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Abstract: Numerous challenges persist within Signal Processing (SP) in communication systems, i.e. maintaining 

system stability, complexity of multi-dimensional SP and filtering. Many resources are required to cope with these 

growing problems. The application of AI offers promising solutions. AI is already being applied to solve 

engineering, medical and scientific problems, including utilisation in SP and Digital Signal Processing (DSP). The 

research methodology began with common supervised AI algorithms in SP: Artificial Neural Networks (ANN), 

Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNNs). Regular unsupervised AI learning 

algorithms investigated included: Sparse Auto-encoder, Deep Auto-encoder, Convolutional Auto-encoder and the 

De-noising Auto-encoder. Their benefits were ascertained for their utilisation in an intelligent, scalable and secure 

communication system. The paper also provides over 100 references. The conclusion is that using specifically 

identified AI algorithms will make communication systems more scalable, thus mitigating overloading, instability 

and premature breaking point failure. AI use will also eventually make communication systems less expensive, 

more agile and far more intelligent - essential for Cognitive Radio and SDR (Software Defined Radio). The 

communication channels will become more reliable with AI SP and aid in its increased robustness in noise, quality 

and error recovery, compared with using traditional SP. These benefits will cause a shift toward using new methods 

in SP such as the Advantage Actor Critic and Trust Region Policy Gradient Algorithms. Two different datasets 

comprising the MNIST (Modified National Institute of Standards and Technology) database consisting of 70,000 

28×28 pixels greyscale images of handwritten integers and the CIFAR-10 (Canadian Institute for Advanced Research) 

database containing 60,000 32×32 pixels small colour images were utilised. These were then processed using the 

aforementioned algorithms to test their accuracy. Because of 6G radio channel data scarcity for training purposes, 

image datasets were used to check the feasibility of the effectiveness of AI in SP in general radio communications, 

due to their two-dimensional nature. The result showed that all seven AI models performed well: 80% - 99.77% 

(accuracies). The CCN-Autoencoder gave the best result overall using both datasets: 94.5%-99.77% (accuracies). 

Future work will use real radio communication channel data and other AI algorithms. 

Keywords: AI; Artificial Neural Networks; Convolutional Neural Networks; Denoising Auto-encoder; Signal 

Processing; Sparse Auto-encoder 
 

1. Introduction 

Currently, with the preponderance of technological devices, often having to work together whilst 

sharing the overcrowded Electromagnetic Spectrum (EM), Signal Processing (SP) faces many difficulties in 

trying to make them all work under extremely noisy conditions. Table 1, below, lists the top SP challenges 

faced in digital and analogue signal processing in electrical, electronic and computer engineering in 

descending order. Tables 1-3 were composed based on querying the AI agent “poe.com”. 

Table 2 lists in descending order, the current challenges in SP in modern communication systems, with 

the prevailing solutions or strategies to mitigate them. 
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Table 1. Current Challenges in Signal Processing1 
Order 
№ 

Analogue and DSP 
Challenges 

Nature of Problem 

1st Computational Complexity 
[1-2] 

Advanced algorithms can be resource-intensive, impacting processing time and 
power consumption. 

2nd Real-time Processing [3] Many applications require instantaneous responses, making it difficult to achieve 
real-time performance with complex algorithms. 

3rd Data Volume Management 
[4] 

The rapid increase in data from IoT (Internet-of-Thing) devices and sensors 
necessitates efficient handling and processing strategies. 

4th Noise and Distortion 
Management [5] 

Signals are often affected by noise and distortion, which can significantly degrade 
performance. 

5th Signal Integrity [6] Maintaining signal quality over long distances is challenging due to attenuation and 
interference. 

6th Integration with Digital 
Systems [7] 

Bridging analogue and digital systems can lead to compatibility issues, particularly 
in ADCs (analogue-to-digital converters) and DACs (digital-to-analogue converters). 

7th Power Consumption [8] High power usage in analogue circuits, especially in high-frequency applications, is a 
major concern. 

8th Component Variability [9] Variations in manufacturing processes can affect the performance of analogue 
components, necessitating calibration. 

9th Machine Learning (ML) 
Integration [10] 

Incorporating Machine Learning (ML) into signal processing workflows is complex 
and can demand significant resources. 

10th Environmental Sensitivity 
[11] 

Analogue systems can be affected by environmental changes, impacting reliability 
and performance – necessitating the use of self-testing and self-calibrating circuits 
[11]. 

11th Interference and Jitter [12] Both analogue and digital systems face challenges from interference, which can 
compromise signal quality. 

12th Security Concerns [13] Ensuring the security and integrity of data in Signal Processing (SP) systems is 
increasingly critical. 

13th Integration of and with 
Emerging Technologies [14] 

Adapting to new technologies (e.g. 5G, 6G, AI) requires significant adjustments and 
can complicate existing frameworks. 

Table 2. Current Challenges and Solutions in Signal Processing in Modern Communication Systems2 
Order 
№ 

SP Comms 
Challenge Type 

Challenge Solution 

1st Interference and 
Noise 
Management 

Increasing interference from 
various sources can degrade 
the signal quality. 

▪ Implement adaptive filtering techniques to dynamically 
suppress interference [15]. 

▪ Utilise advanced modulation schemes that are more resilient 
to noise, such as OFDM (Orthogonal Frequency Division 
Multiplexing) [16]. 

2nd Spectral 
Efficiency 

The growing demand for 
bandwidth leads to a shortage 
of available spectrum. 

▪ Employ Multi-input Multi-output (MIMO) technology to 
increase capacity without requiring additional spectrum 
[17]. 

▪ Use Intelligent Radio [18] and Cognitive Radio [19] 
techniques to dynamically access underutilised spectrum 
bands. 

3rd Latency 
Reduction [20] 

Real-time applications require 
low latency, which can be 
challenging in complex 
systems. 

▪ Optimise signal processing algorithms for speed and 
efficiency. 

▪ Utilise edge computing [21] to process data closer to the 
source, reducing transmission delays. 

4th Channel 
Estimation and 
Equalisation 

Variability in channel 
conditions complicates signal 
recovery. 

▪ Implement machine learning algorithms for more accurate 
channel estimation [22]. 

▪ Use advanced equalisation techniques to mitigate the effects 
of multipath fading [23]. 

5th Energy 
Efficiency 

The need for low-power 
solutions in mobile and IoT 
devices is critical. 

▪ Develop energy-efficient algorithms and hardware, such as 
low-power signal processing circuits [24]. 

▪ Implement sleep modes and energy-harvesting [25] 
technologies to extend battery life. 

6th Security and 
Privacy 

Increasing threats to data 
integrity and privacy in 
communication systems. 

▪ Incorporate robust encryption techniques to secure 
transmitted data [26]. 

▪ Use advanced signal processing techniques for anomaly 
detection [27] to identify potential security breaches. 

 
1 Poe.com, “What are the current challenges in digital and analog signal processing in electrical, electronic and computer 

engineering?”, Poe.com, Available: https://www.poe.com/ [Accessed: 13 April 2025]. 
2 Poe.com, “What are the current challenges in signal processing in modern communication systems? List the main ones in descending 

order offering solutions or strategies to mitigate them?”, Poe.com, Available: https://www.poe.com/ [Accessed: 13 April 2025]. 

https://www.poe.com/
https://www.poe.com/
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7th Scalability As systems grow, maintaining 
performance becomes more 
complex. 

▪ Design modular systems that can be easily expanded. 

▪ Leverage cloud-based processing to handle increased load 
without degrading performance, i.e. by load balancing [28]. 

8th Integration of 
Emerging 
Technologies 

Incorporating technologies 
like 5G, 6G, IoT and AI [29] 
into existing systems. 

▪ Foster interdisciplinary collaboration to ensure seamless 
integration. 

▪ Develop standardised protocols to facilitate interoperability 
between different technologies. 

In this paper we will investigate the use of Artificial Intelligence (AI) in one of the many ways to 

improve both analogue and DSP. We want to show that this processing provides a better accuracy than 

before. It will be done by implementing AI and Machine Learning (ML) Algorithms. AI will cause a 

revolution in the field of telecommunication. Table 3, below, shows the challenges of SP in modern 

communication systems, listed in descending order of significance, along with the application of AI to 

mitigate them. The use of AI as shown in Table 3, does show a different ranking order compared to Table 2 

in the use of AI in SP for communications, notably the second position is the use of AI for channel estimation 

and equalisation and the third being to increase spectral efficiency through advanced AI modulation 

schemes and Cognitive Radio [18-19] technologies. 

Table 3. Current Challenges and AI Solutions in SP in Modern Communication Systems3 
№ SP Comms 

Challenge Type 
Challenge Artificial Intelligence (AI) Solution 

1st Interference and 
Noise Management 

Increased interference from 
various sources can degrade 
signal quality. 

▪ Use deep learning algorithms for adaptive noise cancellation 

[30] and interference suppression [31]. 

▪ Implement AI-driven signal classification [32] to identify and 

mitigate specific interference patterns. 

2nd Channel Estimation 
and Equalization 

Variability in channel 
conditions complicates 
signal recovery. 

▪ Employ machine learning models to predict channel 

conditions [22] and optimise equalisation techniques [33]. 

▪ Utilise reinforcement learning for dynamic adaptation of 

equalisation algorithms [34] based on real-time channel 

feedback. 

3rd Spectral Efficiency Growing demand for 
bandwidth leads to a 
shortage of available 
spectrum. 

▪ Implement AI algorithms for dynamic spectrum management 

[18] and cognitive radio [19] technologies to optimise 

spectrum usage. 

▪ Use generative models to design new modulation schemes 

[35] that maximise spectral efficiency. 

4th Latency Reduction Real-time applications 
require low latency, which 
can be challenging. 

▪ Optimise signal processing pipelines using AI to predict and 

reduce processing delays [36]. 

▪ Employ edge AI for local processing [37], minimising the 

need for long-distance data transmission. 

5th Energy Efficiency The need for low-power 
solutions in mobile and IoT 
devices is critical. 

▪ Utilise AI algorithms to optimise resource allocation and 

power management in communication devices [38]. 

▪ Implement predictive models to dynamically adjust 

transmission power based on network conditions [39]. 

6th Security and 
Privacy 

Increasing threats to data 
integrity and privacy in 
communication systems. 

▪ Use ML for anomaly detection to identify unusual patterns 

that may indicate security breaches [40]. 

▪ Implement AI-driven encryption techniques that adapt to 

evolving threats in real time [41]. 

7th Scalability As systems grow, 
maintaining performance 
becomes more complex. 

▪ Develop AI-based resource management systems [42] that 

automatically scale processing power and bandwidth as 

needed. 

▪ Utilise cloud-based AI solutions to handle increased data 

loads efficiently [43]. 

8th Integration of 
Emerging 
Technologies 

Incorporating technologies 
like 5G, 6G. IoT and AI into 
existing systems. 

▪ Foster collaborative AI frameworks [44] that ensure 

interoperability between different technologies. 

▪ Use AI for simulation and modelling to predict the impact of 

integrating new technologies before implementation [45]. 

 
3 Poe.com, “What are the current challenges in signal processing in modern communication systems? List the main ones in descending 

order offering solutions or strategies to mitigate them using AI?”, Poe.com, Available: https://www.poe.com/ [Accessed: 13 April 2025]. 

https://www.poe.com/
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This paper discusses the accuracy of SP because of the implementation of these types of AI SP 

algorithms. It shows the accuracy using Deep Learning (DL) algorithms and Autoencoders. There exist 

many techniques in SP such as: Filtering, Fourier Transform and Modulation. However, these techniques 

are outdated now - when working with big datasets these techniques have a low accuracy and performance. 

It is good to improve the techniques of the prevailing SP algorithms by incorporating these new AI 

algorithms. The implementation of DL models in SP has shown favourable results by overcoming the 

different limitations and offering new prospects in this field. DL algorithms have been able to exhibit 

extraordinary potentials in the exploitation of compounded patterns. Incorporating these AI algorithms 

with existing SP algorithms will make SP more robust. 

2. Signal Processing (SP) 

2.1. Signal Processing Techniques 

A signal is just a function which varies according to time. Its purpose is to carry information based on 

the phenomenon nature or behaviour. A signal has a mathematical representation as a function of a variable 

(in this case it is an independent variable) t which symbolizes the time. So, we can denote a signal as x(t). A 

signal can be continuous or discrete based on the value of the variable t. If the variable t is continuous, then 

the signal x(t) will be continuous. On the other hand, if the variable t is discrete the signal x(t) will be 

discrete. Usually, a discrete signal is described as a sequence of numbers because the discrete signals are 

usually represented at discrete intervals of time [46]. 

SP includes the data conversion and data transformation in such an approach that we are able to 

perceive things which we cannot see through direct scrutiny. It is able to permit many scientists and 

engineers to improve, examine and to rectify signals, involving streams in audio, videos, scientific data and 

images. There are several categories of SP which includes: Analogue, Digital, Continuous Time, Discrete 

Time, Nonlinear and Statistical.   

One of the techniques used for SP is called Filtering. During filtering we are able to omit undesired 

components from our signal and keep only the components that we want. Based on the frequency of the 

signals, we have four types of filters which are called: High-Pass Filters, Low-Pass Filters, Band-Pass Filters 

and Band-Stop Filters. High-Pass Filters allow only the signals with high frequency to pass through it, while 

the signals with low frequency are blocked. Low-Pass Filters allow only the signals with low frequency to 

pass through it and blocks the signals that have a high frequency. Band-Pass Filters allow only a given range 

of signals to pass through, while blocking the others. Band–Stop Filters block a given range of signals to 

pass through while allowing others [47]. The four cardinal types of filters are shown below in Fig. 1. 

Another technique used for SP is known as Fourier Analysis. It is a category of mathematical analysis 

which aims to recognize different cycles or patterns inside a dataset of time series that has previously been 

normalized [47]. This technique wants to make the data (which may be complex) simpler. 

 
Figure 1. The Four Major Filter Types4 

This is done by decomposing this complex data into an exponential function series or trigonometric 

series e.g. sinusoidal waves. Every one of these sinusoidal waves has a certain amplitude, cycle length and 

 
4 N. Davis, “An Introduction to Filters”, All About Filters, 30th September 2023, Available: https://www.allaboutcircuits.com/technical-

articles/an-introduction-to-filters/ [Accessed: 21 June 2025]. 

https://www.allaboutcircuits.com/technical-articles/an-introduction-to-filters/
https://www.allaboutcircuits.com/technical-articles/an-introduction-to-filters/
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a phase relationship with the other sinusoidal waves, that later being able to reconstruct the data that we 

observed [48]. Fourier Analysis comprised different approaches such as: Continuous Fourier Transform 

(CFT), Discrete Fourier Transform (DFT), Fast Fourier Transform (FFT) and Short-Time Fourier Transform. 

Continuous Fourier Transform is used to transform a continuous-time signal (also known as an analogue 

signal) into the representation of their continuous-frequency approach. The formula of CFT for a signal x(t) 

is: 

𝑋(𝑗𝜔) = ∫ 𝑥(𝑡)
∞

−∞
∗ 𝑒−𝑗𝜔𝑡𝑑𝑡                                                                                                                 (1) 

Where 𝑋(𝑗𝜔) represent the Continuous Frequency approach of the signal,  𝜔 = 2𝜋𝑓 and represents the 

angular frequency while 𝑗 represents the imaginary part. The limits of the integral are from −∞ to +∞ 

because the CFT needs an infinite amount of frequency and time ranges [48]. The DFT is used to convert 

discrete-time signals into the representation of their discrete-frequency approach. Usually, DFT uses FFT. 

The formula of DFT is: 

𝑋[𝑘] = ∑ 𝑥[𝑛]𝑁−1
𝑛=0 ∗ 𝑒−

𝑗2𝜋𝑘𝑛

𝑁                                                                                                                                (2) 

Where X[k] represents the Discrete Signal in its frequency domain, x[n] represents the signal in its time 

domain, n represents the number of samples, and k represents the frequency.  

The FFT transforms a signal into discrete spectral units and as a result, it is able to issue information 

about the signal. The FFT is employed in many different areas of SP such as control of quality, monitoring 

of systems or machines and fault analysis. It is an advanced algorithm used for DFT implementation. When 

we sample a signal during a time period, the signal is split into its frequency units. These units are sine 

oscillations at marked frequencies, every one of them possessing its phase and amplitude. Because of this, 

FFT is able to decrease the complexity of the computation of the DFT [49]. 

Short Fourier Transform (SFT) is employed to establish the phase content and the frequency of a 

sinusoidal signal while it alternates gradually. During this method, a longer signal is split into segments 

which are shorter and the length of these segments is the same. After this, we perform the Fourier 

Transformation on every one of these short segments. 

Another process of SP is “modulation”. Modulation is the conversion of information into waves of 

radio by the addition of data to an optical or electromagnetic (EM) carrier signal. A carrier signal is a signal 

with a stable waveform. This means that a carrier signal has its frequency, height and amplitude constant, 

before it is changed or “modulated” by the information/data signal. The data can be appended onto the 

carrier signal by differing its: polarization, frequency, phase, amplitude or a combination of these. There are 

different types of modulations such as Amplitude Modulation (AM), Phase Modulation (PM), Frequency 

Modulation (FM), Quadrature Amplitude Modulation (QAM) and Phase Shifting Keying (PSK). AM is 

employed in order to broadcast messages with the help of a radio wave. In this form of modulation, the 

wave amplitude is varied in sympathy to the ratio of the signal of the message. The message signal carries 

the required data which may be video or audio and on the other side, the transmission frequency is 

determined by the carrier signal. The signal data are held by a lower sideband, an upper sideband and a 

carrier wave. PM is another modulation type during which the carrier signal’s phase is modified based on 

the amplitude of the message signal. This type of modulation is usually employed in communication 

between satellites. FM takes place when the frequency of a carrier signal is modified based on the amplitude 

of the message signal. FM is able to issue a better quality for the signal since it is less susceptible to 

interference and noise. QAM employs both phase components and amplitude components in order to issue 

a modulation form which can provide very high levels of efficiency. So, in other words, this is a combination 

of both PM and AM. QAM may be employed for both Analogue and Digital Modulation. When it is 

employed for radio waves transmission, it can transfer very large data rates compared to the usual PM 

schemes and AM schemes. While for basic signals, there are only two points in which the transfer is allowed, 

by employing QAM there are many more different positions in which the signal may be transferred, every 

one of them having a certain phase and amplitude. When we plot a graph of QAM based on phase and 

amplitude these positions are denoted as points and based on the number of points in these graphs we are 

able to determine what kind of QAM it is. It may be: 2-QAM, 4-QAM, 8-QAM, 16-QAM, 64-QAM or 256-

QAM, etc. [50]. PSK is a modulation process that transfers information by modifying the phase of a constant-

frequency carrier signal. This type of modulation is achieved by differing the inputs of sine and cosine at 

an accurate time. PSK includes: Binary Phase Shift Keying (BPSK), in which the carrier signal contains two 
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phases; Quadrature Phase Shift Keying (QPSK), in which the carrier signal contains four phases; 8-Phase 

Shift Keying (8-PSK), in which the carrier signal contains eight phases, etc. Every phase represents a bit 

sequence, which permits the information transmission to be as efficient as possible [51]. Fig. 2, below, shows 

the major modulation classifications based on a digital carrier being used. 

 
Figure 2. The Principal Modulation Types. (Adapted from [52]) 

3. AI Algorithms 

AI is the ability of machines to perform tasks without being supervised all the time by people. It is very 

powerful and it is very useful nowadays. The prime subset of AI is ML. ML is a term used for algorithms 

that can make a device learn without programming it in an explicit way. In Supervised Learning, the data 

is labelled before being taken under processing. It means that if we have different images of apples and 

oranges and want to classify which images will be oranges and which will be apples, then the data is divided 

between images which are apples and the images which are oranges. By doing this, after each data entering 

in these algorithms, it will be able to recognize which image belongs to specific class. Differently from that 

when we are using Unsupervised Learning there is no labelling of the data before processing. Based on the 

example above, all of the images of apples and oranges are put inside the algorithms and if another image 

comes, it will only be recognisable by the program based on the similarity of the image in comparison to all 

the images. Reinforcement Learning is another type of ML algorithms. In this algorithm we have an agent 

being put inside a specific environment. Based on the achievements it will make through its actions; it will 

also take different rewards. The algorithms or RL are usually employed for computer games.  

DL Algorithms are a subset of ML. Differently from usual ML algorithms these types of algorithms 

contain more than one-layer, specifically at least three-layers in their structure. The DL Algorithms may be 

supervised, such as: Artificial Neural Networks (ANNs) [54], Convolutional Neural Networks (CNNs) [55] 

and Recurrent Neural Networks (RNNs) [56]; unsupervised, such as: Auto-encoder [57] or part of 

Reinforcement Learning algorithms [58], such as Deep RL [59][60] or Deep Q-Learning (DQN) [61]. Fig. 3, 

below, shows the top five ML algorithm classifications and their typical application scenarios. 

ANNs [54] have taken their name from biological neurons. The structure of an artificial neuron is 

shown in Fig. 4, below. 

The ANN [54] begins with an input data x which may be taken from a previous layer inside the 

structure or from an outsider factor. These input data contain a numerical value. After these input nodes 

we have weight. Weight is the framework that is able to convert the input data inside the hidden layer as 

well as to reduce the error. After all the input data is summed-up we have the bias b.  Bias is a constant that 
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is added to the sum of the products of the input data and weight. After that we have the activation function. 

The activation function decides if our function should be activated or not. There are different types of 

activation functions such as: Reactive Linear Unit (ReLU) [63], Sigmoid [64], LeakyReLU [65], SoftMax [66], 

etc. ReLU [63] is a function that for each 𝑥 < 0  𝑡ℎ𝑒𝑛 𝑦 = 0 and for each 𝑥 ≥ 0  𝑡ℎ𝑒𝑛 𝑦 = 𝑥. Sigmoid function 

[64] is a function that for each x we have 𝑦 =
𝑒𝑥

𝑒𝑥+1
. LeakyRelu [65] activation function has its equation for 

each: 𝑥 < 0 𝑡ℎ𝑒𝑛 𝑦 = 0.1 ∗ 𝑥 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ≥ 0  𝑡ℎ𝑒𝑛 𝑦 = 𝑥.  SoftMax [66] is an activation function that is 

able to scale the numbers into probabilities.  

 
Figure 3. The Top Five Powerful ML Algorithm Categories5 

Its mathematical function for each 𝑥 𝑖𝑠 𝑦𝑗 =  
𝑒

𝑥𝑗

∑ 𝑒𝑥𝑖𝑁
𝑖=1

 where N is the number of different classes inside of 

a classifier, which is multilevel. The final part of an artificial neuron is the output, which is the predicted 

value of all process inside the neuron. So, the function of ANN [54] is: 

𝑦 = ∑ 𝑥𝑖
𝑁
𝑖=1 ∗ 𝑤𝑖 + 𝑏                                                                                                                                                (3) 

in which 𝑦 represents the output, 𝑥 represents the input data, 𝑤 represent the weight, 𝑏 represents the 

bias, 𝑖 represents the number of iterations and 𝑁 represents the total number of the inputs. 

 
Figure 4. The Structure of a Neuron [62] 

ANN [54] is feed-forward, so it means that the movement of data inside its neural network structure 

is from the input to the hidden layer/s until the output. There is no turning back from the hidden layer to 

the input layer or from the output layer to the hidden layer. 

 
5 Filip Projcheski, “List of Top 5 Powerful Machine Learning Algorithms That Will Solve 99% of Your Problems”, Laconic Machine 

Learning, 18 July 2020, Available: https://laconicml.com/machine-learning-algorithms/ [Accessed:  24 June 2024]. 
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Another type of ANN [54] is the CNN [55]. These structures are employed in many fields of today’s 

technology such as Computer Vision, Medicine, etc. Differently from ANNs [54], CNNs contain types of 

layers such as Convolutional Layer, Pooling Layer and Flatten Layer. The Convolutional Layer can apply a 

convolution computation inside the input layer, proceeding the result to the following layer. The 

convolution transforms the whole pixels to its accessible field all together into a single value, e.g. if we could 

perform an image convolution, we would be reducing the size of the image, moreover bringing the whole 

information inside the field all together into a single pixel. A filter or also known as a kernel, implements an 

element-wise multiplication over the input data. After we sum up all the results, we take only a single 

output pixel. The next layer in the CNN is the Pooling Layer. The aim of the Pooling Layer is to reduce the 

hidden layer dimensions, by uniting the neuron clusters’ output from the preceding layer to a single neuron 

into to the succeeding layer. There exist two different forms of pooling operation, which are: Average Pooling 

and Max Pooling. In the Average Pooling layer, we calculate the average of the input values and take their 

mean. In Max Pooling, later we take the largest value of the input values. The Flatten Layer is employed to 

transform all the resultant 2-D arrays from maps of pool attribute into a line vector, which is continuous 

[67]. Fig. 5, below, is an abstraction of a typical CNN architecture. 

 
Figure 5. A Typical CNN (Convolutional Neural Network) [55, 67] Architecture6 

Another type of ANN [54] is RNNs [56]. Unlike the previous types of ANNs [54], these type of ANNs 

[54] are Feed-backward, so the data flows not only in one direction from the input to the output, but also 

backwards, from the hidden layer to the input, also from the output to hidden layer/s or directly from the 

output to the input. A typical RNN [56] is shown in Fig. 6, below. 

 
Figure 6. A Typical Recurrent Neural Network Architecture [74] 

In RNNs [56], this movement of data usually form a loop. For this reason, these algorithms are good 

for Speech Recognition [68] and Natural Language Processing (NLP) [69-70]. Two of the most well-known 

layers of RNNs are Long Short-Term Memory (LSTM) [69, 71-72] and Gated Recurrent Unit (GRU) [69, 72]. 

The LSTM [71] layer is composed of a cell, an input gate, a forget gate and an output gate. The cell is able to 

 
6 Analytixlabs, “Convolutional Neural Networks – Definition, Architecture, Types, Applications, and more”, 8 January 2024, 

Available: https://www.analytixlabs.co.in/blog/convolutional-neural-network/ [Accessed: 24 June 2024]. 
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recall the values above intervals of time. The input gate, the forget gate and the output gate control the flux of 

information inside and outside of the cell. The input gate determines what chunks of information should be 

loaded in the present state by giving a value of 0 (not to load the information) or 1 (to load the information). 

The forget gate determines what chunks of information should be discarded from the previous state by 

giving them a value of 0 (to discard the information) or 1 (to keep the information). The output gate 

determines what chunks of information into the present state should be output by giving a value of 0 (which 

represents the previous state) or 1 (which represents the current state). LSTM [71-72] can preserve valuable, 

long-term dependencies to make predictions, both in present and future time-steps, by selectively 

outputting accurate information from its present state.  Gated Recurrent Unit (GRU) [69, 72] is just a version 

of LSTM [71-72]; however, it is much less complex than LSTM [71-72]. Unlike LSTM [71-72], GRU [69, 72] 

does not contain on output gate [73]. 

3.1. Advantages of Using CNNs over RNNs for Denoising and Classification in Signal Channels 

The advantages of CNNs over RNNs when used for denoising or classification tasks in signal channels 

include: 

● Spatial Hierarchy: CNNs are designed to capture spatial hierarchies in data through convolutional 

layers. This capability allows them to effectively learn features from local regions of input data, 

making them particularly suited for image-like data in signal processing. 

● Parameter Sharing: CNNs use shared weights for convolutional filters, which significantly reduces 

the number of parameters in the model. This leads to faster training times and less risk of over-

fitting; this is especially beneficial in scenarios where limited data is available. 

● Translation Invariance: The pooling layers in CNNs enable the model to become invariant to small 

translations in the input signal. This property is crucial for applications in signal processing, where 

the exact location of a signal feature may vary. 

● Reduced Complexity: For tasks like denoising, CNNs can process entire batches of data in parallel, 

enhancing computational efficiency. In contrast, RNNs process sequences step-by-step, which can 

be slower and less efficient for high-dimensional data typical in signal processing. 

Another type of ANN [54] is the Generative Adversarial Networks (GANs) [75]. GANs [75] are a 

procedure which includes the implementation of ANNs [54] into Generative Modelling [76-77]. Generative 

Modelling [76-77] uses unsupervised learning, which includes finding and learning patterns or regularities 

inside the input information so that the model may be employed in order to generate new samples that 

probably may have been taken from the original dataset. GANs [75] are a smart method of generative 

modelling [76-77] training by formulating this type of issue as a supervised learning issue, which contains 

two sub-models: a generator model [78], which is trained in order to generate new samples and a 

discriminator model [78], which attempts to segregate the samples into real (which belong to the domain) 

and fake (which are generated). A modern GAN generator and discriminator architecture is shown in Fig. 

7, below. Fig. 8, below, shows a typical complete GAN [75] architecture. We train these two types of models 

together inside a zero-sum game [79], till the point that the model of the discriminator is deceived for about 

half a time, which means that the model of the generator is still generating possible samples. GANs [75] are 

employed in many fields such as image-to-image translation [78] and for generating photorealistic images 

[80]. 

Auto-encoders [57] are also DL [63, 73] algorithms but function differently from traditional ANNs [54]. 

These types of algorithms are unsupervised learning algorithms. These algorithms are very useful for 

dimensionality reduction [81-82] and data compression [83]. Auto-encoders [57] are able to learn image 

reconstruction, text reconstruction, also different types of data reconstruction, from different compressed 

varieties of themselves. 

The structure of an auto-encoder is composed of three layers, as shown in Fig. 9, which are the Encoder 

Layer (input cells), Code Layer (hidden cells) and the Decoder Layer (match input output cells). The function 

of the Encoder Layer is to compress the input data to a representation of latent space. This means that the 

Encoder Layer can encode the input data like a representation which is compressed inside a dimension which 

is reduced. The compressed data is a twisted version of the original data. The next layer that is the Code 

Layer, illustrates the compressed data input which is sent to the Decoder Layer. The Decoder Layer is able to 
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decode the encoded data back into its initial dimensions. This decoded data is re-established from the 

representation of the latent space. There are several types of auto-encoders [84]. 

 
Figure 7. A Modern GAN Generator and Discriminator Architecture [78] 

 
Figure 8. A Typical Generative Adversarial Network (GAN) Architecture7 

One type of Auto-encoder is De-noising Auto-encoder [85]. This type of Auto-encoder is able to 

generate a distorted copy of the original input by adding noise. This is helpful in order to evade auto-

encoders from making copies of the original input into the output without learning data attributes. De-

noising auto-encoders [85] extract a relatively distorted input during the time of training to retrieve the 

 
7 Stephan Müller, “Generative Adversarial Networks: How Data Can Be Generated With Neural Networks”, statworx(R) blog, 10th 

October, 2020, Available: https://www.statworx.com/en/content-hub/blog/generative-adversarial-networks-how-data-can-be-

generated-with-neural-networks/ [Accessed: 24 June 2024]. 
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initial input.  In order to remove the extra noise, this auto-encoder learns a field of vectors for shifting the 

input data to a lower dimensionality manifold that represents the real data [84]. 

 
Figure 9. Architecture of four Types of Autoencoders8 

Another type of Auto-encoder is the Sparse Auto-encoder [86]. In Sparse Auto-encoder [86], the hidden 

vertexes are more sizeable compared to input vertexes. These Auto-encoders [86] are able to find essential 

attributes from data. A common Sparse Auto-encoder is conceptualized where the complexity of a vertex 

matches with the activation level. Restriction of sparsity is established inside the hidden layer. This is done 

in order to obviate the output layer to copy data from the input layer. Sparsity can be established by further 

terms inside the loss function in the course of the process of training, either through probability distribution 

comparison of hidden layer activations, or by making all the strongest hidden layer activations zero [87]. 

Another type of Auto-encoder is the Convolutional Auto-encoder (CAE) [88]. These Auto-encoders 

[84] employ the convolution function [89] in order to utilize this examination. They first learn to transform 

the input into a collection of straightforward signals before trying to reconstruct its input data from these 

signals or alter the resulting image’s geometry or reflectivity. They are cutting-edge tools for convolutional 

filter unsupervised learning. These filters can be used to extract attributes from any input once they have 

been trained. Therefore, these attributes can be applied to any task that calls for a condensed representation 

for the data, such as classification. 

RNN auto-encoders (LSTM auto-encoders) [90] is the application of a sequence data auto-encoder by 

employing the LSTM [69, 71-72] in an encoder-decoder architecture. The LSTM layer [69, 71-72] is trained 

for reading the input data, encoding the input data, decoding the input data and finally rewriting it. The 

model performance is estimated according to its capability to reconstruct the input data.  

Deep Reinforcement Learning (DRL) [59-61, 91-92] algorithms are algorithms that are connected to 

both DL [55] and Reinforcement Learning (RL) [58]. As part of RL algorithms, it employs an agent inside an 

environment. But unlike the usual RL [58], it also incorporates Neural Networks [64] algorithms inside it. 

These algorithms are able to grab very big data and determine on what actions must be accomplished in 

order to improve the intensions. 

4. Materials and Methods 

4.1. Applicability of MNIST and CIFAR-10 Datasets to Signal Processing 

The MNIST9 (Modified National Institute of Standards and Technology) dataset is a dataset which 

contains different handwritten digits. This dataset is composed of 70,000 digits, 60,000 of which are 

employed for training while 10,000 of them are employed for testing. The size of the digits has been 

normalized. These digits are concentrated around an image whose size is fixed. The dimensions of this 

dataset are 28×28 pixels. This dataset is usually used for image processing. The MNIST dataset was 

 
8 Tallaswapna, "Types of Autoencoders in Deep Learning", Medium, 10 July 2023, Available: 

https://medium.com/@tallaswapna9/types-of-autoencoders-in-deep-learning-383cfecc4d0e [Accessed: 24 June 2024]. 
9 Kaggle, “MNIST Dataset”, Available: https://www.kaggle.com/datasets/hojjatk/mnist-dataset [last accessed: 27 June 2025]. 

https://medium.com/@tallaswapna9/types-of-autoencoders-in-deep-learning-383cfecc4d0e
https://www.kaggle.com/datasets/hojjatk/mnist-dataset
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generated by the rearrangement of the National Institute of Standards and Technology (NIST) dataset 

samples [87]. 

A much more advanced dataset is the CIFAR-10010 (Canadian Institute for Advanced Research) 

dataset. The CIFAR-100 dataset comprises 60,000 images. Unlike the MNIST dataset, these images are 

coloured images. 50,000 of these images are employed for training while the other 10,000 are employed for 

testing [93]. The MNIST and CIFAR-10 datasets offer valuable insights into signal processing for the 

following reasons, given below. 

4.1.1. Pattern Recognition 

Both datasets focus on object recognition, akin to identifying patterns in signals. Signal processing often 

involves recognizing and classifying patterns amidst noise, making these datasets relevant for training 

models in similar tasks. 

4.1.2. Image Characteristics 

The images in MNIST (28×28 grayscale) and CIFAR-10 (32×32 colour) are structured similarly to 

signals. Their two-dimensional data representation aligns well with signal processing techniques that 

analyse spatial and temporal dimensions. 

4.1.3. Benchmarking 

These datasets serve as benchmarks for evaluating the performance of AI algorithms. The insights 

gained from training on such well-established datasets can be extrapolated to real-world signal processing 

applications, enhancing model reliability and accuracy. 

4.2. Library Used for Deep Learning (DL) 

The library used for calling DL algorithm is Keras11 [87]. Keras is a freely available library written in 

Python™12 which is able to implement ANNs [54]. It is able to run easily regardless if we are implementing 

this library for a GPU (Graphics Processing Unit) or a CPU (Central Processing Unit). All models of ANNs 

[54] are accessible in this library. This library is modular and can be used for research in the field of 

innovation. In order to build a Keras model in programming, there are six steps that should be followed. 

The first step is the establishment of the network, along with layers and their inter-connections. Keras has 

two model types which are Functional and Sequential. The second step of establishing a Keras [87] model is 

by compiling this network that we built. This implies that the code that we have written must be 

transformed in appropriate form so that the machine will be able to understand. The third steps involve 

compilation of the model. This is carried out by specifying three parameters which are: the optimizer, which 

is used to minimize the losses; metrics, which is employed in order to discover the model’s accuracy; and 

the loss function, which is used to compute the model’s losses. After compiling the model, the fourth step is 

to fit the data. This method is used in order to train the model. The fifth step is to make the model evaluation. 

This is done in order to evaluate the error of the model. The sixth and final step is to make predictions: 

‘model.predict()’ is used, we then employ the model on the new data in order to make these predictions. 

4.3. Model Training Architecture Variations and Optimisation Techniques in AI for SP 

4.3.1. Training Techniques 

Effective training of CNNs for signal processing tasks involves techniques such as data augmentation, 

which helps in generating additional training samples by transforming existing ones (e.g. by flipping or 

rotation). This is particularly useful in scenarios where the training dataset is small. 

4.3.2. Architecture Variations 

Variations in CNN architecture can significantly impact performance. For instance, deeper networks 

with more convolutional layers can capture more complex features but may require more extensive training 

data to avoid overfitting. Using residual connections can also help in training deeper models effectively. 

4.3.3. Regularization Techniques 

 
10 University of Toronto, “The CIFAR-100 dataset”, Available: https://www.cs.toronto.edu/~kriz/cifar.html [Accessed: 27 June 2025]. 
11 Keras, “A superpower for ML developers”, Available: https://keras.io/ [Accessed: 26 June 2025]. 
12 Python Software Foundation, python™, Available: https://www.python.org/ [Accessed: 26 June 2025]. 

https://www.cs.toronto.edu/~kriz/cifar.html
https://keras.io/
https://www.python.org/


AETiC 2026, Vol. 10, No. 1 70 

www.aetic.theiaer.org 

Regularization methods such as L2 regularization and Dropout are crucial in preventing overfitting. 

Dropout, which randomly deactivates a subset of neurons during training, encourages the network to learn 

more robust features, enhancing generalization. 

4.3.4. Optimization Techniques 

The choice of optimizer can greatly influence training efficiency. Techniques like Adam or RMSprop 

dynamically adjust learning rates during training, allowing for faster convergence. Additionally, the use of 

learning rate schedules can help in fine-tuning the model as training progresses. 

4.4. Comparison of AI Models and Traditional Signal Processing Approaches 

While traditional signal processing techniques such as Fast Fourier Transform (FFT), filtering and 

modulation have been foundational in the field, AI models present distinct advantages and challenges. 

4.4.1.  Advantages of AI Models 

Adaptability: AI models, particularly DL algorithms, can adapt to complex, non-linear relationships 

in data. Unlike traditional methods that rely on predefined mathematical models, AI can learn from the 

data itself, making it suitable for dynamic environments. 

Feature Extraction: AI models, especially CNNs, excel at automatic feature extraction. Traditional 

techniques require manual feature engineering, which can be time-consuming and may not capture all 

relevant information. 

Performance on Large Datasets: With the increasing availability of large datasets, AI models can 

leverage vast amounts of information to improve performance. Traditional methods might struggle with 

high-dimensional data, whereas AI models can efficiently process and learn from it. 

4.4.2.  Limitations of AI Models Compared to Traditional Approaches 

Data Dependency: AI models often require large amounts of labelled data for training. In contrast, 

traditional methods can be effective with smaller datasets since they rely on established mathematical 

principles. 

Computational Resources: Training AI models, particularly deep learning architectures, demands 

significant computational power and can be time-consuming. Traditional signal processing techniques can 

often be implemented more quickly and with less computational overhead. 

Interpretability: Traditional methods provide clear mathematical foundations that allow for greater 

interpretability. AI models, particularly deep neural networks, can operate as “black boxes”, making it 

challenging to understand how decisions are made. 

Overfitting: AI models, particularly deep learning architectures, can easily overfit to training data, 

especially when datasets are small or noisy. Overfitting occurs when a model learns the noise in the training 

data rather than the underlying patterns, leading to poor performance on unseen data. Regularization 

techniques and cross-validation are essential to mitigate this issue, but they can increase complexity. 

Generalizability: The ability of an AI model to generalize to new, unseen data is critical for its practical 

application. However, models trained on specific datasets may not perform well when applied to different 

environments or conditions. This limitation is particularly pronounced in signal processing, where 

variations in noise, interference, or system parameters can significantly impact model performance. 

Model Robustness: Many AI models can be sensitive to minor changes in input data, resulting in 

decreased performance in real-world applications. Robustness is crucial in signal processing, where signals 

can be affected by various factors such as environmental conditions or hardware imperfections. Developing 

more robust models that can maintain performance under varying conditions remains a key challenge. 

4.5. AI Implementations of Signal Processing (AI SP) 

In supervised DL algorithms, the model type is Sequential, i.e. the data is able to proceed from one layer 

(starting from the input layer) to another one, in specific order, till it reaches the final layer (output layer).  

For ANNs [54] in this experiment, we have used fully-connected layers, which are simply known as Dense 

Layers [94]. “Dense” is a neurons’ layer that is fully connected to the previous layer, which indicates that 

the neurons inside the layer are linked to each neuron of the previous layer. The Dense Layer of each 

artificial neuron inside of a model obtains its output from each artificial neuron of its previous layer, in 
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which a matrix vector multiplication is implemented by neurons. In order for this multiplication to take 

place, the output row vector of the previous layers should be equivalent to the currents dense layer’s column 

vector. So, the formula for this multiplication is: 

𝐴𝑥 =  [

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22

… …
… …

𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

]

𝑚×𝑛

∗ [

𝑥11
𝑥21

…
𝑥𝑛1

]

𝑛×1

= [

𝑏11

𝑏21

…
𝑏𝑚1

]

𝑚×1

= 𝑏                                                        (4) 

In which:  

𝐴 represents the values inside the matrix; 

𝑥 represents the values inside the vector; 

𝑏 represent the values inside their product; 

𝑚 × 𝑛 represents the dimensions of the matrix which has m-rows and n-columns; 

𝑛 × 1 represents the dimensions of the vector which has n-rows and one column and  

𝑚 × 1 represents the dimensions of the product vector which has m-rows and one column.  

The values that are inside the matrix are the parameters that are trained on the previous layers. Their 

parameters may be upgraded using the method of Back-propagation [95]. Inside the ANNs [54], this method 

calculates the loss function gradient in regard to network weights for single output or input. The Dense 

layer is employed in order to alternate the vector dimensions by employing each neuron. Inside the Dense 

layers, two parameters, which are: Units and Activation. Units have been used to determine the output size 

through the Dense Layer. Usually in these algorithms the number of Units is a multiplier of the number two 

on input layer and hidden layers while in the output layer it will have the value of different samples used 

for classification. In both cases using the MNIST dataset and CIFAR-1013 dataset we had ten different 

classified groups, so the number in both output layers was ten. Activation determines the activation function 

which will convert the values of neuron inputs. Because the Dense layer is linear, we use the Rectified Linear 

Unit (ReLU) [63][65] activation function in all the hidden layers. In the output layer, we use the SoftMax 

[66] activation function because we want to determine the percentage of accuracy in this algorithm. 

Convolutional Neural Networks (CNNs) [55, 67], besides these fully connected layers, include different 

layers such as 2D Convolutional Layer [96] (Conv2D), 2D MaxPooling Layers [96, 97] (MaxPooling2D) and 

a Flatten layer [98]. Inside the 2D-Convolutional layer [96], a filter (also known as a kernel) is employed to 

accomplish the element-wise multiplication of the input data. After that, all the results are summed up in 

just one output pixel. This the filter is able to accomplish this multiplication in each area that it slides over, 

thus converting the 2-Dimensional matrix of attributes into a divergent 2-Dimensional matrix of attributes. 

Two other elements inside the 2-D CNN are strides and padding [96]. Strides show up to which degree the 

filter is able to move in just a single direction. It means that if the strides number is (1, 1), it means that the 

filter is able to move one pixel horizontally and one pixel vertically. Similarly, if the number of strides is 

(2,2), it means that the filter is able to move two pixels horizontally and two pixels vertically at a certain 

time. So, the number of strides determine the steps number which we are proceeding in every convolution. 

Padding is important for the creation of Convolutional Neural Networks [55, 67]. It is employed in order to 

maintain the dimensions of inside an input image after operations of convolution are performed inside an 

attribute map. Padding includes the addition of further pixels throughout the border of the input attribute 

map before the time of the convolution. In our model, we have used padding ‘same’ because it is employed 

in order to maintain the dimensions of the attribute map. The other method of padding is called ‘valid’ and 

it is employed in order to decrease the dimensions of the attribute map. 2-D MaxPooling Layer [96-97] is 

the operation of computing the biggest value of every patch inside every attribute map. It also has a kernel 

which has the same function as the kernel of the Convolutional layer. The final hidden layer is the Flatten 

Layer [98] which is employed to transform the input spatial dimensions to the channel dimension. It has no 

elements inside its layer. 

Another Layer besides the fully connected layer that is used in RNNs [56, 69, 74] is the LSTM layer [69, 

71, 72]. LSTM is a type of RNNs which is able to learn long-term dependences, distinctly in problems which 

involve sequence predictions. Differently from the previous layers which have only feed-forward [54] 

 
13 University of Toronto, “The CIFAR-100 dataset”, Available: https://www.cs.toronto.edu/~kriz/cifar.html [Accessed: 27 June 2025]. 

https://www.cs.toronto.edu/~kriz/cifar.html
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connections, this layer has also feed-backward [56] connections. The activation function of LSTM layers is 

the Rectified Linear Unit [63, 65]. It has a high level of accuracy as an algorithm. 

In Sparse Auto-encoders [86] we use the same layers such as in ANN (the fully-connected layers dense). 

Differently from ANNs in Sparse auto-encoders [86] the layers are divided in three parts which as 

previously mentioned are the Encoded part, Code part and Decoded Part. The first part of the structure is 

the Decoded part. In these layers, the number of units is divided by two, compared to the previous layer. 

The second part is the Code part which is composed of just one layer and it has the smallest number of units 

compared to other layers. It is used to transfer the information from the Encoded Part to the Decoded part. 

The number of layers in the decoded part is equal to the number of layers in the Decoded part. In the 

decoded part the units of each layer are divided by two and the final hidden layer in the decoded part has 

the same number of units as the input layer inside the sparse auto-encoder [86]. The activation function is 

the same as ANN.  

In De-noising Auto-encoder [85] we add a noise factor at the input. Here we use Convolutional Layers, 

MaxPooling Layers in the encoded part and in the decoded part we use Convolutional layers and 

Upsampling layers in the decoded part. Differently from the previous auto-encoder in this type of auto-

encoder we multiply by two the units in the encoded part and the units are divided by two in the decoded 

part. Upsampling is employed in order to return the dimensions of the dataset at the output to the same as 

in the input. A parameter which defines the Upsampling layer is the size which determine in what scale the 

decompressed image will be resized.   

In CNN-autoencoder [99] we use the same layers that we mentioned earlier which are Convolutional 

and MaxPooling in Encoder and Convolutional and Upsampling into decoder. In CNN, padding is the 

same. The units of Encoder are multiplied by two after each CNN layer and it is divided by two in the 

decoder after each CNN layer. 

In RNN autoencoder [100] besides LSTM we use another layer which is Repeat-Vector. Repeat-Vector 

is employed in order to repeat the set number’s input as many times as we want. In the encoded part, the 

LSTM layer units are divided by two after each layer and in the decoded part, they are multiplied by two 

after each layer until they reach the original shape.  

The optimization algorithm used for all these implementations, is “Adam” (Adaptive Moment 

Estimation) [101]. This algorithm is able to integrate the advantages of two different algorithm of 

optimization which are RMSProp (Root Mean Squared Propagation) [102] and Adagrad (Adaptive 

Gradient) [103-104]. This algorithm is well known in terms of the efficiency it has. It is robust and is 

employed in many different tasks of DL. These algorithms calculate individual learning rates for various 

frameworks by computing the gradients first moments and second moments. This optimizer integrates 

manners of momentum by using the mean (the first moment) of the gradients, furthermore it examines the 

gradients’ scale across the variance (the second moment). These characteristics make Adam one of the most 

powerful optimizers [101]. 

5. Results and Discussion 

As we see from the results obtained using the two datasets show in Tables 4 and 5, the seven algorithms 

investigated, provide a high level of accuracy for SP. These algorithms are powerful and scalable. Because 

of their complexity and their multilayered structure, they are highly efficient in this topic. As the results 

show, all seven algorithms provide at least 80% rate of accuracy - which is very good for these kinds of 

problems. Their activation functions that we choose for this study such as ReLU (Rectified Linear Unit) and 

LeakyReLU (Leaky Rectified Linear Unit) in input and hidden layers provide as well as SoftMax (a 

probability function) are very helpful for their efficiency and the classification of different types of signals. 

Another reason for this high level of accuracy is the optimization algorithm, Adam, that we have used. 
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Table 4. MNIST Dataset 

Order № Algorithms Accuracy Score 

1 CNN Auto-encoder 99.77% 

2 Artificial Neural Networks (ANNs) 99.13% 

3 Sparse Auto-encoder 99% 

4 Convolutional Neural Networks (CNNs) 98.39% 

5 Recurrent Neural Networks (RNNs) 97.86% 

6 De-noising Auto-encoder 97.59% 

7 Auto-encoder RNN 96.46% 

Table 5. CIFAR-10 Dataset 

Order № Algorithms  Accuracy 

1 RNNs  96% 

2 CNN Auto-encoder 94.5% 

3 ANNs  93.79% 

4 De-Noising Auto-encoder 92% 

5 Sparse Auto-Encoder 84% 

6 CNNs 82% 

7 Auto-Encoder RNN  80% 

5.1. Comparison of Algorithms Based on Key Parameters 

Table 6, below provides a comparison of the key algorithms in terms of their complexity, data 

requirements, processing time and effectiveness (filtering, prediction and noise reduction). 

Table 6. Comparison of Algorithms based on Key Parameters 

Algorithm Complexity Data 

Requirements 
Processing 

Time 
Effectiveness 

for Filtering 
Effectiveness 

for Prediction 

Effectiveness 

for Noise 

Reduction 
CNN Low to Medium Moderate Low High High High 
RNN Medium to High High Medium Medium High Medium 
ANN Low Moderate Low Medium Medium Low 
Sparse Auto-encoder Medium Low Medium Medium Medium High 
De-noising Auto-

encoder Medium Moderate Medium High Medium High 

CNN-Autoencoder Medium Moderate Medium High High Very High 

5.2. Real-world Deployments of AI in Signal Processing 

AI technologies have been successfully deployed in various real-world applications within signal 

processing, including: 

● AI-Enhanced 5G Receivers: These systems utilize AI algorithms for adaptive channel estimation 

and interference cancellation, improving the reliability and quality of wireless communication. AI 

enables the receivers to dynamically adapt to changing signal conditions, optimizing performance. 

● Adaptive Beamforming Using Neural Networks: In telecommunications, neural networks are 

employed for adaptive beamforming, allowing antennas to focus on specific signal sources while 

minimizing interference from others. This approach enhances signal clarity and quality in 

environments with multiple signal sources. 

● Medical Imaging: AI algorithms are increasingly being used in medical imaging to enhance signal 

processing tasks such as noise reduction and feature extraction from MRI or ultrasound images, 

resulting in better diagnosis and treatment planning. 

6. Conclusions and Recommendations 

Both the Autoencoders and ANN algorithms have shown high accuracies. However, there are several 

disadvantages using these algorithms. Firstly, their applications are still in their infancy and require further 

research to avoid bias and hallucinations; secondly, powerful hardware is required for their real-time 

execution - whilst traditional algorithms have a long-tested application history with the required hardware 

for their real-time execution. Another problem that is added with the time spent implementing these 

algorithms (through research, coding, training and testing) is the computing power they expend in 
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comparison to traditional algorithms. However, this hardware constraint may be seen to be temporary as 

GPUs continue to evolve, becoming faster in their implementations of AI algorithms. In the field of SP, our 

results and that from the literature have shown and continue to show a lot of benefits using AI, especially 

in terms of: signal accuracy, detection, recognition, reconstruction and integrity. As was shown from our 

results exploring seven of the latest AI algorithms, these algorithms are powerful compared to traditional 

algorithms and are already revolutionizing the industry of SP in applications such as SDR (Software 

Defined Radio) and Cognitive Radio. Especially neural networks have shown a great efficiency in this field. 

As we see these AI algorithms are taking the place of traditional SP algorithms such as FFT or DFT in the 

field of SP. So, it is possible that in the future these techniques will become more sophisticated and 

consequently faster with evolving hardware than they are now with ubiquity. 

The research in particular concluded that specially auto-encoders can be used for SP, with the CNN-

Autoencoder and De-noising Encoder obtaining a minimum of 92% accuracy. Future work will involve: 

testing with real 6G radio communication channel data and other AI algorithms such as Deep Q Learning 

and Deep Temporal Difference Learning. 

6.1. Future Research 

To address the limitations and enhance the application of AI in signal processing, several targeted 

research avenues can be pursued, as discussed below. 

6.1.1. Hybrid Approaches 

Future research could focus on developing hybrid models that integrate traditional signal processing 

techniques with AI. Such models could leverage the strengths of both approaches, using AI for adaptive 

feature extraction while maintaining the interpretability and efficiency of traditional methods. 

6.1.2. Transfer Learning 

Exploring transfer learning strategies could help improve model generalizability. By training models 

on diverse datasets and transferring knowledge to new tasks, researchers can enhance performance in 

specific signal processing applications with limited labelled data. 

6.1.3. Model Robustness Enhancements 

Investigating techniques to enhance model robustness is critical. Research could explore adversarial 

training, where models are trained on intentionally perturbed data, or develop new architectures designed 

to be more resilient to variations in input data. 

6.1.4. Explainable AI (XAI) 

Developing frameworks for explainable AI in signal processing can help bridge the gap between 

performance and interpretability. Research in this area can focus on methods that provide insights into 

model decisions, making it easier for practitioners to trust and apply AI solutions in critical applications. 

6.1.5. Real-time Processing Solutions 

With the demand for real-time signal processing increasing, research should focus on optimizing AI 

models for deployment in real-time systems. This includes developing lightweight models that can run 

efficiently on edge devices while maintaining performance. 
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