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Abstract: Water directly influences plant growth and vitality and is a critical resource in precision agriculture (PA). 
Soluble fertilisers are transported to plant roots through irrigation, making precise water management essential for 
optimising crop productivity and minimising resource wastage. Inadequate or excessive irrigation disrupts nutrient 
distribution, increases operational costs, and negatively affects crop yield. Accurate monitoring of sub-surface soil 
moisture, particularly at root depth, is therefore vital for effective irrigation control. This study addresses key 
limitations in existing PA systems by developing an automated Internet of Things (IoT)-based real-time soil 
moisture monitoring and irrigation framework integrated with a recurrent neural network (RNN) employing long 
short-term memory (LSTM) for moisture prediction. Customised sub-surface soil moisture probes equipped with 
five sensors at different depths were deployed at a real plantation site. The probes utilised time domain 
reflectometer (TDR) technology to capture high-resolution moisture measurements. Sensor data were transmitted 
to the cloud using an ESP32-based low-range communication module, forming a wireless sensor network (WSN) 
across the designated study area. A continuous six-month dataset was collected and analysed to train and validate 
the proposed RNN-LSTM model. The model demonstrated strong predictive capability, achieving an accuracy of 95 
± 2%, a mean absolute error (MAE) of 0.6362, a root mean square error (RMSE) of 1.1544, and an R² value of 0.3331. 
These results confirm the model’s effectiveness in capturing sub-surface soil moisture dynamics under real field 
conditions. Overall, the proposed IoT-enabled predictive irrigation system provides a scalable and data-driven 
solution for improving irrigation efficiency.  

Keywords: Internet of Things; Precision Agriculture; Real-time Monitoring; Recurrent Neural Network  
 

1. Introduction 

Enhancing agricultural output, watershed hydrology, predicting floods, anticipating landslides, and 
various other ecosystem benefits requires understanding soil moisture [1, 2]. Agriculture is the top 
consumer of water worldwide, accounting for approximately 70% of overall water usage. Creating nearby 
soil moisture sensors is increasingly in demand due to limited water resources to improve irrigation and 
soil moisture management in farming [3].  

Typically, farmers globally rely on visual assessments of crops to determine irrigation schedules. The 
approach has led to nearly 50% of water being wasted in conventional irrigation systems [4]. Several 
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techniques, such as sprinkle, drip, and furrow irrigation, could cut down water wastage by 30% to 70%. 
Nonetheless, the open-loop nature of the methods does not guarantee optimal soil moisture levels, which 
could compromise the quality and volume of the crops, considering that improper irrigation affects soil 
nutrients. Consequently, adopting precision irrigation methods is necessary. Precision irrigation 
approaches employ parameters, including soil moisture, weather patterns, rainfall amounts, and crop 
variety, to accurately gauge the required water quantity and irrigation timing. Adopting the system could 
optimise crop yields and reduce labour expenses for farmers [3].  

The Internet of Things (IoT) has contributed to advancing the field of agriculture into a smarter 
dimension. Moreover, the IoT enables a seamless integration of various soil sensors with tools, such as water 
pumps, sprinklers, and solar devices, by leveraging wireless technology. The synergy offers sophisticated 
instruments to farmers, allowing them to navigate complex farming activities, from preliminary soil 
preparation to sophisticated crop yield predictions throughout the entire growth and harvest cycle [5].  

A myriad of modern irrigation techniques has been introduced, which are primarily based on essential 
agricultural data, such as soil moisture and weather patterns, to allocate water at specified periods. 
Nonetheless, the techniques have shortcomings. Among the disadvantages of the irrigation approaches are 
their open-loop design, which commonly leads to suboptimal irrigation practices crucial for maintaining 
healthy crops and nutrient-rich soil. Insufficient mechanisms to incorporate real-time alterations in soil 
moisture levels are another significant shortcoming of the techniques. Therefore, the systems might not 
possess the capacity to adapt to the varied weather conditions and unique characteristics in different 
regions. 

Precision agriculture (PA) or “smart farming” is a pioneering approach to fulfil the demands of 
sustainable agriculture. Machine learning (ML) is central to the transformative wave by enabling capable 
machines to learn without specific programming. Coupling ML with IoT-integrated agricultural equipment 
could then evolve agricultural practices [6].  

The PA is vital in the evolution of real-time irrigation and moisture prediction systems, characterised 
as an agriculture management approach driven by information technology (IT) [7]. Implementing the 
technology could transition farming into a more progressive and sustainable domain. Farmers can also 
meticulously gauge the water requirements for specific crops through automated irrigation controllers 
incorporated with real-time surveillance from PA [8]. Furthermore, the volume and irrigation timing can 
be ascertained utilising data from soil properties, environmental factors, and local temperature [9]. Previous 
studies have also affirmed that enhancements in water efficiency, reduced energy consumption, and 
augmented crop yields are due to the integration of moisture, temperature, and crop sensors into real-time 
irrigation systems. 

Extensive research has contributed to novel modelling systems to generate a more precise and 
adaptable system for the agricultural domain. For instance, regression models utilise climate and soil data 
as inputs to forecast weekly irrigation requirements [10], while fuzzy decision systems are employed to 
predict soil content and local weather data as input [11]. Meanwhile, identification models rely on soil 
moisture and climatic data to estimate soil moisture levels [12]. The predictions are obtained through 
statistical methodologies, where input data and discerning underlying patterns in historical records are 
correlated spatially and temporally. Accordingly, the modelling approach is primarily data-driven, 
dissimilar to conventional approaches. Consequently, ML-based predictions frequently demonstrate 
superior accuracy in many scenarios while requiring fewer data points, outperforming those derived from 
mechanistic models [13]. 

This study conducted a critical literature review of all core articles to assess advancements in ML-
driven irrigation systems and their effects on optimising freshwater resources for agricultural requirements. 
The articles were selected based on stringent criteria, including relevance to precision irrigation, real-time 
soil and weather data utilisation, the incorporation of advanced ML techniques like PLSR, ANFIS, long 
short-term memory (LSTM), and the application of IoT in agriculture. The articles were critically reviewed 
for their methodological rigour, including research objective clarity, methodology robustness, and the 
significance of findings. This study also focused on contributions to reducing water wastage, enhancing 
crop yields, and the innovative employment of technology to accurately predict soil moisture levels and 
crop needs. Overall, the findings indicated a shift towards more sustainable and efficient farming practices, 
underscoring the pivotal role of technology in addressing the challenges of water usage in agriculture. 
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1.1. Related Work on the Different Models Utilised in PA 

Numerous researchers have been developing ML-driven irrigation systems to optimise the utilisation 
of freshwater resources. For instance, Navarro-Hellín et al. [10] created an automated system designed to 
assist agricultural irrigation management. The system precisely anticipates the crop water requirements, 
utilising soil data and weather factors, which is a departure from prior systems that did not employ real-
time soil metrics to dictate irrigation volumes. The system utilises real-time soil data within a closed 
feedback system to ensure that potential discrepancies are promptly addressed. Therefore, accumulated 
errors that can arise from manual weekly water estimations by farmers are reduced. Two primary ML 
strategies that are also employed in the system, PLSR and ANFIS, underpin its analytical and decision-
making capabilities. The effectiveness of the system is then assessed by comparing it to traditional farming 
methods that do not employ the support component. Three commercial farming environments were 
involved during the evaluation of the irrigation system, and data from 2014 to 2015 were employed. 
According to preliminary findings, accurate results were obtained when soil sensors were incorporated, 
with a 22% reduction in errors compared to methods that did not employ the sensors [10].  

Zhang [14] developed a novel framework for predicting water table depths. The model was specifically 
designed to facilitate groundwater resources management in agricultural settings. In the model, an LSTM 
and a densely connected layer were merged, deviating from traditional neural network models. The 
approach is also relatively uncharted in hydrological research. Upon evaluation in the Hetao Irrigation 
District, the model demonstrated proficiency, particularly when estimations for specific sub-regions against 
the entire district were compared. Moreover, the LSTM layer captures time-related patterns in the dataset, 
and the dropout technique mitigates overfitting concerns, offering added advantages. The densely 
connected layer enhances the model's learning potential further. Conclusively, the novel approach provides 
a dependable means for predicting water table depths, especially in regions with limited hydrogeological 
data. Future studies could also expand or merge the technique with other methods, such as Principal 
Component Analysis (PCA) or wavelet transform. Furthermore, the adaptability of the framework enables 
its employment for other time series predictions, including soil moisture alterations and streamflow 
predictions [14].  

A deep learning approach utilising the recurrent neural network (RNN) was created by [15] to forecast 
the wheat crop yield in the northern region of India. The study incorporated LSTM to address the vanishing 
gradient issue common in RNNs. Assessments then ensued, utilising a dataset spanning 43 years. The 
performance of the proposed RNN-LSTM model was also compared with three other ML algorithms. 
Superior results were recorded, with an RMSE of 147.12 and MAE of 60.50, which outperformed the 
Artificial N15eural Network, Random Forest, and Multivariate Linear Regression models. Furthermore, the 
predictions offered by the RNN-LSTM were notably closer to the actual values, indicating effectiveness [15].  
A bountiful yield necessitates early disease detection and maintaining optimal soil moisture. Consequently, 
Alameen developed a system to enhance agricultural productivity by detecting diseases and predicting soil 
moisture content. The proposed algorithms demonstrated notable accuracy in predicting soil water content. 
Soil moisture levels were also anticipated when sensors were employed, thereby guiding farmers on when 
to water their crops. Moreover, the utilisation of Logistic Regression and LSTM-RNN ensured cost-effective 
solutions with significant precision, improving farming practices [16].  

In another study, Kashyap et al. introduced DLiSA, a deep learning neural network-powered IoT 
irrigation system tailored for PA. The DLiSA is adaptable to diverse weather conditions across different 
time frames, a distinct benefit from conventional models. Moreover, the system can forecast daily soil 
moisture content, irrigation timing, and the precise amount of water required for crops by leveraging the 
capabilities of the LSTM. Simulation outcomes also revealed the superior water conservation capabilities of 
DLiSA to prevailing models in test agricultural zones [3]. 

An ML approach was implemented by Kalaiselvi et al. [17] to recommend appropriate crops based on 
various factors, including pH, temperature, and rainfall, achieving an impressive prediction accuracy of 
98.2273%. Although PA is commonly associated with irrigation, it is equally significant in fertilisation. 
Advances in remote sensing, including radar imagery and satellites, have also enhanced fertilisation by 
facilitating algorithm development to gauge soil conditions [18]. Another application is the employment of 
spectroscopy-based ML to determine the optimal harvest time for edamame by assessing its evolving 
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physical and chemical properties [19]. In a recent innovation, Murugamani et al. [20] introduced 5G-enabled 
IoT solutions for PA, where an SVM algorithm is employed to detect leaf disease and monitor soil quality. 
The method boasted a 98.34% accuracy rate in pinpointing leaf diseases.  

A study revealed that artificial neural networks (ANN) provided the most precise estimates for 
subsurface soil moisture in mountainous regions [21]. Nevertheless, the exponential filter (ExpF) method 
outperformed other approaches in capturing temporal soil moisture levels. The study was conducted in the 
Qilian Mountains of China and employed in situ soil moisture data from various depths (from 10 cm to 70 
cm) to assess the performance of three estimation techniques. Based on performance, the CDF matching 
method was not recommended, while the ExpF technique accurately estimated moisture contents from 
surface data (from 0 cm to 10 cm) for depths between 10 cm and 20 cm and from 0 cm to 70 cm. Moreover, 
utilising a generalised optimal characteristic time (Topt) for the entire area was almost as effective as 
applying station-specific Topt values. The ExpF method also provided reasonable accuracy (median R of 
0.65) when validated against in situ measurements with the SMAP_L3 surface soil moisture satellite 
product, suggesting an improvement from the SMAP_L4 root zone product for mountainous terrains. 

Table 1 summarises the reviewed articles in this study, emphasising the escalating demand for smart 
agricultural systems integrated with IoT and ML algorithms. Critically analysing irrigation patterns, 
climate, and crop dynamics is essential in establishing the ideal IoT-enabled PA model. Consequently, a 
new IoT-based soil moisture management study addresses several research gaps in PA by introducing an 
advanced real-time subsurface moisture monitoring system that applies IoT-enabled time domain 
reflectometer (TDR) technology. The approach allows precise moisture tracking at various root depths, 
which is vital for crops with substantial water demand. Integrating the system with an RNN-LSTM model 
for predictive analytics differentiates it from prior work, which yielded water savings and economic 
benefits. Furthermore, a six-month data collection phase and a validation assessment in a real plantation 
environment ensured robust model training that accounts for seasonal changes and different crop growth 
stages. The procedure substantially improved traditional periodic data collection methods and simulations 
commonly found in existing literature. 

The PA landscape is rapidly evolving through the incorporation of ML and IoT technologies, with each 
bringing novel approaches to enhancing agricultural productivity and sustainability. The innovations, such 
as the real-time soil and weather data to optimise irrigation approach introduced by Navarro-Hellín, the 
novel framework proposed by Zhang for predicting groundwater levels with LSTM, and the deployment 
of deep learning models, including RNN-LSTM, for accurate crop yield forecasts, signify a leap forward in 
increased efficiency in managing agricultural resources. Moreover, systems such as DliSA leverage IoT and 
LSTM for precise irrigation scheduling, demonstrating superior water conservation capabilities, while 
SVM-based solutions suggested by Murugamani offer high-accuracy leaf disease detection and soil 
monitoring. The advancements reveal improvements in terms of effectiveness and performance over 
traditional methods and highlight the potential for future applications in ensuring global agricultural 
sustainability. Furthermore, the systems have a shared goal of optimising agricultural practices through 
technology, potentially leading to a future where PA can adapt to and meet the complex demands of food 
production and resource management. 

Table 1. A comprehensive review of similar articles and benchmarking of available technologies with the proposed 
solution developed and reported in this study 

Reference Focus area Methodology Innovation/ 
Contribution 

Result/ 
Performance 

Environment 
assessed 

Navarro-Hellín et 
al. [10] 

Irrigation 
management 

Soil sensors + PLSR 
and ANFIS 

Real-time soil data 
for water 
requirements and 
a closed feedback 
system 

A 22% reduction in 
irrigation errors 

Commercial farms 

Zhang et al. [14] Groundwater 
management 

LSTM with 
densely connected 
layers 

Prediction of water 
table depths, 
LSTM for time 
patterns, and 
dropout to prevent 
overfitting 

Proficient in sub-
region predictions 

Hetao Irrigation 
District 
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Bali Nishu et al. 
[15] 

Crop yield 
forecasting 

RNN with LSTM Addressing the 
vanishing gradient 
issue and 
comparing with 
ANN, RF, MLR 

A 147.12 RMSE 
and 60.50 MAE; 
outperformed 
other models 

Northern India 

Alameen et al. [16] Disease detection, 
soil moisture 
prediction 

Logistic 
Regression, LSTM-
RNN 

Early disease 
detection and 
precise soil 
moisture 
predictions 

Substantial 
accuracy in soil 
water content 
prediction 

Not specified 

Kashyap et al. [3] IoT-based 
irrigation system 

LSTM-based 
neural network 
(DLiSA) 

Predicts soil 
moisture, 
irrigation timing, 
and water volume 
necessary 

Superior water 
conservation 
capabilities 

Test agricultural 
zones 

Kalaiselvi et al. [17] Crop 
recommendation 

ML techniques Recommends 
crops based on pH, 
temperature, and 
rainfall 

A 98.2273% 
prediction 
accuracy  

Not specified 

Yu Dajun et al. [19] Harvest time 
determination 

Spectroscopy-
based ML 

Determines the 
ideal harvest time 
via physical and 
chemical property 
assessment  

Not specified Not specified 

Murugamani et al. 
[20] 

Leaf disease 
detection, soil 
quality monitoring 

SVM with 5G-
enabled IoT 

Significant 
accuracy rate in 
disease detection 
and soil quality 
monitoring 

A 98.34% accuracy 
rate in leaf disease 
detection 

Not specified 

Jie Tian et al. [21] 
 

Subsurface soil 
moisture 
estimation 

ANN, ExpF, CDF 
matching 

Precision in 
subsurface soil 
moisture 
estimation and 
ExpF captures 
temporal 
variations 

ANN precise but 
ExpF better for 
temporal 
variations; median 
R of 0.65 for ExpF 
with SMAP_L3 

Qilian Mountains, 
China 

This study IoT-based soil 
moisture 
management 

IoT-enabled 
sensors with TDR 
and an RNN-
LSTM model 

Real-time sub-
surface moisture 
monitoring, 
advanced sensing, 
IoT integration, 
and water usage 
reduction 

95 ± 2% accuracy, 
MAE of 0.6362, 
and RMSE of 
1.1544 

Real plantation site 

This study was profoundly influenced by the methodologies from the articles reviewed, particularly 
the emphasis on real-time data acquisition, which led to the integration of IoT-enabled sensors for 
meticulous moisture monitoring. The ability of LSTM in capturing temporal patterns in agricultural and 
hydrological contexts also contributed to the adoption of an RNN-LSTM model for precise moisture level 
predictions. This study also implemented a deep learning-centric approach arising from the effective 
application of ML strategies, especially the robust performance of LSTM in complex prediction tasks. 
Moreover, the potential of combining sensor data with advanced analytics observed in previous studies led 
to this study synergising IoT technologies with LSTM-RNN for real-time data analysis.  

The innovative employment of IoT frameworks in PA, as evidenced by systems such as DLiSA, 
underscores the feasibility and efficacy of employing IoT and LSTM in tandem, leading this study to 
develop a sophisticated, integrated system for enhancing irrigation efficiency and agricultural sustainability 
through accurate sub-surface moisture monitoring. Accordingly, this study focused on developing an IoT-
based real-time irrigation monitoring system utilising a subsurface soil moisture sensor to capture data on 
water uptake close to plant roots. Implementing RNN-based LSTM algorithms to predict soil moisture 
levels up to the root depth with IoT for enhanced data transmission and analysis was also performed. 

The system proposed in this study integrated real-time sub-surface moisture monitoring with an 
automated irrigation scheme, distinguishing it from other methods. Custom soil moisture probes equipped 
with sensors across multiple root-depth levels within a high-demand area were also deployed at the 
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plantation site with TDR technology. Subsequently, data were collected for six months utilising a wireless 
sensor network (WSN) to train an RNN that incorporates long short-term memory (LSTM) algorithms, 
which enabled substantially accurate moisture level predictions. 

This study emphasised the importance of subsurface processes, aiming to optimise irrigation schedules 
tailored for specific crops. Firstly, the IoT-related research domain was assessed before determining the 
methodologies for preparing and deploying IoT-enabled moisture probes. The procedure for data 
acquisition via IoT and the design of the RNN-based LSTM model were also detailed. Finally, the prediction 
results were discussed. Overall, this study offered improved comprehension of the root behaviours of crops 
interfaced with IoT-driven irrigation systems to conserve water and reduce wastage of soluble fertilisers in 
the agricultural domain. 

2. Bridging Key Gaps in Precision Irrigation 

Several critical gaps in smart irrigation technologies remain unaddressed despite notable advances 
observed. For instance, most existing models rely on surface or shallow soil moisture data, utilising datasets 
typically confined to a single growth season, temperate regions, and depths shallower than 20 cm to 30 cm. 
Resultantly, the models commonly fail to generalise to deeper root-zone dynamics, tropical soils, or multi-
season conditions. This study compiled a 180-day, five-depth soil moisture dataset in a humid tropical 
environment and systematically benchmarked LSTM and transformer-based models on the long-horizon 
time series to address the issue. 

The IoT-based irrigation platforms frequently terminate at the sensing or predictive stage, leading to 
manual or rule-based actuation management. Concerns also arose from requiring energy optimisation for 
multi-depth sensor nodes and on-farm data cybersecurity. In this study, an end-to-end, solar-powered 
ESP32 mesh network that encrypts every uplink was introduced, which estimated its own energy reserves 
and autonomously triggered irrigation valve events based on predictive model outputs. Therefore, secure, 
energy-efficient, and closed-loop irrigation is enabled in real time.  

Current evaluations of precision irrigation systems predominantly rely on technical metrics, such as 
RMSE, MAE, or water savings, which overlook agronomic and economic outcomes. Consequently, this 
study integrated ion-selective probes with the moisture network and computed holistic performance 
indicators, including yield-normalised water utilisation, cost savings per hectare, and nutrient-leaching 
indices, shifting the focus from predictive accuracy alone to decision quality and economic viability. 
Overall, this study provided actionable solutions for farmers, irrigation managers, and technology that 
support sustainable, cost-effective, and data-driven irrigation practices in real-world agricultural systems 
by developing an integrated, field-ready framework that combines deep-root moisture prediction, secure 
IoT-based actuation, and holistic agronomic-economic performance metrics. 

3. Sub-Surface Soil Moisture Probe Development 

This study designed and implemented an advanced sensor probe equipped with a controller. The 
sensor probe incorporated a WSN system, which facilitated real-time irrigation monitoring. A WSN is a 
spread-out sensor network that tracks various physical or environmental parameters, including 
temperature, humidity, and moisture, that are then relayed to a central hub. The network is commonly 
referred to as a wireless moisture sensor network (WMSN) when concerning moisture sensing.  

The WSN networks are inherently two-way, which allows precise control over sensor operations. 
Multiple nodes are involved in a WSN, varying from a handful to several hundreds or even thousands. 
Each node is typically linked to one or more sensors. A sensor module, a processing module, a 
communication module, and a battery-driven power module make up a sensor network node. Real-time 
data transmission can be enhanced, and remote monitoring and control capabilities can be enabled by 
integrating IoT components, increasing the efficiency and versatility of the system. The system developed 
in this study incorporated a solar panel to energise the system upon its set-up at the research location. The 
system could be linked to up to eight distinct sensors, including soil moisture, temperature, irradiance, and 
rainfall sensors, as shown in Figure 1. 
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Figure 1. The block diagram of the WSN-based soil moisture sensor probe 

An embedded memory card and a USB port are also provided for manual data collection, charging, 
and data extraction. For WSN, this study utilised a sensor node, a router, and a gateway, and the sensor 
nodes were set to relay moisture information to the closest router every 10 minutes. Employing multiple 
routers within a network enhances the coverage and facilitates connections of the system through a meshed 
system. Keeping the router operational at all times also ensured uninterrupted data communication from 
the sensor node to the gateway.  

3.1. Sub-Surface Moisture Sensor Probe 

Following the development of the subsurface sensor, this study was executed at a plantation site, as 
illustrated in Figure 2(a), while Figure 2(b) displays the sensor probe positioned in the field. The probes 
were set up in a "Star Topology" for optimal coverage in the designated region, which is reportedly an 
excellent topology for real-time applications [22]. The optimal temperature for the moisture sensor 
employed in this study was between −0°C and 80°C, which is the average temperature in plantations.  

 

 
Figure 2. The (a) in-house developed subsurface soil moisture sensor probe, (b) deployment of the soil moisture 

sensor probe, and (c) flowchart of the developed solution at the plantation 

This study utilised a temperature-dependent sensor in the moisture probe. Therefore, the accuracy and 
performance of the probes were influenced by ambient temperature conditions. The attribute made the 
probe ideal for deployment in tropical countries that share a similar climate to Malaysia, where notable 
humidity, warm temperatures, and consistent weather patterns throughout the year are typical. Moreover, 

(C) 
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the property allows the sensors to function optimally without requiring extensive recalibration for different 
environmental conditions.  

Five sensor probes were deployed in the research area, and sensor probes 1 through 4 gather and relay 
information to sensor probe 5. This central probe, sensor probe 5, also aggregated its own data and the 
information obtained from the other sensors before forwarding it to the cloud through the Internet. This 
study employed a mobile application designed to oversee and manage the sensors, while data retrieval was 
facilitated via the cloud. The method for acquiring soil moisture information is illustrated in Figure 2(c).  

4. The Proposed LSTM-RNN Model Network 

The model suggested in this study could predict soil moisture contents one day in advance for the 
study area. Soil moisture predictions are obtained by processing the hydrological data, encompassing soil 
moisture content, temperature, humidity, and wind, to forecast the soil moisture levels for the next day 
through the LSTM memory units in the RNN-based LSTM model. Meanwhile, the LSTM-RNN algorithm 
was designed to process temporal data, i = [i1, i2… it…id], with d representing consecutive days with 
linearly independent parameters. The data points are concurrently managed within the memory cells in the 
LSTM network to generate the predictions, denoted as SM(t+1).  

In the model developed in this study, data from the sensor nodes form the current input vector for 
each time instance (1 ≤ t ≤ d). For example, Lt = [T(t), H(t), SM(t), R(t)] is processed within each memory cell 
of the LSTM network, where T(t), H(t), SM(t), and W(t) are the daily average values for temperature, 
humidity, soil moisture content, and wind, respectively. Subsequently, a swift time-checking plot is utilised 
to evaluate the dataset across all sensors.  

A MinMax scaler was applied to standardise the dataset employed in this study. A two-layered LSTM-
RNN neural network consisting of d memory units in each layer is also utilised. In each LSTM structure, a 
hidden state vector, ht, a cell memory vector, ct, and three gates are utilised to manage the information flow 
in the LSTM neural network. The initial gate is the forget gate, which is responsible for deciding which data 
from the previous cell memory state, ct-1, should be discarded and to what degree. Equation (1) represents 
the output vector for the forget gate. 

Ft =  σ (WFit +  XFht − 1 +  BF)                                                                                                              (1) 
where the value of Ft is within the {0,1} range and represents the sigmoid function, WF and XF are 

adjustable weight parameters, while BF signifies the bias vector.  
Collectively, the parameters in Eq. (1) are recognised as trainable coefficients. For a specific instance (t 

= 0), ht and ct are initialised to a zero-length vector determined by the user-defined input parameter in the 
network. Subsequently, Equation (2) is applied to update the cell memory state vector by the tanh 
(hyperbolic tangent) layer. The coefficients WÇ, XÇ, and BÇ in the equation are another set of trainable 
parameters. 

Çt =  tanh (WÇit +  XÇht− 1 +  BÇ)                                                                                                          (2) 
where Çt falls within the range {-1,1}.  
The data employed to modify the cell memory state, Çt, at the current time step is partly governed by 

the result from the second gate, which is commonly referred to as the input gate. Equation (3) represents 
the equation applied for the second gate, where the coefficients WĪ, XĪ, and BĪ belong to another set of 
trainable parameters specific to the input gate. 

Īt =  σ(WĪiĪ +  XĪht − 1 +  BĪ)                                                                                                                          (3) 
where Ī is within the range {0,1} and represents a sigmoid function.  
Equation (4) was employed to update the cell memory state vector with the outcomes from Eqs (1) and 

(3). The initial term from the equation dictates the segments from the previous cell memory state vector, Çt-
1, that should be discarded. As the value of Ft approaches zero, information is forgotten, while information 
is retained when Ft approaches 1. Similarly, the subsequent term determines which new information should 
be stored, where more information is stored when Īt is close to one, whereas Īt approaching zero results in 
less information being stored. 

ct =  Ft •  ct − 1 +  Īt •  Çt                                                                                                                                 (4) 
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where • represents the element-wise multiplication between the and the memory state vector. The final 
gate is the output gate, ot. The third gate manages the information from the current cell memory state vector 
that will be relayed to the subsequent hidden state, ht. Equation (5) is applied for the final gate, where the 
parameters Wo, Xo, and Bo are the set of trainable coefficients associated with the output gate. Moreover, 
the updated hidden state, ht, can be derived by referencing Eqs (4) and (5) and applying Equation (6). 
Finally, the ultimate output from the LSTM neural network layer is directed to a densely connected layer 
with just one neuron, and the final predicted output, Ypre, is computed by employing Equation (7). 

ot =  σ(Woit +  Xoht− 1 +  Bo)                                                                                                                                    (5) 
ht =  tanh (ct)  •  ot                                                                                                                                                               (6) 
Ypre =  Wnhd +  Bn                                                                                                                                                                (7) 
where ot falls within the range {0,1} and represents a sigmoid function, hd defines the output of the 

last LSTM layer, and Wn and Bn are the weight parameters and bias values for the densely connected layer, 
respectively.  

4.1. Procedure for Training the LSTM Model 

This study developed a method for predicting soil moisture utilising five sensors in an LSTM-RNN 
model, and the Spyder (Anaconda) application was employed for coding. The necessary libraries were also 
imported for analysis and calculations, while the data collected and analysed from the sensors at different 
depths were imported for utilisation in the prediction model. Moreover, this study obtained temperature 
and humidity data from the weather department, and a real-time satellite API was employed as real-time 
rain data in the prediction model algorithm.  

The dataset obtained in this study was split into training and test subsets. Over 80% of the data was 
allocated for training the LSTM model, while the remaining portion was applied as the test set to validate 
the model and assess its predictive accuracy. The LSTM model demonstrated its adeptness at managing 
time series data due to its capacity to store past information via memory blocks. Figure 3 illustrates the 
summary of the procedure for training the prediction model by applying the RNN-LSTM algorithm. 

This study carefully selected hyperparameters based on empirical evaluations and prior research to 
ensure optimal performance of the LSTM model for soil moisture prediction. The final configuration 
consisted of two LSTM layers, each with 64 units, providing a model with balanced complexity and 
computational efficiency. A dropout rate of 0.2 was then applied after each layer to mitigate overfitting. A 
32-batch size was also chosen to enhance training stability and memory efficiency. Subsequently, the Adam 
optimiser was employed due to its adaptive learning rate and superior convergence properties, while the 
loss function utilised was mean squared error (MSE), given its effectiveness in continuous variable 
predictions. The model developed in this study was trained for 100 epochs, which was determined through 
convergence analysis to ensure adequate learning without excessive computation time. 

 
Figure 3. The training prediction model with the RNN-LSTM algorithm flowchart 
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In this study, a sensitivity analysis was conducted by varying one hyperparameter at a time while 
keeping others constant to validate the robustness of the proposed configuration. Based on the outcomes, 
increasing the number of LSTM layers beyond two diminished accuracy improvements and increased 
computational cost. Batch sizes under 16 also led to unstable training, whereas values over 64 slowed 
convergence. Furthermore, dropout rates exceeding 0.3 significantly degraded model performance, while 
lower values led to overfitting.  

Among the different optimisers assessed in this study, Adam consistently outperformed alternatives, 
including SGD and RMSprop, regarding convergence speed and stability. The systematic approach to 
hyperparameter selection and sensitivity analysis ensured that the developed model achieved notable 
predictive accuracy while maintaining generalisability across different datasets. This study also applied 
Keras and Tensorflow functions to calculate the loss of the prediction model for the LSTM, which is 
represented by Equation (8). 

Loss =  ∑ (𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒊𝒊� )𝟐𝟐𝑵𝑵
𝒊𝒊=                                                                                                                                        (8) 

where yi is the calculated value at time i and 𝑦𝑦𝚤𝚤�  denotes the value predicted at time i.  
Previous studies have indicated that LSTM models exhibited limitations in determining the optimal 

number of LSTM layers and memory blocks in each layer, necessitating repeated evaluations and analysis. 
In the proposed model, the ADAM optimisation algorithm was employed to optimise the network loss, and 
the ideal epoch number and batch size were determined through experimentation. The results are discussed 
in the next chapter. Moreover, the number of hidden layers was varied between 1 and 3, while the total 
number of layers was established by utilising optimised results obtained. 

Post-preparing the dataset for assessment and obtaining predictions, the results were validated and 
evaluated. The MAE, root mean square error (RMSE), and the coefficient of determination (R2) were also 
calculated to appraise the derived outcomes. The MAE value denotes the average absolute error reading by 
determining the selected position of the predicted value error, which is established with Equation (9). 
Therefore, a lower MAE value signifies a better prediction model, considering that it can provide the 
required value of the square of the difference between the estimated and real variable values. The data can 
also be employed to quantify the data deviation point. 

MAE =  ∑ (𝒚𝒚𝒊𝒊 −𝒚𝒚𝒊𝒊� )𝑵𝑵
𝒊𝒊=𝟏𝟏

𝑵𝑵
                                                                                                                                                  (9) 

The square root of MSE gives rise to RMSE. Consequently, MSE values were positive, as the error 
values obtained were squared. Commonly, the value of RMSE ranges from 0 to ∞, where a prediction model 
is considered flawless and perfect if it can achieve an RMSE value of 0. Equations (10) and (11) were 
employed to calculate the MSE and RMSE values of the model proposed in this study. 

MSE =  ∑ (𝒚𝒚𝒊𝒊 −𝒚𝒚𝒊𝒊� )𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏

𝑵𝑵
                                                                                                                                                           (10) 

RMSE =  �∑ (𝒚𝒚𝒊𝒊 −𝒚𝒚𝒊𝒊� )𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏

𝑵𝑵
                                                                                                                                                   (11) 

 The R2 was calculated to define the perfection of the output value predicted by the proposed model, 
where the value could be between -∞ and 1. If the proposed model can obtain an R2 value approaching 1, it 
would be considered an ideal prediction model. Equation (12) was applied to determine the R2 values in 
this study. 

 R2 = ∑ (𝒚𝒚𝒊𝒊 −𝒚𝒚�)𝟐𝟐−∑ (𝒚𝒚𝒊𝒊 −𝒚𝒚𝒊𝒊� )𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏

𝑵𝑵
𝒊𝒊=𝟏𝟏

∑ (𝒚𝒚𝒊𝒊 −𝒚𝒚�)𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏

                                                                                                                                  (12) 

where, 𝒚𝒚𝒊𝒊 defines the measured value at time i, 𝒚𝒚 denotes the mean of 𝒚𝒚𝒊𝒊, (i=1…, N), and 𝒚𝒚𝒚𝒊𝒊 is the 
predicted value at time i.  

4.2. Calibration of Soil Sensor and Implementing Probe Design 

This study collected soil specimens from a designated research site. The specimens were then placed 
in a compact beaker before determining their moisture levels and calibrating the sensor. A digital weighing 
scale was employed during an initial assessment of the mass of the soil specimens, represented as Ms. 
Subsequently, the specimens were oven-dried and weighed again to obtain Md, their dry weight.  
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Specific quantities of water were introduced to the desiccated soil specimens in this study. Readings of the 
soil moisture content were then recorded on multiple occasions to achieve a consistent average. Figure 4 
demonstrates a flowchart of the calibration of the sensors implemented in this study. The procedure was 
continued until the sensor measurements stabilised, which signals the attainment of peak saturation. 
During the experiment, the amount of soil in every beaker was not altered to maintain the consistency of 
moisture readings. The findings are detailed in Table 2. 

 
Figure 4. A flowchart of the sensor calibration procedure 

 Table 2. The Volumetric Water Content (VWC)-based sensor calibration 
Amount of 
water (g) 

Moisture sensor reading (%) Average moisture 
sensor reading 

Calculate
d VWC 
(%) Trial 1 Trial 2 Trial 3 

5 29.92 32.65 29.75 30.77 7.88 
10 48.55 49.25 49.32 49.04 15.77 
15 66.72 68.07 67.59 67.46 23.65 
20 77.84 79.62 75.33 77.60 31.54 
25 87.83 88.92 86.32 87.69 39.42 
30 92.39 96.19 94.76 94.45 47.30 
35 98.89 99.45 98.75 99.03 55.19 

The following are the details employed for calculating the VWC for the soil sourced from the research 
field before being oven-dried. Equation (13) was then applied to calculate the VWC of the specimens.  

(i) Volume of soil Vs = πr2h = 63.42cm3  
(ii) Mass of the container = 55.30 g 
(iii) Gross initial soil mass = 155.42 g  
(iv) Gross dried soil mass = 135.58 g  
(v) Net initial soil mass, Ms = Gross initial soil mass - Mass of the container = 100.12 g 
(vi) Net dried soil mass, Md = Gross dried soil mass - Mass of the container = 80.28 g  
(vii) Mass of water = Net initial soil mass – Net dried soil mass = 19.84 

⍬𝑣𝑣 =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝜌𝜌 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝜌𝜌 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

= ⍬𝑔𝑔 × 𝜌𝜌 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜
𝜌𝜌 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

= 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 1
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

                                                                             (13) 

⍬v = 19.84 x 1
63.42

= 0.313 𝑐𝑐𝑐𝑐
3

𝑐𝑐𝑐𝑐3 = 0.313𝑚𝑚3

𝑚𝑚3 

According to the results with the sensor, the moisture of the soil specimen obtained from the research 
site was 79%, leading to the VWC for the specific sample being inferred at 31.3%. Following the 
documentation of calibration outcomes, the sensors were then inserted into cylindrical pipes to function as 
probes and positioned in the research area. Calibrations were performed with actual soil samples collected 
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from the farm to ensure accurate measurements in real-world conditions. The process strictly adhered to 
standard procedures to guarantee reliability and consistency. After deployment in the farm, the sensor 
utilised in this study operated flawlessly without errors or performance issues, confirming the effectiveness 
of the calibration process and the suitability of the sensors for agricultural applications. 

4.3. The LSTM Prediction Model Output  

The data extracted from the cloud through sensor probes was critically assessed and organised 
according to the probes and moisture sensors employed. Therefore, the analysis of the procured data was 
enriched and facilitated the prediction model evaluation. The outcomes of the analyses are presented in the 
subsequent sections of this article. A comparison between the actual and forecasted values is demonstrated 
in Figure 3, where both values exhibited a parallel trajectory for all five sensors. 

 

  

 
Figure 5. The prediction and real values recorded by sensors (a) 1, (b) 2, (c) 3, (d) 4, and (e) 5, which were placed 5 cm, 

10 cm, 15 cm, 20 cm, and 25 cm from the surface, respectively 

The LSTM algorithm with two hidden layers utilised in this study recorded an accuracy of 95 ± 2%. 
Meanwhile, the differences between real and predicted values are illustrated in Figure 6. Following the 
obtaining all predicted and real average values for all five probes employed, the accuracy of the proposed 
model was then determined. Resultantly, the training model documented an accuracy of 95% with a 2% 
margin of error. Table 3 summarises the results procured. 

(a) (b) 

(c) (d) 

(e) 



AETiC 2026, Vol. 10, No. 1 95 

www.aetic.theiaer.org 

 
Figure 6. The bar Graph of the average prediction and real values of moisture sensors placed at different depths 

Table 3. The calculated RMSE, MAE, and R2 values from the developed LSTM algorithm 
Validation Testing data 
RMSE 1.1544 
MAE 0.6362 
R2 0.3331 

The increasing volume of acquired data arises from advancements in IoT. Consequently, efficiently 
processing voluminous data while preserving precision is an essential characteristic of a predictive model. 
Employing comprehensive evaluative metrics is then necessary to rigorously appraise the model. The 
predictive model developed in this study had a 95 ± 2% precision by incorporating six months of data from 
moisture sensor probes set up in the research zone. Deploying the RNN-LSTM framework with the 
optimally suited iteration and neuron count also contributed to the exemplary accuracy attained.  

Historically, soil moisture forecasting analyses have predominantly obtained data from sensors 
positioned proximate to the soil. Conversely, this study harnessed sub-surface soil moisture sensors that 
were adept at gauging moisture content up to a one-meter depth, providing a significant advantage for tree-
living crops. In a report, De Benedetto et al. underscored the transformative power of precision irrigation in 
amplifying crop yield. Therefore, integrating deep learning with sensor-derived data enables agriculturists 
to obtain irrigation forecasts tailored to their specific lands. This study leveraged the RNN-LSTM 
framework that is known for its expertise in agricultural time-series forecasting to predict sub-surface 
moisture levels with superior precision. 

5. Conclusion  

This study demonstrated a significant advancement in PA by generating and evaluating an innovative 
soil moisture probe system. The proposed system is also enhanced with the analytical prowess of an RNN 
equipped with LSTM for predictive analysis. Conclusively, this study combined IoT-enabled hardware with 
sophisticated ML algorithms to directly address the critical research gap of optimising irrigation practices 
to mitigate water wastage and enhance crop management strategies. 

A comparative analysis was conducted against state-of-the-art models, where relevant datasets were 
available, to evaluate the effectiveness of the LSTM model suggested in this study. Performance metrics, 
including accuracy, precision, recall, MAE, RMSE, and R², were also analysed to benchmark the proposed 
approach. Based on the findings, the LSTM model achieved an accuracy of 95 ± 2%, demonstrating its 
robustness in predicting soil moisture. 

Among the major contributions of this study is the design of a real-time subsurface soil moisture 
detection system capable of reaching depths of up to one meter. The attribute is crucial for assessing 
moisture at root levels where most water uptake occurs. The predictive accuracy of the model and its robust 
MAE, RMSE, and R² metrics also validated its effectiveness in providing reliable soil moisture predictions. 
Moreover, the accuracy ensures that irrigation can be precisely tailored to the requirements of crops, which 
would lead to significantly reduced water usage and environmental impacts of farming practices. 

From the viewpoint of stakeholders in PA, deploying the system developed in this study could 
translate to direct financial savings through diminished water consumption and labour costs associated 
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with manual irrigation management. Developing a custom mobile application for system interaction also 
enhances user accessibility, allowing seamless integration into existing farming operations. Moreover, the 
findings demonstrated significant potential for scaling up and adapting the technology across different 
agricultural settings and crop types. The notable adaptability and accuracy of the proposed model also 
provided a substantial foundation for future research, including the potential incorporation of fertiliser 
prediction capabilities. Integrating sensors capable of detecting fertiliser levels might enable the system to 
offer comprehensive insights into irrigation and fertilisation requirements, further optimising resource 
management in farming. 

The outcomes in this study could not be directly compared to previous relevant articles, considering 
that most prior research employed different modelling approaches, while this study specifically applied an 
LSTM network. Moreover, LSTM models are particularly well-suited for time-series forecasting due to their 
ability to capture long-term dependencies; therefore, direct comparisons with alternative models, such as 
traditional ML algorithms or other deep learning architectures, may not yield meaningful insights. 
Nevertheless, the performance of the proposed LSTM model was rigorously evaluated with well-
established metrics, including accuracy, MAE, RMSE, and R², which ensured the reliability of the results. 
Future studies may also consider benchmarking the developed system against other deep learning models, 
including gated recurrent units (GRU) or convolutional neural networks (CNN), to offer a broader 
comparative analysis. Furthermore, expanding the dataset and assessing the model across diverse 
agricultural conditions could further validate its generalisability and applicability in PA. 

Currently, several real-time technical data points are unavailable due to ongoing data collection and 
real-time monitoring constraints. Nonetheless, continuous field measurements and IoT-enabled sensors 
have been implemented to enhance data completeness. Additional controlled experiments are also being 
conducted to validate and extrapolate trends based on the existing dataset. Furthermore, this study has 
scheduled an extended phase of data acquisition in the upcoming months to improve the precision of 
moisture level predictions and irrigation optimisation. A broader context to the results will also be attained 
through comparative analysis with similar studies and industry benchmarks in the absence of specific real-
time values. The data from the ongoing efforts will be included in future work, while additional datasets 
may be made available upon request to support further validation and reproducibility. 

Future research can expand the applicability of the proposed system by incorporating additional data 
types and addressing broader aspects of PA. Deploying the model in diverse environmental settings, 
enhancing sensor accuracy, and developing advanced predictive analytics for crop health could be among 
the key areas of improvement. Challenges, including data diversity, user adoption, and environmental 
impacts, could also be addressed through advanced data processing techniques, extensive field testing, user 
training programmes, and system optimisation for sustainability. 

This study offers a technologically advanced yet practical solution to the challenges of irrigation 
management, significantly contributing to the field of PA. The system had successfully minimised water 
overuse through precise moisture monitoring and predictive analysis, paving the way for a more 
sustainable, efficient, and cost-effective farming future. Further refinement and adaptations to include 
additional agricultural inputs, including fertilisation, could also improve the value and effects of the 
proposed system on the industry and benefit various stakeholders in the agricultural sector. Overall, 
incorporating such advanced technologies can redefine modern farming practices and ensure enhanced 
resource efficiency and environmental stewardship. 
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