layers linked to

a fully connected layer. In this case, we loaded pre-trained VGG-16 and VGG-19 weights and created an

output layer with ten dimensions, which correspond to the ten tomato disease classes.

3.2.4. EfficientNet

EfficientNet [12] was introduced first to achieve more effective performance by evenly scaling width,

depth, and resolution parameters utilizing a remarkably effective composite coefficient while scaling

down the model. Unlike other CNN models, which employ ReLU as the activation function, this one

proposes a unique activation function called Switch. EfficientNet has eight models ranging from B0 to B7.

When the number of models increases the accuracy increases considerably while the quantity of estimated

parameters does not increase that much. In this experiment, we have used the latest one, EfficientNet B7.

AETiC 2023, Vol. 7, No. 1 6

www.aetic.theiaer.org

The inverted bottleneck MBConc is the primary building block of the EfficientNet. Under similar FLOPS

constraints, EfficientNet performs much better than most other neural network models by giving

significantly better accuracy numbers. Here, we used the native model architecture to extract features for

the output FC layer.

3.3. Hyperparameters Tuning

Hyperparameters are a set of parameters that can influence the model's learning. These parameters

include the number of epochs, layers, activation functions, optimizers, learning rate, etc. The hyper-

parameter configuration utilized in the second half of the investigation is detailed below. After multiple

tries, the authors advanced the effective learning rate, optimizer, and the activation function to the third

stage of the experiment, which is the K-fold cross-validation procedure.

3.3.1. Learning rate

A hyperparameter, the main purpose of which is to change the model concerning the approximated

error every time the weights of the model are updated is known as the Learning rate. Determining a fixed

value for the learning rate is strenuous. Selecting a very tiny value might lead to a lengthy training

process and even can get stuck. On the other hand, choosing a too big value might lead to an unstable

training process or too fast learning of a sub-optimal set of weights. While configuring a neural network it

might be one of the most important hyperparameters. To combat the problem of choosing a

hyperparameter manually for each given learning session in the learning rate schedule, there are various

adaptive gradient descent algorithms, including Adadelta, Adam, and RMSpro. But as we have seen from

this experiment, choosing a suitable learning rate is important even for those adaptive learning rates,

especially while working with fewer epochs [22, 23].

3.3.2. Optimizer

Optimizer plays an important role while iteratively updating the parameters of all the layers in the

training of the deep CNN model [24, 25]. Optimization is quite important in training a neural network, as

is responsible for reducing losses and providing the most accurate results. Gradient descent is a

prominent approach for doing optimization in a neural network. This is used frequently in linear

regression and classification algorithms. Moreover, the gradient descent algorithm is responsible for

backpropagation in neural networks. Even though it is easy to implement and compute, it has a few

drawbacks such as may often trap in local minima and requiring large memory to calculate the gradient

descent of the whole dataset. In this article, we have worked with stochastic gradient descent, Adam,

AdaBound, RMSProp, AdaDelta, AdaGrad, Nadam, and Ftrl to see their effect on our dataset.

3.3.3. Activation Functions

The main work of an Activation function or classifier is to sort data into labeled classes or categories.

It mainly affects the outcome of deep learning models, including their performance and accuracy. The

activation functions have a significant influence on the capacity and speed of neural networks to converge

[26-28]. Moreover, activation functions help to normalize the output between -1 and 1 for any input. As

weight and bias are essentially linear transformations, a neural network is simply a linear regression

model with no activation function. Activation functions are available in a variety of forms, including

Binary step, Linear, ReLU, Sigmoid, and many more. In the second part of the experiment, we

experimented on Softmax, ReLU, SeLU, ELU, Exponential, Nadam, Softsign, Tanh, and Sigmoid.

3.4. K-fold Cross-Validation

K-fold cross-validation is a statistical method for measuring the ability of machine learning models.

In the third part of experiment, the highest values of the hyperparameters acquired in the second part of

the experiment were assessed using 5-fold cross-validation. This process aims to analyze the performance

and relationship of these hyperparameters in enhancing classification accuracy.

AETiC 2023, Vol. 7, No. 1 7

www.aetic.theiaer.org

4. Experiments and Results

4.1. Algorithms Evaluation

The CNN models considered in this study were executed in a machine equipped with Ryzen 3600x

processor, AMD radeon RX 550, and 16 GB RAM. All codes were realized with keras 2.4.3 framework,

written in python 3.9.5, and executed in Jupyter Notebook. For every experiment, we used categorical

cross-entropy loss and accuracy metrics for evaluation. A similar layout was taken for every model and

each experiment was run for 50 epochs. A dense layer "Softmax" activation function was employed for

classification at the output. “Adam” was the optimizer we used with a learning rate of 0.01. The accuracy

and loss of training and validation datasets are shown in Table 2. Furthermore, recall, precision, and F1

score are also shown are of weighted average. The average time (in seconds) taken for each epoch is also

shown in Table-2.

Table 2. Results analysis of each pre-trained models

Model Training set Validation Set Precision Recall F1 score Average Time per

epoch (Seconds) Accuracy Loss Accuracy Loss

DenseNet 121 0.9955 0.0137 0.9912 0.0460 0.991279 0.991189 0.991194 410

DenseNet 169 0.9920 0.0256 0.9471 0.1989 0.954496 0.947137 0.945015 495

ResNet 50 0.9892 0.0341 0.9876 0.0411 0.987682 0.987610 0.987604 570

VGG 16 0.9752 0.0758 0.9763 0.0904 0.978826 0.978524 0.978428 600

VGG 19 0.9840 0.0520 0.9788 0.0658 0.979296 0.978800 0.978823 575

EfficientNet B7 0.9667 0.0993 0.9628 0.1163 0.964157 0.962830 0.962865 1380

In the case of DenseNet 121, after 50 epochs we achieved an accuracy score of 99.55% in the training

set and 99.12% in the validation set. The weighted average of recall, precision, and F1 score were 0.9912,

0.9911, 0.9911 consecutively. The average time it took for each epoch to complete was 410 seconds.

DenseNet 169 performed almost similarly to DenseNet 121. Even though this architecture has more layers

it performed worse with it. As a result, the average time of execution of each epoch increased to 495

seconds. After 50 epochs it achieved an accuracy score of 94.71% and loss was 19.89%. ResNet 50 has the

closest results to the DenseNet 121. Its accuracy in both the train and validation set was almost the same,

near 98%. In the case of the training set after 50 epochs, it achieved an accuracy of 98.92% and in the

validation set, it achieved 98.76%. Both VGG 16 and VGG 19 performed similarly on the basis of the

accuracy of the validation set which was close to 97%. Their average time per epoch was also almost

adjacent. The weighted results of precision, sensitivity, and F1 score are shown in Table 3 for each type of

diseases.

Table 3. Test results of algorithms for each type of disease

Model Score Yellow

Leaf

Curl

Virus

Mosaic

virus

Target

Spot

Two-

spotted

spider

mite

Septoria

leaf

spot

Leaf

Mold

Late

blight

Healthy Early

blight

Bacterial

spot

DenseNet

121

Precision 0.9990 1 0.9704 0.9872 0.9774 1 1 0.9853 0.9829 0.9976

Recall 0.9990 1 0.9820 0.9747 1 1 0.9817 0.9970 0.9942 0.9816

F1 Score 0.9990 1 0.9761 0.9809 0.9886 1 0.9908 0.9911 0.9885 0.9896

DenseNet

169

Precision 0.9894 1 0.9804 0.7665 0.9883 0.9597 0.9891 0.9626 0.7857 0.9817

Recall 0.9961 0.9736 0.6017 0.9842 0.9740 0.9896 0.9505 0.9940 0.9482 0.9839

F1 Score 0.9927 0.9866 0.7458 0.8618 0.9811 0.9744 0.9694 0.9781 0.8593 0.9828

ResNet 50 Precision 0.9980 0.9743 0.9696 0.9809 0.9942 0.9948 0.9921 0.9627 0.9767 0.9953

Recall 0.9970 1 0.9580 0.9747 1 0.9948 0.9843 0.9970 0.9655 0.9862

F1 Score 0.9975 0.9870 0.9638 0.9778 0.9971 0.9948 0.9882 0.9795 0.9710 0.9908

VGG 16 Precision 0.9932 0.9866 0.9932 0.9031 0.9939 0.9597 0.9816 0.9940 0.9367 0.9730

Recall 1 0.9736 0.8862 1 0.9452 0.9896 0.9765 0.9970 0.9367 0.9908

F1 Score 0.9966 0.9801 0.9367 0.9491 0.9689 0.9744 0.9791 0.9955 0.9367 0.9818

AETiC 2023, Vol. 7, No. 1 8

www.aetic.theiaer.org

VGG 19 Precision 0.9951 0.9743 0.9905 0.9491 0.9824 0.9648 0.9810 0.9940 0.8864 0.9838

Recall 1 1 0.9401 1 0.9682 0.9948 0.9427 0.9940 0.9425 0.9748

F1 Score 0.9975 0.9870 0.9646 0.9738 0.9753 0.9795 0.9614 0.9940 0.9136 0.9793

EfficientNet

B7

Precision 0.9990 0.95 0.9171 0.9656 0.9505 0.9895 0.9865 0.8842 0.8950 0.9881

Recall 0.9922 1 0.8952 0.8864 0.9971 0.9792 0.9531 0.9970 0.9310 0.9542

F1 Score 0.9956 0.9743 0.9060 0.9243 0.9732 0.9843 0.9695 0.9372 0.9126 0.9708

EfficientNet B7 performed most poorly in terms of average time per epoch. Whereas other algorithms

took less than 600 seconds to complete each epoch, EfficientNet took more than double time, around 1400

seconds to finish each epoch. Moreover, its accuracy score in the validation set was the second lowest of

the bunch. Similar trends can be seen in training set accuracy, loss, precision, recall, F1 score.

The graph below (Figure 1) depicts the accuracy and loss of the models on classifying the tomato leaf

diseases.

Figure 1. Accuracy and loss of the tested models

4.2. Performance Metrics Evaluation over Hyperparameters

From the above result analysis, we can see that DenseNet 121 surpassed other pre-trained models for

the Tomato leaf disease diagnosis. To do further analysis, we tried tweaking different parameters and

tried to find out if learning rate, optimizer, or activation functions had an impact on the overall

effectiveness of the DenseNet architecture as depicted in table 4. If so, what are the optimal metrics for

learning rate, optimizer, and classifier hyperparameters to use for the DenseNet 121 model? For that first

started by changing the learning rate. We started with a 0.002 learning rate and kept gradually increasing

to 0.0009. As the results were getting worse, we stopped there and then kept gradually decreasing the

learning rate. Then we selected the learning rate at which the pre-trained model performed best. Then we

tried other popular optimizers out there and analyzed the results. Finally, we selected the optimizer that

performed best among those and tried different classifiers. Results of all these are given below Table 4.

Table 4. Results analysis of different metrics for Learning rate, Optimizer, and Classifier

Model Name Learning Rate Optimizer Classifier Accuracy Loss Precision Recall F1 Score

DenseNet 121 0.002 Adam Softmax 0.9725 0.0894 0.972592 0.972467 0.972244

DenseNet 121 0.005 Adam Softmax 0.9791 0.0711 0.979726 0.979075 0.979143

DenseNet 121 0.0001 Adam Softmax 0.891 0.3416 0.9036 0.890969 0.892355

DenseNet 121 0.0005 Adam Softmax 0.8802 0.4666 0.901473 0.880231 0.880055

DenseNet 121 0.0009 Adam Softmax 0.8588 0.5263 0.888472 0.858756 0.856682

DenseNet 121 0.001 Adam Softmax 0.9631 0.1129 0.943885 0.936399 0.936122

AETiC 2023, Vol. 7, No. 1 9

www.aetic.theiaer.org

DenseNet 121 0.05 Adam Softmax 0.9893 0.0432 0.99506 0.995044 0.995036

DenseNet 121 0.01 Adam Softmax 0.9912 0.046 0.991279 0.991189 0.991194

DenseNet 121 0.5 Adam Softmax 0.9579 0.1449 0.958487 0.957874 0.957903

DenseNet 121 0.1 Adam Softmax 0.9876 0.0454 0.98764 0.98761 0.987561

DenseNet 121 1 Adam Softmax 0.2817 39.8967 0.115794 0.281663 0.130671

DenseNet 121 0.01 AdaBound Softmax 0.9931 0.0395 0.99506 0.995044 0.995036

DenseNet 121 0.01 SGD Softmax 0.9664 0.114 0.968755 0.967236 0.967159

DenseNet 121 0.01 RMSProp Softmax 0.9902 0.0398 0.990472 0.990363 0.990374

DenseNet 121 0.01 AdaDelta Softmax 0.9788 0.0665 0.979477 0.9788 0.978811

DenseNet 121 0.01 AdaGrad Softmax 0.9675 0.1095 0.968946 0.967511 0.967583

DenseNet 121 0.01 Nadam Softmax 0.9414 0.2211 0.951478 0.941355 0.942128

DenseNet 121 0.01 Ftrl Softmax 0.2844 2.1597 0.080893 0.284416 0.12596

DenseNet 121 0.01 AdaMax Softmax 0.9771 0.0831 0.977674 0.977148 0.977208

DenseNet 121 0.01 AdaBound Softplus 0.9904 0.0374 0.990562 0.990363 0.990369

DenseNet 121 0.01 AdaBound Selu 0.3695 1.86 0.240685 0.369493 0.214595

DenseNet 121 0.01 AdaBound Relu 0.2844 Nan 0.080893 0.284416 0.12596

DenseNet 121 0.01 AdaBound Elu 0.3312 2.1844 0.202258 0.331222 0.229642

DenseNet 121 0.01 AdaBound Exponential 0.2844 Nan 0.080893 0.284416 0.12596

DenseNet 121 0.01 AdaBound Nadam 0.9413 0.2211 0.951478 0.941355 0.942128

DenseNet 121 0.01 AdaBound Softsign 0.2901 8.7462 0.120583 0.105796 0.055687

DenseNet 121 0.01 AdaBound Tanh 0.0985 8.7652 0.018213 0.098568 0.027964

DenseNet 121 0.01 AdaBound Sigmoid 0.9625 0.1655 0.964853 0.961729 0.961471

As we can see from Table 4 that for learning rate there is a range or a fixed point for which the

algorithm performs well above which the accuracy decreases, and below which accuracy also drops. In

our experiment, we observed the worst results when the learning rate was increased to 1. Here, accuracy

dropped below 29%, and the F1 score was just 13%. In this study for a learning rate of 0.01, the algorithm

performed best. Accuracy, in this case, was just above 99%, loss observed was 0.046, and F1 score was also

above 99% mark. In the case of optimizers, seven out of nine algorithms scored more than 95%. Among

them, Adabound's accuracy score was the highest. It had an accuracy score of 99.31% which was just

above Adam’s 99.12%. Its loss was also less than Adam’s. Its precision, recall, and F1 score was 0.99506.

RMSProp also performed well here, the accuracy score of which was 99.04%. Among all the classifiers

tested Ftrl optimizer had the worst performance, with accuracy just above 28% the F1 score was just

0.1259. After selecting 0.01 as the learning rate and Adabound as the optimize we tested on different

activation functions. Here, in total four activation functions scored more than 90%, Softmax, Softplus,

Nadam, and Sigmoid. Among them, the score of softmax was the highest. Tanh scored least in terms of

accuracy with just 9.85%. So, overall, we found optimum results when the learning rate is 0.01, Optimizer

is AdaBound, and activation function is Softmax.

The Figure 2 below illustrates the confusion matrix of the results when the learning rate is 0.01 and

the optimizer is AdaBound. Here, in the vertical line is the actual label of the images of each disease and

the horizontal line is the model predicted classification of the images:

AETiC 2023, Vol. 7, No. 1 10

www.aetic.theiaer.org

Figure 2. Confusion matrix when the optimizer is Adabound

4.3. K-fold Cross Validation

Table 4 shows 3 potential combinations of hyperparameters that produced the maximum accuracy,

or 99%, in this case. Those are a combination of, (i) AdaBound optimizer and Softmax classifier with a

learning rate of 0.01, (ii) Adam optimizer and Softmax classifier with a learning rate of 0.01, and (iii)

AdaBound optimizer and Softplus classifier with a learning rate of 0.01. To check the authenticity of these

results we further did five-fold cross validation on the dataset using hyperparameters that exhibited the

highest performance metrics scores according to Table 4. The end result is shown in Table 5 below:

Table 5. Performance metrics scores over hyperparameters using Five-fold cross validation

Model Name Fold Learning rate Optimizer Classifier Accuracy Loss Precision Recall F1 Score

DenseNet 121 1 0.01 Adabound Softmax 0.9929 0.0173 0.992952 0.992885 0.992895

DenseNet 121 2 0.01 Adabound Softmax 0.9939 0.0226 0.99392 0.993889 0.993885

DenseNet 121 3 0.01 Adabound Softmax 0.9882 0.0392 0.988344 0.988154 0.988177

DenseNet 121 4 0.01 Adabound Softmax 0.9937 0.0168 0.993759 0.993673 0.993683

DenseNet 121 5 0.01 Adabound Softmax 0.9734 0.4688 0.966071 0.965385 0.965499

DenseNet 121 1 0.001 Adabound Softmax 0.9674 0.1002 0.969183 0.967433 0.967716

DenseNet 121 2 0.001 Adabound Softmax 0.9592 0.1571 0.959167 0.959167 0.959167

AETiC 2023, Vol. 7, No. 1 11

www.aetic.theiaer.org

DenseNet 121 3 0.001 Adabound Softmax 0.7573 1.0255 0.867438 0.7573 0.768661

DenseNet 121 4 0.001 Adabound Softmax 0.8366 0.7323 0.889585 0.836589 0.836541

DenseNet 121 5 0.001 Adabound Softmax 0.8703 0.5724 0.917959 0.879121 0.881876

DenseNet 121 1 0.1 Adabound Softmax 0.5446 1.2905 0.424256 0.544609 0.470178

DenseNet 121 2 0.1 Adabound Softmax 0.2972 nan 0.088341 0.297222 0.1362

DenseNet 121 3 0.1 Adabound Softmax 0.3237 647538 0.348753 0.323691 0.28699

DenseNet 121 4 0.1 Adabound Softmax 0.2944 nan 0.086648 0.29436 0.133885

DenseNet 121 5 0.1 Adabound Softmax 0.2947 nan 0.08641 0.293956 0.13356

DenseNet 121 1 0.01 Adam Softmax 0.9871 0.0668 0.936839 0.987658 0.982842

DenseNet 121 2 0.01 Adam Softmax 0.9735 0.0975 0.883684 0.965478 0.959866

DenseNet 121 3 0.01 Adam Softmax 0.9812 0.0728 0.926514 0.981212 0.981432

DenseNet 121 4 0.01 Adam Softmax 0.9564 0.6998 0.912693 0.956584 0.956823

DenseNet 121 5 0.01 Adam Softmax 0.9234 0.7249 0.894126 0.914677 0.913799

DenseNet 121 1 0.01 AdaBound Softplus 0.9669 0.2168 0.903615 0.965743 0.963426

DenseNet 121 2 0.01 AdaBound Softplus 0.9548 0.0878 0.899624 0.956767 0.957685

DenseNet 121 3 0.01 AdaBound Softplus 0.9856 0.1746 0.932275 0.988796 0.983435

DenseNet 121 4 0.01 AdaBound Softplus 0.9233 0.9987 0.862627 0.912374 0.918768

DenseNet 121 5 0.01 AdaBound Softplus 0.8963 1.4367 0.889144 0.875587 0.885743

Here, we can see that for our metrics in the case of all 5 folds the accuracy score was more than 97%,

it got more than 99% accuracy in three out of five folds for learning rate 0.01, AdaBound optimizer, and

softmax classifier. However, the accuracy score reached as high as 99.39% in the second fold. When we

applied the same experiment for 0.001 and 0.1 learning rates, the results were much worse. Especially for

the learning rate of 0.1, the accuracy was below 60%, and in three out of five cases; it was even below 30%.

The other two combinations of Adam optimizer and Softmax classifier with a learning rate of 0.01, and

AdaBound optimizer and Softplus classifier with a learning rate of 0.01 have not score more than 99%

accuracy. Moreover, some folds of these combinations even score close to 92% accuracy. Therefore, we

found that for learning rate 0.01, AdaBound optimizer, and softmax classifier the model performs best.

The Figure 3 below depicts the model accuracy and model loss of each epoch while the model was

learning from the dataset for learning rate 0.01, AdaBound optimizer, and Softmax classifier. As we can

see from the 2nd diagram, the model loss did not change a lot after the 7th or 8th epoch and stayed almost

the same as the train set loss. In the case of the accuracy, it fluctuated a lot before it stabilized at the 35th

or 36th epoch, then it was almost as same as the train set accuracy.

So, we can see that indeed for the learning rate 0.01, Softmax classifier and AdaBound optimizer the

DenseNet performs best.

Figure 3: Model Accuracy and Model loss in cross validation

AETiC 2023, Vol. 7, No. 1 12

www.aetic.theiaer.org

5. Conclusions

This paper analyzed networks that are based on pre-trained deep convolutional networks of

DenseNet, ResNet, EfficientNet, and VGG. Here, in the first step, we compared those networks with

Adam Optimizer, 0.01 learning rate, and Softmax Activation function. The highest result was achieved

with DenseNet. Then a performance evaluation was done with different optimizers, learning rates, and

classifiers that was affecting the results of the DenseNet. We found out that a range of learning rates

between 0.001 and 0.1 gives good results where above and below are not effective. In the case of activation

functions with Softmax and Softplus activation functions, the best results were obtained. When different

optimizers were evaluated Adam, AdaBound, and RMSProp performed well. Here, the best overall result

was observed with a 0.01 learning rate, Softmax activation function, and AdaBound optimizer. Our study

reveals a significant information that there is a relationship among learning rate, optimizer, and classifier

in improving detection accuracy. In the third part of the experiment, a K-fold cross-validation check

further justified those parameters. Using the most effective deep CNN hyperparameters realized, this

work might be extended to a variety of leaf disease detection applications. Despite the fact that this study

obtained the highest detection accuracy, performance evaluation with multiple hyperparameters

consumes a substantial amount of time and computer power. In the future, the convolutional neural

network (CNN) pruning strategy may be explored to solve this issue.

Acknowledgments

We would like to thank the Institute of Energy, Environment, Research, and Development (IEERD,

UAP) and the University of Asia Pacific for financial support.

References

[1] Muhammad Hammad Saleem, Johan Potgieter and Khalid Mahmood Arif, “Plant Disease Detection and

Classification by Deep Learning”, Plants, ISSN: 2223-7747, pp. 468-489, Vol. 8, No. 11, 31st October 2019, Published

by MDPI, DOI: 10.3390/plants8110468, Available: https://doi.org/10.3390/plants8110468.

[2] Raihan Kabir, Salman Jahan, Md Rashedul Islam, Nabila Rahman and Md. Rajibul Islam, “Discriminant Feature

Extraction using Disease Segmentation for Automatic Leaf Disease Diagnosis”, in Proceedings of the International

Conference on Computing Advancements (ICCA 2020), 10-12 January 2020, Dhaka, Bangladesh, ISBN: 9781450377782,

DOI: 10.1145/3377049.3377100, Article 32, pp. 1-7, Published by Association for Computing Machinery (ACM),

Available: https://dl.acm.org/doi/10.1145/3377049.3377100.

[3] Zongwei Zhou, Jae Shin, Lei Zhang, Suryakanth Gurudu, Michael Gotway et al., “Fine-tuning convolutional

neural networks for biomedical image analysis: Actively and incrementally”, in Proceedings of the 30th IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 21-26 July 2017, Honolulu, HI, USA, Electronic

ISBN: 978-1-5386-0457-1, Print ISSN: 1063-6919, DOI: 10.1109/CVPR.2017.506, pp. 4761–4772, Published by IEEE,

Available: https://ieeexplore.ieee.org/document/8099989.

[4] Youbao Tang and Xiangqian Wu, “Scene text detection and segmentation based on cascaded convolution neural

networks”, IEEE Transactions on Image Processing, Print ISSN: 1057-7149, Electronic ISSN: 1941-0042, pp. 1509-

1520, Vol. 26, No. 3, 20th January 2017, Published by IEEE, DOI: 10.1109/TIP.2017.2656474, Available:

https://ieeexplore.ieee.org/document/7828014.

[5] Ziwei Liu, Ping Luo, Xiaogang Wang and Xiaoou Tang, “Deep learning face attributes in the wild”, in Proceedings

of the 15th IEEE International Conference on Computer Vision, 7-13 December 2015, Santiago, Chile, Electronic ISSN:

2380-7504, USB ISBN:978-1-4673-8390-5, DOI: 10.1109/ICCV.2015.425, pp. 3730-3738, Published by IEEE,

Available: https://ieeexplore.ieee.org/document/7410782.

[6] Nazia Hameed, Antesar Shabut, Fozia Hameed, Silvia Cirstea, Sorrel Harriet at al., "Mobile-based Skin Lesions

Classification Using Convolution Neural Network", Annals of Emerging Technologies in Computing (AETiC), Print

ISSN: 2516-0281, Online ISSN: 2516-029X, pp. 26-37, Vol. 4, No. 2, 1st April 2020, Published by International

Association for Educators and Researchers (IAER), DOI: 10.33166/AETiC.2020.02.003, Available:

http://aetic.theiaer.org/archive/v4/v4n2/p3.html.

[7] J.Andrew Onesimu, Robin D.Sebastian, Yuichi Sei and Lenny Christopher, “An Intelligent License Plate

Detection and Recognition Model Using Deep Neural Networks”, Annals of Emerging Technologies in Computing

(AETiC), Print ISSN: 2516-0281, Online ISSN: 2516-029X, pp. 23-36, Vol. 5, No. 4, 1st October 2021, Published by

https://doi.org/10.3390/plants8110468
https://dl.acm.org/doi/10.1145/3377049.3377100
https://ieeexplore.ieee.org/document/8099989
https://ieeexplore.ieee.org/document/7828014
https://ieeexplore.ieee.org/document/7410782
http://aetic.theiaer.org/archive/v4/v4n2/p3.html

AETiC 2023, Vol. 7, No. 1 13

www.aetic.theiaer.org

International Association for Educators and Researchers (IAER), DOI: 10.33166/AETiC.2021.04.003, Available:

http://aetic.theiaer.org/archive/v5/v5n4/p3.html.

[8] Gao Huang, Zhuang Liu, Laurens Van Der Maaten and Kilian Q. Weinberger, “Densely connected convolutional

networks”, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), 21-26 July

2017, Honolulu, HI, USA, Electronic ISBN:978-1-5386-0457-1, Print on Demand(PoD) ISBN:978-1-5386-0458-8,

Print ISSN: 1063-6919, DOI: 10.1109/CVPR.2017.243, pp. 4700-4708, Published by IEEE, Available:

https://ieeexplore.ieee.org/document/8099726.

[9] Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton, “Imagenet classifcation with deep convolutional neural

networks”, Communications of the ACM, ISSN: 0001-0782, EISSN: 1557-7317, pp 84–90, Vol. 60, No. 6, 24th May

2017, Published by ACM, DOI: 10.1145/3065386, Available: https://dl.acm.org/doi/10.1145/3065386.

[10] Karen Simonyan and Andrew Zisserman, “Very deep convolutional networks for large-scale image recognition”,

in Proceedings of the 3rd International Conference on Learning Representations (ICLR2015), 7-9 May 2015, San Diego,

USA, pp. 1–14, Available: https://www.robots.ox.ac.uk/~vgg/publications/2015/Simonyan15/simonyan15.pdf.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun, “Deep Residual Learning for Image Recognition”, in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), 27-30 June 2016, Las

Vegas, NV, USA, Electronic ISBN: 978-1-4673-8851-1, Print on Demand(PoD) ISBN: 978-1-4673-8852-8, Electronic

ISSN: 1063-6919, DOI: 10.1109/CVPR.2016.90, pp. 770-778, Published by IEEE, Available:

https://ieeexplore.ieee.org/document/7780459.

[12] Mingxing Tan and Quoc Le, “Efficientnet: Rethinking model scaling for convolutional neural networks”, in

Proceedings of the 36th International Conference on Machine Learning, PMLR 97, 09-15 June 2019, Long Beach,

California, USA, pp. 6105-6114, Available: http://proceedings.mlr.press/v97/tan19a.html.

[13] J. Arun Pandian, V. Dhilip Kumar, Oana Geman, Mihaela Hnatiuc, Muhammad Arif et al., “Plant Disease

Detection Using Deep Convolutional Neural Network”, Applied Sciences, ISSN: 2076-3417, pp. 01-17, Vol. 12, No.

14, Article ID. 6982, 10 July 2022, Published by MDPI, DOI: 10.3390/app12146982, Available:

https://www.mdpi.com/2076-3417/12/14/6982.

[14] Shanwen Zhang, Wenzhun Huang and Chuanlei Zhang, “Tree-channel convolutional neural networks for

vegetable leaf disease recognition”, Cognitive Systems Research, Print ISSN: 2214-4366, Online ISSN: 1389-0417, pp.

31-41, Vol. 53, January 2019, Published by Elsevier B.V., DOI: 10.1016/j.cogsys.2018.04.006, Available:

https://www.sciencedirect.com/science/article/pii/S1389041717303236.

[15] Malusi Sibiya and Mbuyu Sumbwanyambe, “A Computational Procedure for the Recognition and Classification

of Maize Leaf Diseases Out of Healthy Leaves Using Convolutional Neural Networks”, AgriEngineering, ISSN:

2624-7402, pp. 119–131, Vol. 1, No. 1, 13th March 2019, Published by MDPI, DOI: 10.3390/agriengineering1010009,

Available: https://www.mdpi.com/2624-7402/1/1/9.

[16] Keke Zhang, Qiufeng Wu, Anwang Liu and Xiangyan Meng, “Can Deep Learning Identify Tomato Leaf

Disease?”, Advances in Multimedia, Print ISSN: 1687-5680, Online ISSN: 1687-5699, pp. 1-10, Vol. 2018, Article ID:

6710865, 26th September 2018, Published by Hindawi, DOI: 10.1155/2018/6710865, Available:

https://doi.org/10.1155/2018/6710865.

[17] Jihen Amara, Bassem Bouaziz and Alsayed Algergawy, “A Deep Learning-based Approach for Banana Leaf

Diseases Classification”, in Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017, B. Mitschang et

al. (Eds.): BTW 2017 – Workshopband (Workshops), 6–10 March 2017, Stuttgart, Germany, pp. 79–88, Available:

http://btw2017.informatik.uni-stuttgart.de/slidesandpapers/E1-10/paper_web.pdf.

[18] K. P. Ferentinos, “Deep learning models for plant disease detection and diagnosis”, Computers and Electronics in

Agriculture, ISSN: 0168-1699, pp. 311- 318, Vol. 145, February 2018, DOI: 10.1016/j.compag.2018.01.009, Available:

https://www.sciencedirect.com/science/article/abs/pii/S0168169917311742.

[19] Kyosuke Yamamoto, Takashi Togami and Norio Yamaguchi, “Super-resolution of plant disease images for the

acceleration of image-based phenotyping and vigor diagnosis in agriculture”, Sensors, ISSN: 1424-8220, pp. 1-13,

Vol. 17, No. 11, Article ID. 2557, 6th November 2017, Published by MDPI, DOI: 10.3390/s17112557, Available:

https://www.mdpi.com/1424-8220/17/11/2557.

[20] Halil Durmuş, Ece Olcay Güneş and Mürvet Kırcı, “Disease detection on the leaves of the tomato plants by using

deep learning”, in Proceedings of the 2017 6th International Conference on Agro-Geoinformatics, 7-10 August 2017,

Fairfax, VA, USA, Electronic ISBN:978-1-5386-3884-2, USB ISBN:978-1-5386-3883-5, Print on Demand (PoD)

ISBN:978-1-5386-3885-9, DOI: 10.1109/Agro-Geoinformatics.2017.8047016, pp. 1–5, Published by IEEE, Available:

https://ieeexplore.ieee.org/document/8047016.

[21] Diane Larsen-Freeman, “Transfer of learning transformed”, Language Learning, Online ISSN: 1467-9922, pp. 107–

129, Vol. 63, No. s1, 13th February 2013, Published by Wiley, DOI: 10.1111/j.1467-9922.2012.00740.x, Available:

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9922.2012.00740.x.

http://aetic.theiaer.org/archive/v5/v5n4/p3.html
https://ieeexplore.ieee.org/document/8099726
https://dl.acm.org/doi/10.1145/3065386
https://www.robots.ox.ac.uk/~vgg/publications/2015/Simonyan15/simonyan15.pdf
https://ieeexplore.ieee.org/document/7780459
http://proceedings.mlr.press/v97/tan19a.html
https://www.mdpi.com/2076-3417/12/14/6982
https://doi.org/10.1016/j.cogsys.2018.04.006
https://www.sciencedirect.com/science/article/pii/S1389041717303236
https://doi.org/10.3390/agriengineering1010009
https://www.mdpi.com/2624-7402/1/1/9
https://doi.org/10.1155/2018/6710865
http://btw2017.informatik.uni-stuttgart.de/slidesandpapers/E1-10/paper_web.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0168169917311742
https://www.mdpi.com/1424-8220/17/11/2557
https://ieeexplore.ieee.org/document/8047016
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9922.2012.00740.x

AETiC 2023, Vol. 7, No. 1 14

www.aetic.theiaer.org

[22] Anil Johny and K. N. Madhusoodanan, “Dynamic Learning Rate in Deep CNN Model for Metastasis Detection

and Classification of Histopathology Images,” Computational and Mathematical Methods in Medicine, Print ISSN:

1748-670X, Online ISSN: 1748-6718, Vol. 2021, Article ID. 5557168, 26 Oct. 2021, pp. 1-13, Published by Hindawi,

DOI: 10.1155/2021/5557168, Available: https://doi.org/10.1155/2021/5557168.

[23] Pankaj Singh Rathore, Naveen Dadich, Ankit Jha and Debasish Pradhan, “Effect of Learning Rate on Neural

Network and Convolutional Neural Network”, International Journal of Engineering Research & Technology (IJERT),

ISSN (Online) : 2278-0181, Vol. 06, No. 17, Paper ID : IJERTCONV6IS17007, 5th January 2019, pp. 1-8, Published by

IJERT, DOI: 10.17577/IJERTCONV6IS17007, Available: https://www.ijert.org/research/effect-of-learning-rate-on-

neural-network-and-convolutional-neural-network-IJERTCONV6IS17007.pdf.

[24] Muhammad Yaqub, Jinchao Feng, M. Sultan Zia, Kaleem Arshid, Kebin Jia et al., “State-of-the-Art CNN

Optimizer for Brain Tumor Segmentation in Magnetic Resonance Images”, Brain Sciences, ISSN: 2076-3425, Vol.

10, No. 7, 3rd July 2020, pp. 427-446, Published by MDPI, DOI: 10.3390/brainsci10070427, Available:

https://doi.org/10.3390/brainsci10070427.

[25] S. Vani and T. V. Madhusudhana Rao, "An Experimental Approach towards the Performance Assessment of

Various Optimizers on Convolutional Neural Network“, in Proceedings of the 3rd International Conference on Trends

in Electronics and Informatics (ICOEI), 25 April 2019, Tirunelveli, India, Electronic ISBN: 978-1-5386-9439-8, DOI:

10.1109/ICOEI.2019.8862686, pp. 331-336, Available: https://ieeexplore.ieee.org/abstract/document/8862686.

[26] Yingying Wang, Yibin Li, Yong Song and Xuewen Rong, “The Influence of the Activation Function in a

Convolution Neural Network Model of Facial Expression Recognition”, Applied Sciences, ISSN: 2076-3417, Vol. 10,

No. 5, 10th March 2020, pp. 1897-1916, Published by MDPI, DOI: 10.3390/app10051897, Available:

https://doi.org/10.3390/app10051897.

[27] Gianluca Maguolo, Loris Nanni and Stefano Ghidoni, “Ensemble of convolutional neural networks trained with

different activation functions”, Expert Systems with Applications, ISSN: 0957-4174, Vol. 166, Article ID. 114048, 15

March 2021, pp. 1-8, Published by Elsevier, DOI: 10.1016/j.eswa.2020.114048, Available:

https://doi.org/10.1016/j.eswa.2020.114048.

[28] Jianli Feng and Shengnan Lu, “Performance Analysis of Various Activation Functions in Artificial Neural

Networks”, Journal of Physics: Conference Series, Online ISSN: 1742-6596, Print ISSN: 1742-6588, Vol. 1237, No. 2,

Article ID. 022030, Jun 2019, pp.1-6, Published by IOP Publishing Ltd, DOI:10.1088/1742-6596/1237/2/022030,

Available: https://doi.org/10.1088/1742-6596/1237/2/022030.

© 2023 by the author(s). Published by Annals of Emerging Technologies in Computing

(AETiC), under the terms and conditions of the Creative Commons Attribution (CC BY) license

which can be accessed at http://creativecommons.org/licenses/by/4.0.

https://doi.org/10.1155/2021/5557168
https://www.ijert.org/research/effect-of-learning-rate-on-neural-network-and-convolutional-neural-network-IJERTCONV6IS17007.pdf
https://www.ijert.org/research/effect-of-learning-rate-on-neural-network-and-convolutional-neural-network-IJERTCONV6IS17007.pdf
https://doi.org/10.3390/brainsci10070427
https://ieeexplore.ieee.org/abstract/document/8862686
https://doi.org/10.3390/app10051897
https://doi.org/10.1016/j.eswa.2020.114048
https://doi.org/10.1088/1742-6596/1237/2/022030

