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Abstract: Water directly influences plant growth and vitality and is a critical resource in precision agriculture (PA).
Soluble fertilisers are transported to plant roots through irrigation, making precise water management essential for
optimising crop productivity and minimising resource wastage. Inadequate or excessive irrigation disrupts nutrient
distribution, increases operational costs, and negatively affects crop yield. Accurate monitoring of sub-surface soil
moisture, particularly at root depth, is therefore vital for effective irrigation control. This study addresses key
limitations in existing PA systems by developing an automated Internet of Things (IoT)-based real-time soil
moisture monitoring and irrigation framework integrated with a recurrent neural network (RNN) employing long
short-term memory (LSTM) for moisture prediction. Customised sub-surface soil moisture probes equipped with
five sensors at different depths were deployed at a real plantation site. The probes utilised time domain
reflectometer (TDR) technology to capture high-resolution moisture measurements. Sensor data were transmitted
to the cloud using an ESP32-based low-range communication module, forming a wireless sensor network (WSN)
across the designated study area. A continuous six-month dataset was collected and analysed to train and validate
the proposed RNN-LSTM model. The model demonstrated strong predictive capability, achieving an accuracy of 95
* 2%, a mean absolute error (MAE) of 0.6362, a root mean square error (RMSE) of 1.1544, and an R? value of 0.3331.
These results confirm the model’s effectiveness in capturing sub-surface soil moisture dynamics under real field
conditions. Overall, the proposed IoT-enabled predictive irrigation system provides a scalable and data-driven
solution for improving irrigation efficiency.
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1. Introduction

Enhancing agricultural output, watershed hydrology, predicting floods, anticipating landslides, and
various other ecosystem benefits requires understanding soil moisture [1, 2]. Agriculture is the top
consumer of water worldwide, accounting for approximately 70% of overall water usage. Creating nearby
soil moisture sensors is increasingly in demand due to limited water resources to improve irrigation and
soil moisture management in farming [3].

Typically, farmers globally rely on visual assessments of crops to determine irrigation schedules. The
approach has led to nearly 50% of water being wasted in conventional irrigation systems [4]. Several
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techniques, such as sprinkle, drip, and furrow irrigation, could cut down water wastage by 30% to 70%.
Nonetheless, the open-loop nature of the methods does not guarantee optimal soil moisture levels, which
could compromise the quality and volume of the crops, considering that improper irrigation affects soil
nutrients. Consequently, adopting precision irrigation methods is necessary. Precision irrigation
approaches employ parameters, including soil moisture, weather patterns, rainfall amounts, and crop
variety, to accurately gauge the required water quantity and irrigation timing. Adopting the system could
optimise crop yields and reduce labour expenses for farmers [3].

The Internet of Things (IoT) has contributed to advancing the field of agriculture into a smarter
dimension. Moreover, the IoT enables a seamless integration of various soil sensors with tools, such as water
pumps, sprinklers, and solar devices, by leveraging wireless technology. The synergy offers sophisticated
instruments to farmers, allowing them to navigate complex farming activities, from preliminary soil
preparation to sophisticated crop yield predictions throughout the entire growth and harvest cycle [5].

A myriad of modern irrigation techniques has been introduced, which are primarily based on essential
agricultural data, such as soil moisture and weather patterns, to allocate water at specified periods.
Nonetheless, the techniques have shortcomings. Among the disadvantages of the irrigation approaches are
their open-loop design, which commonly leads to suboptimal irrigation practices crucial for maintaining
healthy crops and nutrient-rich soil. Insufficient mechanisms to incorporate real-time alterations in soil
moisture levels are another significant shortcoming of the techniques. Therefore, the systems might not
possess the capacity to adapt to the varied weather conditions and unique characteristics in different
regions.

Precision agriculture (PA) or “smart farming” is a pioneering approach to fulfil the demands of
sustainable agriculture. Machine learning (ML) is central to the transformative wave by enabling capable
machines to learn without specific programming. Coupling ML with IoT-integrated agricultural equipment
could then evolve agricultural practices [6].

The PA is vital in the evolution of real-time irrigation and moisture prediction systems, characterised
as an agriculture management approach driven by information technology (IT) [7]. Implementing the
technology could transition farming into a more progressive and sustainable domain. Farmers can also
meticulously gauge the water requirements for specific crops through automated irrigation controllers
incorporated with real-time surveillance from PA [8]. Furthermore, the volume and irrigation timing can
be ascertained utilising data from soil properties, environmental factors, and local temperature [9]. Previous
studies have also affirmed that enhancements in water efficiency, reduced energy consumption, and
augmented crop yields are due to the integration of moisture, temperature, and crop sensors into real-time
irrigation systems.

Extensive research has contributed to novel modelling systems to generate a more precise and
adaptable system for the agricultural domain. For instance, regression models utilise climate and soil data
as inputs to forecast weekly irrigation requirements [10], while fuzzy decision systems are employed to
predict soil content and local weather data as input [11]. Meanwhile, identification models rely on soil
moisture and climatic data to estimate soil moisture levels [12]. The predictions are obtained through
statistical methodologies, where input data and discerning underlying patterns in historical records are
correlated spatially and temporally. Accordingly, the modelling approach is primarily data-driven,
dissimilar to conventional approaches. Consequently, ML-based predictions frequently demonstrate
superior accuracy in many scenarios while requiring fewer data points, outperforming those derived from
mechanistic models [13].

This study conducted a critical literature review of all core articles to assess advancements in ML-
driven irrigation systems and their effects on optimising freshwater resources for agricultural requirements.
The articles were selected based on stringent criteria, including relevance to precision irrigation, real-time
soil and weather data utilisation, the incorporation of advanced ML techniques like PLSR, ANFIS, long
short-term memory (LSTM), and the application of IoT in agriculture. The articles were critically reviewed
for their methodological rigour, including research objective clarity, methodology robustness, and the
significance of findings. This study also focused on contributions to reducing water wastage, enhancing
crop yields, and the innovative employment of technology to accurately predict soil moisture levels and
crop needs. Overall, the findings indicated a shift towards more sustainable and efficient farming practices,
underscoring the pivotal role of technology in addressing the challenges of water usage in agriculture.
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1.1. Related Work on the Different Models Utilised in PA

Numerous researchers have been developing ML-driven irrigation systems to optimise the utilisation
of freshwater resources. For instance, Navarro-Hellin et al. [10] created an automated system designed to
assist agricultural irrigation management. The system precisely anticipates the crop water requirements,
utilising soil data and weather factors, which is a departure from prior systems that did not employ real-
time soil metrics to dictate irrigation volumes. The system utilises real-time soil data within a closed
feedback system to ensure that potential discrepancies are promptly addressed. Therefore, accumulated
errors that can arise from manual weekly water estimations by farmers are reduced. Two primary ML
strategies that are also employed in the system, PLSR and ANFIS, underpin its analytical and decision-
making capabilities. The effectiveness of the system is then assessed by comparing it to traditional farming
methods that do not employ the support component. Three commercial farming environments were
involved during the evaluation of the irrigation system, and data from 2014 to 2015 were employed.
According to preliminary findings, accurate results were obtained when soil sensors were incorporated,
with a 22% reduction in errors compared to methods that did not employ the sensors [10].

Zhang [14] developed a novel framework for predicting water table depths. The model was specifically
designed to facilitate groundwater resources management in agricultural settings. In the model, an LSTM
and a densely connected layer were merged, deviating from traditional neural network models. The
approach is also relatively uncharted in hydrological research. Upon evaluation in the Hetao Irrigation
District, the model demonstrated proficiency, particularly when estimations for specific sub-regions against
the entire district were compared. Moreover, the LSTM layer captures time-related patterns in the dataset,
and the dropout technique mitigates overfitting concerns, offering added advantages. The densely
connected layer enhances the model's learning potential further. Conclusively, the novel approach provides
a dependable means for predicting water table depths, especially in regions with limited hydrogeological
data. Future studies could also expand or merge the technique with other methods, such as Principal
Component Analysis (PCA) or wavelet transform. Furthermore, the adaptability of the framework enables
its employment for other time series predictions, including soil moisture alterations and streamflow
predictions [14].

A deep learning approach utilising the recurrent neural network (RNN) was created by [15] to forecast
the wheat crop yield in the northern region of India. The study incorporated LSTM to address the vanishing
gradient issue common in RNNs. Assessments then ensued, utilising a dataset spanning 43 years. The
performance of the proposed RNN-LSTM model was also compared with three other ML algorithms.
Superior results were recorded, with an RMSE of 147.12 and MAE of 60.50, which outperformed the
Artificial N15eural Network, Random Forest, and Multivariate Linear Regression models. Furthermore, the
predictions offered by the RNN-LSTM were notably closer to the actual values, indicating effectiveness [15].
A bountiful yield necessitates early disease detection and maintaining optimal soil moisture. Consequently,
Alameen developed a system to enhance agricultural productivity by detecting diseases and predicting soil
moisture content. The proposed algorithms demonstrated notable accuracy in predicting soil water content.
Soil moisture levels were also anticipated when sensors were employed, thereby guiding farmers on when
to water their crops. Moreover, the utilisation of Logistic Regression and LSTM-RNN ensured cost-effective
solutions with significant precision, improving farming practices [16].

In another study, Kashyap et al. introduced DLiSA, a deep learning neural network-powered IoT
irrigation system tailored for PA. The DLiSA is adaptable to diverse weather conditions across different
time frames, a distinct benefit from conventional models. Moreover, the system can forecast daily soil
moisture content, irrigation timing, and the precise amount of water required for crops by leveraging the
capabilities of the LSTM. Simulation outcomes also revealed the superior water conservation capabilities of
DLiSA to prevailing models in test agricultural zones [3].

An ML approach was implemented by Kalaiselvi et al. [17] to recommend appropriate crops based on
various factors, including pH, temperature, and rainfall, achieving an impressive prediction accuracy of
98.2273%. Although PA is commonly associated with irrigation, it is equally significant in fertilisation.
Advances in remote sensing, including radar imagery and satellites, have also enhanced fertilisation by
facilitating algorithm development to gauge soil conditions [18]. Another application is the employment of
spectroscopy-based ML to determine the optimal harvest time for edamame by assessing its evolving
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physical and chemical properties [19]. In a recent innovation, Murugamani et al. [20] introduced 5G-enabled
IoT solutions for PA, where an SVM algorithm is employed to detect leaf disease and monitor soil quality.
The method boasted a 98.34% accuracy rate in pinpointing leaf diseases.

A study revealed that artificial neural networks (ANN) provided the most precise estimates for
subsurface soil moisture in mountainous regions [21]. Nevertheless, the exponential filter (ExpF) method
outperformed other approaches in capturing temporal soil moisture levels. The study was conducted in the
Qilian Mountains of China and employed in situ soil moisture data from various depths (from 10 cm to 70
cm) to assess the performance of three estimation techniques. Based on performance, the CDF matching
method was not recommended, while the ExpF technique accurately estimated moisture contents from
surface data (from 0 cm to 10 cm) for depths between 10 cm and 20 cm and from 0 cm to 70 cm. Moreover,
utilising a generalised optimal characteristic time (Topt) for the entire area was almost as effective as
applying station-specific Topt values. The ExpF method also provided reasonable accuracy (median R of
0.65) when validated against in situ measurements with the SMAP_L3 surface soil moisture satellite
product, suggesting an improvement from the SMAP_L4 root zone product for mountainous terrains.

Table 1 summarises the reviewed articles in this study, emphasising the escalating demand for smart
agricultural systems integrated with IoT and ML algorithms. Critically analysing irrigation patterns,
climate, and crop dynamics is essential in establishing the ideal IoT-enabled PA model. Consequently, a
new IoT-based soil moisture management study addresses several research gaps in PA by introducing an
advanced real-time subsurface moisture monitoring system that applies IoT-enabled time domain
reflectometer (TDR) technology. The approach allows precise moisture tracking at various root depths,
which is vital for crops with substantial water demand. Integrating the system with an RNN-LSTM model
for predictive analytics differentiates it from prior work, which yielded water savings and economic
benefits. Furthermore, a six-month data collection phase and a validation assessment in a real plantation
environment ensured robust model training that accounts for seasonal changes and different crop growth
stages. The procedure substantially improved traditional periodic data collection methods and simulations
commonly found in existing literature.

The PA landscape is rapidly evolving through the incorporation of ML and IoT technologies, with each
bringing novel approaches to enhancing agricultural productivity and sustainability. The innovations, such
as the real-time soil and weather data to optimise irrigation approach introduced by Navarro-Hellin, the
novel framework proposed by Zhang for predicting groundwater levels with LSTM, and the deployment
of deep learning models, including RNN-LSTM, for accurate crop yield forecasts, signify a leap forward in
increased efficiency in managing agricultural resources. Moreover, systems such as DIiSA leverage IoT and
LSTM for precise irrigation scheduling, demonstrating superior water conservation capabilities, while
SVM-based solutions suggested by Murugamani offer high-accuracy leaf disease detection and soil
monitoring. The advancements reveal improvements in terms of effectiveness and performance over
traditional methods and highlight the potential for future applications in ensuring global agricultural
sustainability. Furthermore, the systems have a shared goal of optimising agricultural practices through
technology, potentially leading to a future where PA can adapt to and meet the complex demands of food
production and resource management.

Table 1. A comprehensive review of similar articles and benchmarking of available technologies with the proposed
solution developed and reported in this study

Reference Focus area Methodology Innovation/ Result/ Environment
Contribution Performance assessed
Navarro-Hellin ef | Irrigation Soil sensors+ PLSR | Real-time soil data | A 22% reductionin | Commercial farms
al. [10] management and ANFIS for water | irrigation errors
requirements and
a closed feedback
system
Zhang et al. [14] Groundwater LSTM with | Prediction of water | Proficient in sub- | Hetao Irrigation
management densely connected | table depths, | region predictions | District
layers LSTM for time
patterns, and
dropout to prevent
overfitting
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Bali Nishu et al. | Crop yield | RNN with LSTM Addressing  the | A 14712 RMSE | Northern India
[15] forecasting vanishing gradient | and 60.50 MAE;

issue and | outperformed
comparing  with | other models
ANN, RF, MLR
Alameen et al. [16] | Disease detection, | Logistic Early disease | Substantial Not specified
soil moisture | Regression, LSTM- | detection and | accuracy in soil
prediction RNN precise soil | water content
moisture prediction
predictions
Kashyap et al. [3] IoT-based LSTM-based Predicts soil | Superior water | Test agricultural
irrigation system neural  network | moisture, conservation zones
(DLiSA) irrigation timing, | capabilities
and water volume
necessary
Kalaiselvi et al. [17] | Crop ML techniques Recommends A 98.2273% | Not specified
recommendation crops based on pH, | prediction
temperature, and | accuracy
rainfall
Yu Dajun et al. [19] | Harvest time | Spectroscopy- Determines  the | Not specified Not specified
determination based ML ideal harvest time
via physical and
chemical property
assessment
Murugamani et al. | Leaf disease | SVM  with 5G- | Significant A 98.34% accuracy | Not specified
[20] detection, soil | enabled IoT accuracy rate in | rate in leaf disease
quality monitoring disease detection | detection
and soil quality
monitoring
Jie Tian et al. [21] Subsurface soil | ANN, ExpF, CDF | Precision in | ANN precise but | Qilian Mountains,
moisture matching subsurface soil | ExpF better for | China
estimation moisture temporal
estimation and | variations; median
ExpF captures | R of 0.65 for ExpF
temporal with SMAP_L3
variations
This study IoT-based soil | IoT-enabled Real-time sub- | 95 + 2% accuracy, | Real plantation site
moisture sensors with TDR | surface moisture | MAE of 0.6362,
management and an RNN- | monitoring, and RMSE of
LSTM model advanced sensing, | 1.1544
IoT  integration,
and water usage
reduction

This study was profoundly influenced by the methodologies from the articles reviewed, particularly
the emphasis on real-time data acquisition, which led to the integration of IoT-enabled sensors for

meticulous moisture monitoring. The ability of LSTM in capturing temporal patterns in agricultural and
hydrological contexts also contributed to the adoption of an RNN-LSTM model for precise moisture level
predictions. This study also implemented a deep learning-centric approach arising from the effective

application of ML strategies, especially the robust performance of LSTM in complex prediction tasks.

Moreover, the potential of combining sensor data with advanced analytics observed in previous studies led
to this study synergising IoT technologies with LSTM-RNN for real-time data analysis.

The innovative employment of IoT frameworks in PA, as evidenced by systems such as DLiSA,
underscores the feasibility and efficacy of employing IoT and LSTM in tandem, leading this study to
develop a sophisticated, integrated system for enhancing irrigation efficiency and agricultural sustainability
through accurate sub-surface moisture monitoring. Accordingly, this study focused on developing an IoT-
based real-time irrigation monitoring system utilising a subsurface soil moisture sensor to capture data on
water uptake close to plant roots. Implementing RNN-based LSTM algorithms to predict soil moisture
levels up to the root depth with IoT for enhanced data transmission and analysis was also performed.

The system proposed in this study integrated real-time sub-surface moisture monitoring with an

automated irrigation scheme, distinguishing it from other methods. Custom soil moisture probes equipped
with sensors across multiple root-depth levels within a high-demand area were also deployed at the
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plantation site with TDR technology. Subsequently, data were collected for six months utilising a wireless
sensor network (WSN) to train an RNN that incorporates long short-term memory (LSTM) algorithms,
which enabled substantially accurate moisture level predictions.

This study emphasised the importance of subsurface processes, aiming to optimise irrigation schedules
tailored for specific crops. Firstly, the IoT-related research domain was assessed before determining the
methodologies for preparing and deploying loT-enabled moisture probes. The procedure for data
acquisition via IoT and the design of the RNN-based LSTM model were also detailed. Finally, the prediction
results were discussed. Overall, this study offered improved comprehension of the root behaviours of crops
interfaced with IoT-driven irrigation systems to conserve water and reduce wastage of soluble fertilisers in
the agricultural domain.

2. Bridging Key Gaps in Precision Irrigation

Several critical gaps in smart irrigation technologies remain unaddressed despite notable advances
observed. For instance, most existing models rely on surface or shallow soil moisture data, utilising datasets
typically confined to a single growth season, temperate regions, and depths shallower than 20 cm to 30 cm.
Resultantly, the models commonly fail to generalise to deeper root-zone dynamics, tropical soils, or multi-
season conditions. This study compiled a 180-day, five-depth soil moisture dataset in a humid tropical
environment and systematically benchmarked LSTM and transformer-based models on the long-horizon
time series to address the issue.

The IoT-based irrigation platforms frequently terminate at the sensing or predictive stage, leading to
manual or rule-based actuation management. Concerns also arose from requiring energy optimisation for
multi-depth sensor nodes and on-farm data cybersecurity. In this study, an end-to-end, solar-powered
ESP32 mesh network that encrypts every uplink was introduced, which estimated its own energy reserves
and autonomously triggered irrigation valve events based on predictive model outputs. Therefore, secure,
energy-efficient, and closed-loop irrigation is enabled in real time.

Current evaluations of precision irrigation systems predominantly rely on technical metrics, such as
RMSE, MAE, or water savings, which overlook agronomic and economic outcomes. Consequently, this
study integrated ion-selective probes with the moisture network and computed holistic performance
indicators, including yield-normalised water utilisation, cost savings per hectare, and nutrient-leaching
indices, shifting the focus from predictive accuracy alone to decision quality and economic viability.
Overall, this study provided actionable solutions for farmers, irrigation managers, and technology that
support sustainable, cost-effective, and data-driven irrigation practices in real-world agricultural systems
by developing an integrated, field-ready framework that combines deep-root moisture prediction, secure
IoT-based actuation, and holistic agronomic-economic performance metrics.

3. Sub-Surface Soil Moisture Probe Development

This study designed and implemented an advanced sensor probe equipped with a controller. The
sensor probe incorporated a WSN system, which facilitated real-time irrigation monitoring. A WSN is a
spread-out sensor network that tracks various physical or environmental parameters, including
temperature, humidity, and moisture, that are then relayed to a central hub. The network is commonly
referred to as a wireless moisture sensor network (WMSN) when concerning moisture sensing.

The WSN networks are inherently two-way, which allows precise control over sensor operations.
Multiple nodes are involved in a WSN, varying from a handful to several hundreds or even thousands.
Each node is typically linked to one or more sensors. A sensor module, a processing module, a
communication module, and a battery-driven power module make up a sensor network node. Real-time
data transmission can be enhanced, and remote monitoring and control capabilities can be enabled by
integrating IoT components, increasing the efficiency and versatility of the system. The system developed
in this study incorporated a solar panel to energise the system upon its set-up at the research location. The
system could be linked to up to eight distinct sensors, including soil moisture, temperature, irradiance, and
rainfall sensors, as shown in Figure 1.
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Figure 1. The block diagram of the WSN-based soil moisture sensor probe

An embedded memory card and a USB port are also provided for manual data collection, charging,
and data extraction. For WSN, this study utilised a sensor node, a router, and a gateway, and the sensor
nodes were set to relay moisture information to the closest router every 10 minutes. Employing multiple
routers within a network enhances the coverage and facilitates connections of the system through a meshed
system. Keeping the router operational at all times also ensured uninterrupted data communication from
the sensor node to the gateway.

3.1. Sub-Surface Moisture Sensor Probe

Following the development of the subsurface sensor, this study was executed at a plantation site, as
illustrated in Figure 2(a), while Figure 2(b) displays the sensor probe positioned in the field. The probes
were set up in a "Star Topology" for optimal coverage in the designated region, which is reportedly an
excellent topology for real-time applications [22]. The optimal temperature for the moisture sensor
employed in this study was between -0°C and 80°C, which is the average temperature in plantations.

—_—0

¥

[ l =

Figure 2. The (a) in-house developed subsurface soil moisture sensor probe, (b) deployment of the soil moisture
sensor probe, and (c) flowchart of the developed solution at the plantation

This study utilised a temperature-dependent sensor in the moisture probe. Therefore, the accuracy and
performance of the probes were influenced by ambient temperature conditions. The attribute made the
probe ideal for deployment in tropical countries that share a similar climate to Malaysia, where notable
humidity, warm temperatures, and consistent weather patterns throughout the year are typical. Moreover,
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the property allows the sensors to function optimally without requiring extensive recalibration for different
environmental conditions.

Five sensor probes were deployed in the research area, and sensor probes 1 through 4 gather and relay
information to sensor probe 5. This central probe, sensor probe 5, also aggregated its own data and the
information obtained from the other sensors before forwarding it to the cloud through the Internet. This
study employed a mobile application designed to oversee and manage the sensors, while data retrieval was
facilitated via the cloud. The method for acquiring soil moisture information is illustrated in Figure 2(c).

4. The Proposed LSTM-RNN Model Network

The model suggested in this study could predict soil moisture contents one day in advance for the
study area. Soil moisture predictions are obtained by processing the hydrological data, encompassing soil
moisture content, temperature, humidity, and wind, to forecast the soil moisture levels for the next day
through the LSTM memory units in the RNN-based LSTM model. Meanwhile, the LSTM-RNN algorithm
was designed to process temporal data, i = [il, i2... it...id], with d representing consecutive days with
linearly independent parameters. The data points are concurrently managed within the memory cells in the
LSTM network to generate the predictions, denoted as SM(t+1).

In the model developed in this study, data from the sensor nodes form the current input vector for
each time instance (1 < t<d). For example, Lt = [T(t), H(t), SM(t), R(t)] is processed within each memory cell
of the LSTM network, where T(t), H(t), SM(t), and W(t) are the daily average values for temperature,
humidity, soil moisture content, and wind, respectively. Subsequently, a swift time-checking plot is utilised
to evaluate the dataset across all sensors.

A MinMax scaler was applied to standardise the dataset employed in this study. A two-layered LSTM-
RNN neural network consisting of d memory units in each layer is also utilised. In each LSTM structure, a
hidden state vector, ht, a cell memory vector, ct, and three gates are utilised to manage the information flow
in the LSTM neural network. The initial gate is the forget gate, which is responsible for deciding which data
from the previous cell memory state, ct-1, should be discarded and to what degree. Equation (1) represents
the output vector for the forget gate.

Ft = o (WFit + XFht—1 + BF) 1)

where the value of Ft is within the {0,1} range and represents the sigmoid function, WF and XF are
adjustable weight parameters, while BF signifies the bias vector.

Collectively, the parameters in Eq. (1) are recognised as trainable coefficients. For a specific instance (t
=0), ht and ct are initialised to a zero-length vector determined by the user-defined input parameter in the
network. Subsequently, Equation (2) is applied to update the cell memory state vector by the tanh
(hyperbolic tangent) layer. The coefficients WC, XC, and BC in the equation are another set of trainable
parameters.

Ct = tanh (WCit + XCht—1 + BC() (2)

where Ct falls within the range {-1,1}.

The data employed to modify the cell memory state, Ct, at the current time step is partly governed by
the result from the second gate, which is commonly referred to as the input gate. Equation (3) represents
the equation applied for the second gate, where the coefficients WI, XI, and BI belong to another set of
trainable parameters specific to the input gate.

It = o(WII + XIht—1 + BI) 3)

where I is within the range {0,1} and represents a sigmoid function.

Equation (4) was employed to update the cell memory state vector with the outcomes from Eqs (1) and
(3)- The initial term from the equation dictates the segments from the previous cell memory state vector, Ct-
1, that should be discarded. As the value of Ft approaches zero, information is forgotten, while information
is retained when Ft approaches 1. Similarly, the subsequent term determines which new information should
be stored, where more information is stored when It is close to one, whereas It approaching zero results in
less information being stored.

ct = Ftect—1 + It e Ct (4)
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where e represents the element-wise multiplication between the and the memory state vector. The final
gate is the output gate, ot. The third gate manages the information from the current cell memory state vector
that will be relayed to the subsequent hidden state, ht. Equation (5) is applied for the final gate, where the
parameters Wo, Xo, and Bo are the set of trainable coefficients associated with the output gate. Moreover,
the updated hidden state, ht, can be derived by referencing Eqs (4) and (5) and applying Equation (6).
Finally, the ultimate output from the LSTM neural network layer is directed to a densely connected layer
with just one neuron, and the final predicted output, Ypre, is computed by employing Equation (7).

ot = o(Woit + Xoht—1 + Bo) (5)
ht = tanh (ct) ¢ ot (6)
Ypre = Wnhd + Bn (7)

where ot falls within the range {0,1} and represents a sigmoid function, hd defines the output of the
last LSTM layer, and Wn and Bn are the weight parameters and bias values for the densely connected layer,
respectively.

4.1. Procedure for Training the LSTM Model

This study developed a method for predicting soil moisture utilising five sensors in an LSTM-RNN
model, and the Spyder (Anaconda) application was employed for coding. The necessary libraries were also
imported for analysis and calculations, while the data collected and analysed from the sensors at different
depths were imported for utilisation in the prediction model. Moreover, this study obtained temperature
and humidity data from the weather department, and a real-time satellite API was employed as real-time
rain data in the prediction model algorithm.

The dataset obtained in this study was split into training and test subsets. Over 80% of the data was
allocated for training the LSTM model, while the remaining portion was applied as the test set to validate
the model and assess its predictive accuracy. The LSTM model demonstrated its adeptness at managing
time series data due to its capacity to store past information via memory blocks. Figure 3 illustrates the
summary of the procedure for training the prediction model by applying the RNN-LSTM algorithm.

This study carefully selected hyperparameters based on empirical evaluations and prior research to
ensure optimal performance of the LSTM model for soil moisture prediction. The final configuration
consisted of two LSTM layers, each with 64 units, providing a model with balanced complexity and
computational efficiency. A dropout rate of 0.2 was then applied after each layer to mitigate overfitting. A
32-batch size was also chosen to enhance training stability and memory efficiency. Subsequently, the Adam
optimiser was employed due to its adaptive learning rate and superior convergence properties, while the
loss function utilised was mean squared error (MSE), given its effectiveness in continuous variable
predictions. The model developed in this study was trained for 100 epochs, which was determined through
convergence analysis to ensure adequate learning without excessive computation time.

eInput: Initial soil

moisture.

Data Pre-processing e Applied

normalization

method to process . )

data. #Selection of
model’s

Model Development parameters, the

number of
neurons and
epochs.
Training *MAE, RMSE and

R? was used as
evaluation matric.

Validation and
Evaluation

Figure 3. The training prediction model with the RNN-LSTM algorithm flowchart
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In this study, a sensitivity analysis was conducted by varying one hyperparameter at a time while
keeping others constant to validate the robustness of the proposed configuration. Based on the outcomes,
increasing the number of LSTM layers beyond two diminished accuracy improvements and increased
computational cost. Batch sizes under 16 also led to unstable training, whereas values over 64 slowed
convergence. Furthermore, dropout rates exceeding 0.3 significantly degraded model performance, while
lower values led to overfitting.

Among the different optimisers assessed in this study, Adam consistently outperformed alternatives,
including SGD and RMSprop, regarding convergence speed and stability. The systematic approach to
hyperparameter selection and sensitivity analysis ensured that the developed model achieved notable
predictive accuracy while maintaining generalisability across different datasets. This study also applied
Keras and Tensorflow functions to calculate the loss of the prediction model for the LSTM, which is
represented by Equation (8).

Loss = Ni-(vi —¥0)° (®)

where yi is the calculated value at time i and ¥, denotes the value predicted at time i.

Previous studies have indicated that LSTM models exhibited limitations in determining the optimal
number of LSTM layers and memory blocks in each layer, necessitating repeated evaluations and analysis.
In the proposed model, the ADAM optimisation algorithm was employed to optimise the network loss, and
the ideal epoch number and batch size were determined through experimentation. The results are discussed
in the next chapter. Moreover, the number of hidden layers was varied between 1 and 3, while the total
number of layers was established by utilising optimised results obtained.

Post-preparing the dataset for assessment and obtaining predictions, the results were validated and
evaluated. The MAE, root mean square error (RMSE), and the coefficient of determination (R?) were also
calculated to appraise the derived outcomes. The MAE value denotes the average absolute error reading by
determining the selected position of the predicted value error, which is established with Equation (9).
Therefore, a lower MAE value signifies a better prediction model, considering that it can provide the
required value of the square of the difference between the estimated and real variable values. The data can
also be employed to quantify the data deviation point.

MAE = S0 -9 ©)

N

The square root of MSE gives rise to RMSE. Consequently, MSE values were positive, as the error
values obtained were squared. Commonly, the value of RMSE ranges from 0 to e, where a prediction model
is considered flawless and perfect if it can achieve an RMSE value of 0. Equations (10) and (11) were
employed to calculate the MSE and RMSE values of the model proposed in this study.

N (0 =92
MSE = W (10)

N Lo
RMSE = |Zi=10i=90* a
N

The R? was calculated to define the perfection of the output value predicted by the proposed model,
where the value could be between -e and 1. If the proposed model can obtain an R? value approaching 1, it
would be considered an ideal prediction model. Equation (12) was applied to determine the R? values in
this study.

_ I3 01 -9

R® = S0 -7)? (12

where, y: defines the measured value at time i, y denotes the mean of y;, (i=1..., N), and y: is the
predicted value at time i.

4.2, Calibration of Soil Sensor and Implementing Probe Design

This study collected soil specimens from a designated research site. The specimens were then placed
in a compact beaker before determining their moisture levels and calibrating the sensor. A digital weighing
scale was employed during an initial assessment of the mass of the soil specimens, represented as Ms.
Subsequently, the specimens were oven-dried and weighed again to obtain Md, their dry weight.
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Specific quantities of water were introduced to the desiccated soil specimens in this study. Readings of the
soil moisture content were then recorded on multiple occasions to achieve a consistent average. Figure 4
demonstrates a flowchart of the calibration of the sensors implemented in this study. The procedure was
continued until the sensor measurements stabilised, which signals the attainment of peak saturation.
During the experiment, the amount of soil in every beaker was not altered to maintain the consistency of

moisture readings. The findings are detailed in Table 2.
i ™ ¢ ™ ' !

Add varying mass of -
Collect the soil sample water into the sample
soil

Record the sensor
reading

\ S \ S \ S

(_‘1 ™ s 1 ™ s ; ™~
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Record the mass of the
soil in sampling

achieved and readings
of the sensor reached

Collected soil was dried
in oven at 150°C

containers. saturation
. A \ i . vy
T
. nd VWC formul
Record the volume and Soil sample transferred GWCand W(; ormula
) : R used to verify the
mass of the sampling into cylindrical .
. . readings recorded by
container containers
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4 A b J

Figure 4. A flowchart of the sensor calibration procedure
Table 2. The Volumetric Water Content (VWC)-based sensor calibration

Amount of | Moisture sensor reading (%) Average moisture | Calculate

water (g) sensor reading d VWC
Trial 1 Trial 2 Trial 3 (%)

5 29.92 32.65 29.75 30.77 7.88

10 48.55 49.25 49.32 49.04 15.77

15 66.72 68.07 67.59 67.46 23.65

20 77.84 79.62 75.33 77.60 31.54

25 87.83 88.92 86.32 87.69 39.42

30 92.39 96.19 94.76 94.45 47.30

35 98.89 99.45 98.75 99.03 55.19

The following are the details employed for calculating the VWC for the soil sourced from the research
field before being oven-dried. Equation (13) was then applied to calculate the VWC of the specimens.
(i) Volume of soil Vs = mtrzh = 63.42cm3
(ii) Mass of the container =55.30 g
(iif) Gross initial soil mass =155.42 g
(iv) Gross dried soil mass =135.58 g
(v) Net initial soil mass, Ms = Gross initial soil mass - Mass of the container = 100.12 g
(vi) Net dried soil mass, Md = Gross dried soil mass - Mass of the container = 80.28 g
(vii) Mass of water = Net initial soil mass — Net dried soil mass = 19.84

Mwater
8g x p soil 1
Qu = LW — = Mass of water X ———— 13
M;‘”,i p water f Volume of soil (13)
p Soi
1 cm?3 m3
Bv=1984x——=0.313 —=0.313—=
63.42 cm3 m3

According to the results with the sensor, the moisture of the soil specimen obtained from the research
site. was 79%, leading to the VWC for the specific sample being inferred at 31.3%. Following the
documentation of calibration outcomes, the sensors were then inserted into cylindrical pipes to function as
probes and positioned in the research area. Calibrations were performed with actual soil samples collected
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from the farm to ensure accurate measurements in real-world conditions. The process strictly adhered to
standard procedures to guarantee reliability and consistency. After deployment in the farm, the sensor
utilised in this study operated flawlessly without errors or performance issues, confirming the effectiveness
of the calibration process and the suitability of the sensors for agricultural applications.

4.3. The LSTM Prediction Model Output

The data extracted from the cloud through sensor probes was critically assessed and organised
according to the probes and moisture sensors employed. Therefore, the analysis of the procured data was
enriched and facilitated the prediction model evaluation. The outcomes of the analyses are presented in the
subsequent sections of this article. A comparison between the actual and forecasted values is demonstrated
in Figure 3, w(/\glere both values exhibited a parallel trajectory fog all five sensors.

Predictions and real values (Sensor 1)

12 —— Real value Predictions and real values (Sensor 2)
— Predicted value

Moisture value
Moisture value

— Real value
—— Predicted value

o (€ 500 1000 1500 2000 (;d) S50 1000 1500 2000

Testing samples Testing samples

Predictions and real values (Sensor 3)
97.5 Predictions and real values (Sensor 4)

Moisture value
Moisture value

80.0
—— Real value —— Real value
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Figure 5. The prediction and real values recorded by sensors (a) 1, (b) 2, (c) 3, (d) 4, and (e) 5, which were placed 5 cm,
10 cm, 15 cm, 20 cm, and 25 cm from the surface, respectively
The LSTM algorithm with two hidden layers utilised in this study recorded an accuracy of 95 + 2%.
Meanwhile, the differences between real and predicted values are illustrated in Figure 6. Following the
obtaining all predicted and real average values for all five probes employed, the accuracy of the proposed
model was then determined. Resultantly, the training model documented an accuracy of 95% with a 2%
margin of error. Table 3 summarises the results procured.
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Sensors in Different Depth
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Figure 6. The bar Graph of the average prediction and real values of moisture sensors placed at different depths
Table 3. The calculated RMSE, MAE, and R? values from the developed LSTM algorithm

Validation Testing data
RMSE 1.1544
MAE 0.6362
R2 0.3331

The increasing volume of acquired data arises from advancements in IoT. Consequently, efficiently
processing voluminous data while preserving precision is an essential characteristic of a predictive model.
Employing comprehensive evaluative metrics is then necessary to rigorously appraise the model. The
predictive model developed in this study had a 95 + 2% precision by incorporating six months of data from
moisture sensor probes set up in the research zone. Deploying the RNN-LSTM framework with the
optimally suited iteration and neuron count also contributed to the exemplary accuracy attained.

Historically, soil moisture forecasting analyses have predominantly obtained data from sensors
positioned proximate to the soil. Conversely, this study harnessed sub-surface soil moisture sensors that
were adept at gauging moisture content up to a one-meter depth, providing a significant advantage for tree-
living crops. In a report, De Benedetto et al. underscored the transformative power of precision irrigation in
amplifying crop yield. Therefore, integrating deep learning with sensor-derived data enables agriculturists
to obtain irrigation forecasts tailored to their specific lands. This study leveraged the RNN-LSTM
framework that is known for its expertise in agricultural time-series forecasting to predict sub-surface
moisture levels with superior precision.

5. Conclusion

This study demonstrated a significant advancement in PA by generating and evaluating an innovative
soil moisture probe system. The proposed system is also enhanced with the analytical prowess of an RNN
equipped with LSTM for predictive analysis. Conclusively, this study combined IoT-enabled hardware with
sophisticated ML algorithms to directly address the critical research gap of optimising irrigation practices
to mitigate water wastage and enhance crop management strategies.

A comparative analysis was conducted against state-of-the-art models, where relevant datasets were
available, to evaluate the effectiveness of the LSTM model suggested in this study. Performance metrics,
including accuracy, precision, recall, MAE, RMSE, and R?, were also analysed to benchmark the proposed
approach. Based on the findings, the LSTM model achieved an accuracy of 95 + 2%, demonstrating its
robustness in predicting soil moisture.

Among the major contributions of this study is the design of a real-time subsurface soil moisture
detection system capable of reaching depths of up to one meter. The attribute is crucial for assessing
moisture at root levels where most water uptake occurs. The predictive accuracy of the model and its robust
MAE, RMSE, and R? metrics also validated its effectiveness in providing reliable soil moisture predictions.
Moreover, the accuracy ensures that irrigation can be precisely tailored to the requirements of crops, which
would lead to significantly reduced water usage and environmental impacts of farming practices.

From the viewpoint of stakeholders in PA, deploying the system developed in this study could
translate to direct financial savings through diminished water consumption and labour costs associated
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with manual irrigation management. Developing a custom mobile application for system interaction also
enhances user accessibility, allowing seamless integration into existing farming operations. Moreover, the
findings demonstrated significant potential for scaling up and adapting the technology across different
agricultural settings and crop types. The notable adaptability and accuracy of the proposed model also
provided a substantial foundation for future research, including the potential incorporation of fertiliser
prediction capabilities. Integrating sensors capable of detecting fertiliser levels might enable the system to
offer comprehensive insights into irrigation and fertilisation requirements, further optimising resource
management in farming.

The outcomes in this study could not be directly compared to previous relevant articles, considering
that most prior research employed different modelling approaches, while this study specifically applied an
LSTM network. Moreover, LSTM models are particularly well-suited for time-series forecasting due to their
ability to capture long-term dependencies; therefore, direct comparisons with alternative models, such as
traditional ML algorithms or other deep learning architectures, may not yield meaningful insights.
Nevertheless, the performance of the proposed LSTM model was rigorously evaluated with well-
established metrics, including accuracy, MAE, RMSE, and R? which ensured the reliability of the results.
Future studies may also consider benchmarking the developed system against other deep learning models,
including gated recurrent units (GRU) or convolutional neural networks (CNN), to offer a broader
comparative analysis. Furthermore, expanding the dataset and assessing the model across diverse
agricultural conditions could further validate its generalisability and applicability in PA.

Currently, several real-time technical data points are unavailable due to ongoing data collection and
real-time monitoring constraints. Nonetheless, continuous field measurements and IoT-enabled sensors
have been implemented to enhance data completeness. Additional controlled experiments are also being
conducted to validate and extrapolate trends based on the existing dataset. Furthermore, this study has
scheduled an extended phase of data acquisition in the upcoming months to improve the precision of
moisture level predictions and irrigation optimisation. A broader context to the results will also be attained
through comparative analysis with similar studies and industry benchmarks in the absence of specific real-
time values. The data from the ongoing efforts will be included in future work, while additional datasets
may be made available upon request to support further validation and reproducibility.

Future research can expand the applicability of the proposed system by incorporating additional data
types and addressing broader aspects of PA. Deploying the model in diverse environmental settings,
enhancing sensor accuracy, and developing advanced predictive analytics for crop health could be among
the key areas of improvement. Challenges, including data diversity, user adoption, and environmental
impacts, could also be addressed through advanced data processing techniques, extensive field testing, user
training programmes, and system optimisation for sustainability.

This study offers a technologically advanced yet practical solution to the challenges of irrigation
management, significantly contributing to the field of PA. The system had successfully minimised water
overuse through precise moisture monitoring and predictive analysis, paving the way for a more
sustainable, efficient, and cost-effective farming future. Further refinement and adaptations to include
additional agricultural inputs, including fertilisation, could also improve the value and effects of the
proposed system on the industry and benefit various stakeholders in the agricultural sector. Overall,
incorporating such advanced technologies can redefine modern farming practices and ensure enhanced
resource efficiency and environmental stewardship.
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