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Abstract: The human eye contains valuable information about an individual’s identity and health. Therefore, 

segmenting the eye into distinct regions is an essential step towards gathering this useful information precisely. 

The main challenges in segmenting the human eye include low light conditions, reflections on the eye, variations 

in the eyelid, and head positions that make an eye image hard to segment. For this reason, there is a need for deep 

neural networks, which are preferred due to their success in segmentation problems. However, deep neural 

networks need a large amount of manually annotated data to be trained. Manual annotation is a labor-intensive 

task, and to tackle this problem, we used data augmentation methods to improve synthetic data. In this paper, we 

detail the exploration of the scenario, which, with limited data, whether performance can be enhanced using similar 

context data with image augmentation methods. Our training and test set consists of 3D synthetic eye images 

generated from the UnityEyes application and manually annotated real-life eye images, respectively. We examined 

the effect of using synthetic eye images with the Deeplabv3+ network in different conditions using image 

augmentation methods on the synthetic data. According to our experiments, the network trained with processed 

synthetic images beside real-life images produced better mIoU results than the network, which only trained with 

real-life images in the Base dataset. We also observed mIoU increase in the test set we created from MICHE II 

competition images.  
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1. Introduction 

The eyes are part of the human body that are responsible for visual inputs. Additionally, the eyes show 

signs about the wellness of a human. For example, redness of the sclera can be a sign of allergies or 

infections. The pupil might lose its brightness due to cataract disease. They can lose their shape due to 

genetics or accidents [1, 2]. The eyes are protected from outside harm by the cornea. Inside of the cornea, 

there are three main parts of the eye: the iris, colored part of the eye that has unique patterns for each person 

[3]; the sclera, the white, veiny, and protective part of the eye; and the pupil, the inner circle inside the eye. 

Due to their informative nature, the eyes have always been a point of interest. Visual inputs are the first 

step to visual understanding, a fundamental part of our continued survival. One of the ways we can extract 

eye information is called eye segmentation. Eye segmentation is a task used to get boundaries of the eye 

parts we want to explore. For example, if an eye image is annotated to have two parts as iris and 

background, this is commonly referred to as iris segmentation [4]. Figure 1 shows an example for eye region 

segmentation. 
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Figure 1. Eye regions and the segmentation mask. 

Early iris segmentation methods commonly used the Gaussian filter to reduce noise in the image. This 

method then uses a circular edge detector to find the iris boundaries. The most popular circle detection 

algorithm is the circular Hough transformation, and one of the most known applications was proposed by 

Wildes [5]. Wildes also used the Gaussian filter to smooth the eye image. He applied an almost vertical edge 

detector to get the outer iris boundary and created the eye image's edge points. Then, he used the circular 

Hough transformation to get the outer iris boundary. The circular Hough transformation finds the best 

fitting circle relative to the initial point by comparing each edge point to the initial point. The potential circle 

contains most edge points returned. After finding the circle, the inner iris boundary was found by applying 

an edge detector without any orientation and applying the circular Hough transformation within the range 

of the first found circle. Eyelid boundaries are also calculated as two different parabolic arcs. Horizontal 

edge detection is used to find parabolic arcs. Figure 2, as an example, shows gradient-based edge detection 

results at different directions applied to the eye image. 

 
Figure 2.  a) The eye image. b) result of vertical, c) horizontal, and d) without any orientation edge detector. 

The problem with early iris segmentation methods is their conditions were often too restrictive, the 

requirement of near-infrared images and iris not being circular, repeated patterns that are near impossible 

to get when a 3-D model of the eye is considered [4]. However, in restricted and controlled conditions, early 

methods had a satisfactory accuracy rate [6]. The problem of the eye not being circular and concentric was 

solved with later research [7, 8]. 

When the sclera is extracted from an eye image, it is called sclera segmentation. Sclera information can 

also be used as a biometric [9] feature. Image processing-based sclera segmentation methods are somewhat 

similar to iris segmentation methods. The iris boundaries are detected using edge detection methods, and 

the sclera region is detected by color intensity differences since the sclera region is mostly white [9, 10]. 

These methods also work in restricted conditions. To deal with unconstrained eye segmentation, more 

powerful segmentation methods that adopt different inputs must be used. This is where Convolutional 

Neural Networks shine. Convolutional Neural Networks are successful in iris and sclera segmentation tasks 

[4, 11–13]. Although Convolutional Neural Networks' usage goes back several decades, they became used 

in standard segmentation methods in recent years in image segmentation tasks. Neural networks require 

input and output pairs to understand the problem and create the addressing filters to address a problem. 

For different images to be segmented, an adequate number of segmented input and output pairs need to be 

given to training the network. Thus, this creates a challenge compared to image processing methods, 

requiring specific calculations to do the task. There is a need for a massive amount of manually segmented 

data [14]. Even so, for broader and more accurate segmentation using deep neural networks, networks need 

to be trained with a massive amount of data. Therefore, finding a large quantity of data and creating quality 

segmentation masks with them is necessary to create a network for the problem [15]. 
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Deep Convolutional Neural Networks became popular after the release of the ImageNet database and 

the introduction of the AlexNet [16]. The idea was to keep the segmentation data towards multiple layers 

of filters to contain as much information as possible. Nevertheless, while going in-depth with filters, some 

information was lost. This problem rose from mapping two layers directly [17]. To tackle this problem, the 

idea of learning the difference between layers instead of direct mapping was created. With that idea 

problem of losing information while going deeper into layers improved. Still, a more in-depth network, 

requires more computation power. To get more information in a layer, parallel convolutional operations 

with dimension reduction was proposed [18]. Later, that idea was improved by separable convolutions on 

every channel with dimension reduction. Ultimately, multiple contexts in a layer are compressed without 

increasing computational complexity [19]. While computing through the layers, dimensions shrink due to 

convolution operations, and to get the original dimensions, directly using up-sampling methods can lead 

to data loss. To tackle this problem, encoder-decoder networks were proposed [20]. In contrast, encoder 

structures work like regular networks without up-sampling operations. Decoder structures take low-level 

features and up-samples them by convolving with changeable de- coder layers. Using deep neural networks 

segmenting operation can be done by the filters created by the network structure [14]. 

This study used Google’s Deeplabv3+ network, which acquired promising results in semantic 

segmentation task, using its separable convolution method with different rates [21]. Our study has shown 

that using a synthetic data set along with a real-life data set improved the eye segmentation results. The 

main contribution of the study is two-fold: 

• First, we showed that synthetic images and real images improve overall segmentation accuracy 

compared to the model trained only on real-life images. 

• Second, we contribute to the literature by creating a manually annotated eye segmentation dataset. 

We present our materials, including the datasets used in the experiments and the methodology in 

Section 2. Section 3 provides details of the experiments done using both the synthetic and real-life dataset. 

Finally, Section 4 provides a discussion of the experimental results and concludes the study. 

2. Methodology 

Semantic segmentation is a task where every pixel of the image is assigned to pre-determined classes. 

For experimenting with real-world scenarios, images that were taken for the Akdeniz University Scientific 

Research Projects Coordination Unit Project ID: TTU-2018-3295 were used. Images using different angles, 

distances, and lighting conditions were used, making them good candidates for challenging image 

segmentation [22]. In our work, eye images are segmented into four regions: the sclera, iris, pupil, and the 

background, as shown in Fig 1. This segmentation is useful for tracking eye movements and pupillary 

responses. While keeping test data the same for all experiments, we explore the synthetic data's effect, image 

augmentation methods on synthetic data for our segmentation task. Since there is no similar work 

conducted or standard dataset available for this segmenting method, we will be exploring the 

improvements using stated methods. We used mIoU metric to measure the proposed method's performance 

due to its being a meaningful metric for evaluating segmentation quality [20].  

For the data required in this study, the UnityEyes interface, which generates synthetic human eyes, 

was used [23]. With this interface, generating an automatically annotated dataset is possible. Another 

advantage of UnityEyes is that it adds a light reflection to the generated images, making it closer to real-life 

conditions. Thus, the image augmentation methods cause synthetic data to be similar to real-life data. When 

we consider image-to-image translation problems, it is hard to cover all possible test conditions; machine-

generated images can help cover more. 

We used Google’s Deeplabv3+ neural network, as shown in Figure 3, for the segmentation task. 

Deeplabv3+, in addition to the previous work, adds depthwise separable convolution to get better results 

in benchmark datasets.  
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Figure 3. Deeplabv3+ network structure [21]. 

Deeplabv3+ uses depthwise separable convolution with different rates of atrous convolutions (1) to get 

the context [21]. This results in increased performance and speed compared to traditional convolution 

operation. 

𝐼𝑜𝑢𝑡[𝑖] = ∑ 𝐼𝑖𝑛[𝑖 + 𝑟 ⋅ 𝑘]𝑓[𝑘]

𝑘

 (1) 

When we choose 𝑟 value as 1, it becomes a traditional convolution operation. 𝐼𝑜𝑢𝑡 is convolution 

output, 𝑓  is the filter, and 𝐼𝑖𝑛 is the input image. Depthwise separable convolution merges every channel 

of the layer with 1×1 convolution on every channel simultaneously, instead of filtering each channel 

separately and merging them later. The decoder first uses depthwise separable convolution to capture low-

level features, then merge them with encoder results, using 3×3 convolution to polish results and upsample 

to get segmentation results [15]. 

2.1. Dataset 

Our real-life dataset consists of 350 images that vary in distance, angle, and lightning. These 

images are manually annotated. The images have a resolution of 640×480 and have RGB channels. This 

set of images will be referred to as the base dataset. As synthetic data, 900 eye images were generated 

from the Unityeyes software. Synthetic data created from the Unityeyes already have sclera and iris 

annotations; therefore, only the iris region was annotated by us. A set of images generated from 

Unityeyes software will be referred to as the syn dataset. Syn dataset images rotated from 0 to 25 

degrees in both directions from the center randomly. Their pixel values darkened from 0.5 to 0.9 of the 

original value. They are likewise blurred, and motion blurred in both directions with random kernel 

sizes from 1 to 15, which means some images stayed without any blurring. All these operations are 

applied to the images once. 

With these augmentation methods applied to the synthetic dataset, a synthetic processed (synp) 

dataset was created. To create a challenging segmentation problem, real-life images were split into 

training and test sets having 280 and 70 images, respectively [23]. Synthetic images were used for 

training with different amounts for testing their effectiveness. Figure 4 shows sample images from our 

real-life dataset. 
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Figure 4. Sample images from the base dataset. 

To test our network’s generalization abilities, the MICHE II dataset (Mobile Iris Challenge Evaluation 

II) was used. Three hundred and twelve (312) images from the SamsungGalaxyS4 dataset within MICHE II 

that have 16:9 aspect ratio and scaled to 540×960 resolution were used alongside 148 images from the 

SamsungGalaxyTab2 dataset that have the same resolution as our dataset [24]. Images with their name 

ending with *1.jpg were chosen for annotation to avoid favoritism and reduce the amount of annotation 

labor. These datasets will be referred to as Miche960 and Miche480, respectively. Table 1 shows the 

summary of the datasets used in this study. 

Table 1. Dataset Attributes. 
Dataset Name Resolution Number of Train Images Number of Test Images 

Base 640×480 280 70 

syn 640×480 900 0 

synp 640×480 900 0 

Miche480 640×480 0 148 

Miche960 540×960 0 312 

2.2. Augmentation 

While the real-life images of our dataset were captured indoors and have low lighting conditions, 

images created with UnityEyes software show outdoor properties. Therefore, to make them look more like 

our real-life data, some image augmentation methods were applied. 

2.2.1. Brightness and Contrast 

Brightness and Contrast of an image can be formulated as: 

𝑔(𝑥) = α𝑓(𝑥) + 𝑏  (2) 

Where f (x) represents pixel value at each channel of the image, g(x) represents the output of the pixel 

values, α controls contrast,  and 𝑏 controls brightness respectively if we simplify the formula on the 

digital color space we get 

𝑔(𝑥) = α(𝑓(𝑥) − 128) + 128 + 𝑏  (3) 

α contrast modifier and 𝑏 means brightness modifier. By picking an α value between 0-1 we can reduce 

the contrast and values above one will increase it. Brightness is a more straightforward constant that can 

be added to every pixel value of the image [19]. 

2.2.2. Rotation 

Rotation is a common image augmentation technique and new location of the rotated pixel can be 

represented as: 

𝑋𝑛  =  𝑐𝑜𝑠(θ) ∗ (𝑋𝑛−1 − 𝑋0) +  𝑠𝑖𝑛(θ)  ∗  (𝑌𝑛−1  − 𝑌0) (4) 

𝑌𝑛  =  𝑠𝑖𝑛(θ) ∗ (𝑋𝑛−1 − 𝑋0)  +  𝑐𝑜𝑠(θ)  ∗  (𝑌𝑛−1  − 𝑌0)   

𝑋0 and  𝑌0 represent the anchor point of rotation 𝑋𝑛−1 and 𝑌𝑛−1  represent the old location of the pixel 

value and 𝑋𝑛  and 𝑌𝑛 become the new location of the pixel. 

2.2.3. Resize 

To simulate different camera to eye distance conditions resizing operations are used. For the resizing 

operation, the method of bicubic interpolation is used. Bicubic interpolation creates a surface for unlimited 

resizing by the formula: 
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𝑓𝑖(𝑥,𝑦) =  ∑ ∑ 𝑎{𝑖 𝑗}𝑥
𝑖 𝑦𝑗

3

{𝑗=0}

3

{𝑖=0}

 
(5) 

Equation (5) shows that a total of 16 coefficients (ai j) need to be calculated to find the interpolated area. 

Four of the coefficients are calculated using horizontal derivatives, four of the coefficients are calculated 

using vertical derivatives, four of the coefficients are calculated using diagonal derivatives, and the 

remaining coefficients are calculated for corner intensity values [25]. 

2.2.4. Blur 

Blur is a process to convolve the image with different kernel matrices to get a smoother image. Motion 

blur is a process to convolve the image with various kernels to give it a shaky look. It can be formulated as: 

𝐼𝑏(𝑥,𝑦) = 𝐼(𝑥, 𝑦) ∗ 𝐾(𝑠, 𝑠) (6) 

In our study, kernels used for blurring was a matrix filled with ones. For vertical motion blur, a matrix filled 

with ones in the middle vertical row, for horizontal motion blur, a matrix filled with ones in the middle 

horizontal row was used [25]. 

2.3. Evaluation 

Mean Intersection Over Union(IoU) metric was used as an evaluation metric to measure the proposed 

method's performance. IoU calculates the ratio of segmentation success by comparing correct segmentation 

results to the union of correct and incorrect segmentation results, as shown in (7).  

𝐼𝑜𝑈𝑐 =
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑈𝑛𝑖𝑜𝑛
=  

𝑃𝐿𝑐 ∩ 𝑇𝐿𝑐

𝑃𝐿𝑐 ∪ 𝑇𝐿𝑐
         (7) 

Correct segmentation of the calculated class results are represented by true labels (𝑇𝐿𝑐); predicted 

segmentation results are represented by predicted labels (𝑃𝐿𝑐). Intersection of these labels represents 

correctly segmented pixels. The union of those labels represents correct segmentation pixels alongside miss-

segmented pixels. With their division, we get the IoU value for a class. The total of each class IoU value is 

divided by the total number of classes to calculate the mIoU value. 

 3. Experiments 

Several experiments were conducted under differing conditions. The real-life images for the 

experiment were always kept at 280 images for the training set and 70 images for the testing set. However, 

the size of the training set varies to examine the effect of the additional data while maintaining the real-life 

image factor the same. Synthetic images are tested as processed and unprocessed categories, as shown in 

Fig 5. Synthetic images processed beforehand were called synp, and the non-processed image set was called 

syn for distinction.  

 
Figure 5. Synthetic data samples. a) Unprocessed. b) Processed. 

Different weight multipliers to each class to increase segmentation performance. Since we have non-

uniform eye regions, the multipliers are chosen in contrast to the region sizes in the images. The background 

class weights stayed the same, the sclera class weights multiplied by 10, the iris weights multiplied by 20, 

and the pupil weights multiplied by 30, empirically. All networks trained for 100,000 steps with the same 

settings: batch size was 10, crop size was 256×256, output stride was 16, the atrous convolution rates were 

6, 12, 18, momentum Optimizer with 0.9 rate was used, the learning rate was 1 × 10−3, and the decay rate 

was 1 × 10−3 for every 1000 steps. Thus, every 10,000 steps network was saved, and the best performing 

network was chosen. 
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The first experiment was conducted with no additional synthetic data to create a baseline. The network 

trained ten times with the mentioned settings to tackle the variance problem, and the best test result was 

chosen for comparison. In the second experiment, the network trained with base synthetic data and 

processed synthetic data alongside real-life images. The base results are shown in Table 2. Both networks 

performed worse than the base network, but some images that were segmented significantly better with 

synthetic data can be seen in Fig 6(a). 

 
Figure 6. a) mIoU results per image of the Base, Base+900syn and Base+900synp networks on base dataset. b) mIoU 

results per image of the Base and Base+280synp1 networks on Miche480 dataset. c) mIoU results per image of the Base 

and Base+280synp1 network. 

To explore the generalization abilities of the networks, a second set of experiments were conducted 

using images from MICHE II dataset. Those images were only used for testing and no training is done with 

them to get performances of Base and Base+280synp2 networks in different settings. One of the sets used 

for experimenting referred to as Miche480, which has 148 test images with a resolution of 640×480 pixel 

similar were added to our dataset. The second one is referred to as Miche960 and it has 540×960 pixel 

resolution. For both datasets, Base+280synp1 network consistently performed better. Results for per class 

mIoU can be seen at Fig 6(b), and Fig 6(c). 

Table 2. Base, Miche480, and Miche960 dataset mIoU results of different networks. 
Dataset Network Total Sclera Iris Pupil Background 

Base Base 73.0 63.5 74.7 56.8 97.3 

Base Base+900syn 68.9 57.2 67.2 54.4 96.6 

Base Base+900synp 71.8 64.8 73.0 51.7 97.6 

Base Base+280synp1 75.4 68.0 73.8 62.1 97.7 

Base Base+280synp2 73.4 60.6 74.6 62.2 97.0 

Base Base+280synp3 71.6 63.1 71.5 54.0 97.8 

Miche480 Base 53.9 38.8 49.9 29.2 97.8 

Miche480 Base+900syn 58.6 38.1 59.7 38.5 98.9 

Miche480 Base+900synp 61.3 42.8 63.1 41.2 98.2 

Miche480 Base+280synp1 58.1 44.2 58.8 30.7 99.1 

Miche480 Base+280synp2 55.6 35.2 53.9 36.8 96.3 

Miche480 Base+280synp3 56.2 37.1 46.0 44.4 97.4 

Miche960 Base 48.0 29.4 31.9 32.4 98.3 

Miche960 Base+900syn 58.7 42.6 61.0 32.1 98.8 

Miche960 Base+900synp 60.6 44.2 61.1 38.4 96.9 

Miche960 Base+280synp1 62.4 45.6 65.3 39.6 99.1 

Miche960 Base+280synp2 57.4 36.5 56.3 39.7 97.1 

Miche960 Base+280synp3 57.4 37.8 47.4 46.7 97.7 

Therefore, we reduced the number of synthetic images on training data with a one-to-one ratio of the 

base training set to train more balanced networks. The synthetic images that were used in that setup were 

generated randomly with overlapping images. The best mIoU result and the networks trained with the 

same protocol can be seen in Table Error! Reference source not found.. 
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Miche480 and Miche960 datasets were used to test the generalizing abilities of the networks. Since they 

were not used in any training and have uncontrolled conditions, they made a reliable testing ground for 

measuring the synthetic data’s effect. Since the Miche480 dataset has the same resolution as the Base and 

synthetic dataset, test performance is expected to be higher than the Miche960 dataset, but Table Error! 

Reference source not found. shows that performances almost identical. However, this does not apply to 

the Base network, which performed significantly better in the Miche480 test. This was expected due to it 

being only trained with the Base dataset. 

4. Discussion and Conclusion 

This study explored the eye segmentation in semi-unrestricted conditions and increased the network’s 

performance using synthetic eye data. The variety of images in this study makes eye segmentation 

challenging as possible reflections can be incorrectly segmented, such as the pupil. Similarly, some images 

do not contain a visible pupil due to lack of illumination or occlusions by the eyelid. 

We showed that segmentation accuracy increases when external data with a structure similar to the 

original data is used. If left unsupervised, that data might reduce network performance unless they are 

almost identical or carefully picked. Fig 7 shows that different data used for training changes the way the 

images are segmented. When we consider the test results obtained in the Base dataset, our judgment on the 

augmentation methods and analyses on the dataset were proven to be effective since the Base+900syn 

network had no improvement in the single class but Base+900synp performed better than the Base network 

in the sclera class. Table Error! Reference source not found. shows that for every class, there can be a 

significant increase in mIoU using the processed synthetic data in addition to real-life data. 

The base test has shown that when working on a limited dataset, the dataset’s balance can be the 

deciding factor of the network’s performance. Networks trained with the same amount of Base+ synp 

dataset performed better than Base and unbalanced networks. Some of it can be due to network variance, 

but consecutive training of the networks showed a consistent improvement in network performance. We 

obtained 2.4% increase in mIoU at the Base dataset. 

Synthetic data showed a consistent and decent improvement on Miche tests. We obtained a 7.4% and 

14.4% increase in mIoU using the Miche480 and Miche960 datasets, respectively. There can be further 

improvements in network performance with better adjustments to the data. 

For the reproducibility of the results, the dataset and annotations we used for this study are published at 

GitHub1.  

 

                                                             
1 https://github.com/melihoz/eyedataset  

https://github.com/melihoz/eyedataset
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Figure 7. Sample images used in testing and the segmentation masks created by the networks compared. 
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