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Abstract: Numerous challenges persist within Signal Processing (SP) in communication systems, i.e. maintaining
system stability, complexity of multi-dimensional SP and filtering. Many resources are required to cope with these
growing problems. The application of AI offers promising solutions. Al is already being applied to solve
engineering, medical and scientific problems, including utilisation in SP and Digital Signal Processing (DSP). The
research methodology began with common supervised Al algorithms in SP: Artificial Neural Networks (ANN),
Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNNs). Regular unsupervised Al learning
algorithms investigated included: Sparse Auto-encoder, Deep Auto-encoder, Convolutional Auto-encoder and the
De-noising Auto-encoder. Their benefits were ascertained for their utilisation in an intelligent, scalable and secure
communication system. The paper also provides over 100 references. The conclusion is that using specifically
identified AI algorithms will make communication systems more scalable, thus mitigating overloading, instability
and premature breaking point failure. AI use will also eventually make communication systems less expensive,
more agile and far more intelligent - essential for Cognitive Radio and SDR (Software Defined Radio). The
communication channels will become more reliable with AI SP and aid in its increased robustness in noise, quality
and error recovery, compared with using traditional SP. These benefits will cause a shift toward using new methods
in SP such as the Advantage Actor Critic and Trust Region Policy Gradient Algorithms. Two different datasets
comprising the MNIST (Modified National Institute of Standards and Technology) database consisting of 70,000
28x28 pixels greyscale images of handwritten integers and the CIFAR-10 (Canadian Institute for Advanced Research)
database containing 60,000 32x32 pixels small colour images were utilised. These were then processed using the
aforementioned algorithms to test their accuracy. Because of 6G radio channel data scarcity for training purposes,
image datasets were used to check the feasibility of the effectiveness of Al in SP in general radio communications,
due to their two-dimensional nature. The result showed that all seven AI models performed well: 80% - 99.77%
(accuracies). The CCN-Autoencoder gave the best result overall using both datasets: 94.5%-99.77% (accuracies).
Future work will use real radio communication channel data and other AI algorithms.

Keywords: AI; Artificial Neural Networks; Convolutional Neural Networks; Denoising Auto-encoder; Signal
Processing; Sparse Auto-encoder

1. Introduction

Currently, with the preponderance of technological devices, often having to work together whilst
sharing the overcrowded Electromagnetic Spectrum (EM), Signal Processing (SP) faces many difficulties in
trying to make them all work under extremely noisy conditions. Table 1, below, lists the top SP challenges
faced in digital and analogue signal processing in electrical, electronic and computer engineering in
descending order. Tables 1-3 were composed based on querying the Al agent “poe.com”.

Table 2 lists in descending order, the current challenges in SP in modern communication systems, with
the prevailing solutions or strategies to mitigate them.
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Table 1. Current Challenges in Signal Processing!

Analogue and DSP
Challenges

Computational Complexity
(1-2]

Real-time Processing [3]

Data Volume Management
[4]

Noise and Distortion
Management [5]

Signal Integrity [6]

Integration with Digital
Systems [7]

Power Consumption [8]
Component Variability [9]
Machine Learning (ML)
Integration [10]
Environmental Sensitivity
[11]

Interference and Jitter [12]

Security Concerns [13]

Integration of and with
Emerging Technologies [14]

Nature of Problem

Advanced algorithms can be resource-intensive, impacting processing time and
power consumption.

Many applications require instantaneous responses, making it difficult to achieve
real-time performance with complex algorithms.

The rapid increase in data from IoT (Internet-of-Thing) devices and sensors
necessitates efficient handling and processing strategies.

Signals are often affected by noise and distortion, which can significantly degrade
performance.

Maintaining signal quality over long distances is challenging due to attenuation and
interference.

Bridging analogue and digital systems can lead to compatibility issues, particularly
in ADCs (analogue-to-digital converters) and DACs (digital-to-analogue converters).
High power usage in analogue circuits, especially in high-frequency applications, is a
major concern.

Variations in manufacturing processes can affect the performance of analogue
components, necessitating calibration.

Incorporating Machine Learning (ML) into signal processing workflows is complex
and can demand significant resources.

Analogue systems can be affected by environmental changes, impacting reliability
and performance - necessitating the use of self-testing and self-calibrating circuits
[11].

Both analogue and digital systems face challenges from interference, which can
compromise signal quality.

Ensuring the security and integrity of data in Signal Processing (SP) systems is
increasingly critical.

Adapting to new technologies (e.g. 5G, 6G, Al) requires significant adjustments and
can complicate existing frameworks.

Table 2. Current Challenges and Solutions in Signal Processing in Modern Communication Systems?

SP Comms

Solution

Challenge Type
Interference and
Noise
Management

Spectral
Efficiency

Latency
Reduction [20]

Channel
Estimation and
Equalisation

Energy
Efficiency

Security and
Privacy

Challenge

Increasing interference from
various sources can degrade
the signal quality.

The growing demand for
bandwidth leads to a shortage
of available spectrum.

Real-time applications require
low latency, which can be
challenging in complex
systems.

Variability in channel
conditions complicates signal
recovery.

The need for low-power
solutions in mobile and IoT
devices is critical.

Increasing threats to data
integrity and privacy in
communication systems.

Implement adaptive filtering techniques to dynamically
suppress interference [15].

Utilise advanced modulation schemes that are more resilient
to noise, such as OFDM (Orthogonal Frequency Division
Multiplexing) [16].

Employ Multi-input Multi-output (MIMO) technology to
increase capacity without requiring additional spectrum
[17].

Use Intelligent Radio [18] and Cognitive Radio [19]
techniques to dynamically access underutilised spectrum
bands.

Optimise signal processing algorithms for speed and
efficiency.

Utilise edge computing [21] to process data closer to the
source, reducing transmission delays.

Implement machine learning algorithms for more accurate
channel estimation [22].

Use advanced equalisation techniques to mitigate the effects
of multipath fading [23].

Develop energy-efficient algorithms and hardware, such as
low-power signal processing circuits [24].

Implement sleep modes and energy-harvesting [25]
technologies to extend battery life.

Incorporate robust encryption techniques to secure
transmitted data [26].

Use advanced signal processing techniques for anomaly
detection [27] to identify potential security breaches.

! Poe.com, “What are the current challenges in digital and analog signal processing in electrical, electronic and computer

engineering?”, Poe.com, Available: https://www.poe.com/ [Accessed: 13 April 2025].

2 Poe.com, “What are the current challenges in signal processing in modern communication systems? List the main ones in descending

order offering solutions or strategies to mitigate them?”, Poe.com, Available: https://www.poe.com/ [Accessed: 13 April 2025].
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Design modular systems that can be easily expanded.
Leverage cloud-based processing to handle increased load
without degrading performance, i.e. by load balancing [28].
Foster interdisciplinary collaboration to ensure seamless
integration.

Develop standardised protocols to facilitate interoperability
between different technologies.

In this paper we will investigate the use of Artificial Intelligence (Al) in one of the many ways to
improve both analogue and DSP. We want to show that this processing provides a better accuracy than
before. It will be done by implementing Al and Machine Learning (ML) Algorithms. Al will cause a
revolution in the field of telecommunication. Table 3, below, shows the challenges of SP in modern
communication systems, listed in descending order of significance, along with the application of Al to
mitigate them. The use of Al as shown in Table 3, does show a different ranking order compared to Table 2
in the use of Al in SP for communications, notably the second position is the use of Al for channel estimation
and equalisation and the third being to increase spectral efficiency through advanced Al modulation

schemes and Cognitive Radio [18-19] technologies.

Table 3. Current Challenges and Al Solutions in SP in Modern Communication Systems?

No  SP Comms
Challenge Type

1st | Interference and
Noise Management

2nd - Channel Estimation
and Equalization

3rd | Spectral Efficiency

4t Latency Reduction

5th Energy Efficiency

6t Security and
Privacy

7th | Scalability

8th | Integration of
Emerging
Technologies

Challenge

Increased interference from
various sources can degrade
signal quality.

Variability in channel
conditions complicates
signal recovery.

Growing demand for
bandwidth leads to a
shortage of available
spectrum.

Real-time applications
require low latency, which
can be challenging.

The need for low-power
solutions in mobile and IoT
devices is critical.

Increasing threats to data
integrity and privacy in
communication systems.

As systems grow,
maintaining performance
becomes more complex.

Incorporating technologies
like 5G, 6G. IoT and Al into
existing systems.

Artificial Intelligence (AI) Solution

Use deep learning algorithms for adaptive noise cancellation
[30] and interference suppression [31].

Implement Al-driven signal classification [32] to identify and
mitigate specific interference patterns.

Employ machine learning models to predict channel
conditions [22] and optimise equalisation techniques [33].

Utilise reinforcement learning for dynamic adaptation of
equalisation algorithms [34] based on real-time channel
feedback.

Implement Al algorithms for dynamic spectrum management
[18] and cognitive radio [19] technologies to optimise
spectrum usage.

Use generative models to design new modulation schemes
[35] that maximise spectral efficiency.

Optimise signal processing pipelines using Al to predict and
reduce processing delays [36].

Employ edge Al for local processing [37], minimising the
need for long-distance data transmission.

Utilise Al algorithms to optimise resource allocation and
power management in communication devices [38].
Implement predictive models to dynamically adjust
transmission power based on network conditions [39].

Use ML for anomaly detection to identify unusual patterns
that may indicate security breaches [40].

Implement Al-driven encryption techniques that adapt to
evolving threats in real time [41].

Develop Al-based resource management systems [42] that
automatically scale processing power and bandwidth as
needed.

Utilise cloud-based Al solutions to handle increased data
loads efficiently [43].

Foster collaborative Al frameworks [44] that ensure
interoperability between different technologies.

Use Al for simulation and modelling to predict the impact of
integrating new technologies before implementation [45].

3 Poe.com, “What are the current challenges in signal processing in modern communication systems? List the main ones in descending

order offering solutions or strategies to mitigate them using AI?”, Poe.com, Available: https://www.poe.com/ [Accessed: 13 April 2025].
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This paper discusses the accuracy of SP because of the implementation of these types of Al SP
algorithms. It shows the accuracy using Deep Learning (DL) algorithms and Autoencoders. There exist
many techniques in SP such as: Filtering, Fourier Transform and Modulation. However, these techniques
are outdated now - when working with big datasets these techniques have a low accuracy and performance.
It is good to improve the techniques of the prevailing SP algorithms by incorporating these new Al
algorithms. The implementation of DL models in SP has shown favourable results by overcoming the
different limitations and offering new prospects in this field. DL algorithms have been able to exhibit
extraordinary potentials in the exploitation of compounded patterns. Incorporating these Al algorithms
with existing SP algorithms will make SP more robust.

2. Signal Processing (SP)
2.1. Signal Processing Techniques

A signal is just a function which varies according to time. Its purpose is to carry information based on
the phenomenon nature or behaviour. A signal has a mathematical representation as a function of a variable
(in this case it is an independent variable) t which symbolizes the time. So, we can denote a signal as x(t). A
signal can be continuous or discrete based on the value of the variable t. If the variable t is continuous, then
the signal x(t) will be continuous. On the other hand, if the variable t is discrete the signal x(t) will be
discrete. Usually, a discrete signal is described as a sequence of numbers because the discrete signals are
usually represented at discrete intervals of time [46].

SP includes the data conversion and data transformation in such an approach that we are able to
perceive things which we cannot see through direct scrutiny. It is able to permit many scientists and
engineers to improve, examine and to rectify signals, involving streams in audio, videos, scientific data and
images. There are several categories of SP which includes: Analogue, Digital, Continuous Time, Discrete
Time, Nonlinear and Statistical.

One of the techniques used for SP is called Filtering. During filtering we are able to omit undesired
components from our signal and keep only the components that we want. Based on the frequency of the
signals, we have four types of filters which are called: High-Pass Filters, Low-Pass Filters, Band-Pass Filters
and Band-Stop Filters. High-Pass Filters allow only the signals with high frequency to pass through it, while
the signals with low frequency are blocked. Low-Pass Filters allow only the signals with low frequency to
pass through it and blocks the signals that have a high frequency. Band-Pass Filters allow only a given range
of signals to pass through, while blocking the others. Band-Stop Filters block a given range of signals to
pass through while allowing others [47]. The four cardinal types of filters are shown below in Fig. 1.

Another technique used for SP is known as Fourier Analysis. It is a category of mathematical analysis
which aims to recognize different cycles or patterns inside a dataset of time series that has previously been
normalized [47]. This technique wants to make the data (which may be complex) simpler.
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Figure 1. The Four Major Filter Types*

This is done by decomposing this complex data into an exponential function series or trigonometric
series e.g. sinusoidal waves. Every one of these sinusoidal waves has a certain amplitude, cycle length and

4N. Davis, “An Introduction to Filters”, All About Filters, 30t September 2023, Available: https://www.allaboutcircuits.com/technical-
articles/an-introduction-to-filters/ [Accessed: 21 June 2025].
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a phase relationship with the other sinusoidal waves, that later being able to reconstruct the data that we
observed [48]. Fourier Analysis comprised different approaches such as: Continuous Fourier Transform
(CFT), Discrete Fourier Transform (DFT), Fast Fourier Transform (FFT) and Short-Time Fourier Transform.
Continuous Fourier Transform is used to transform a continuous-time signal (also known as an analogue
signal) into the representation of their continuous-frequency approach. The formula of CFT for a signal x(t)
is:

X(w) = [7 x(t) x e I@tdt @

Where X (jw) represent the Continuous Frequency approach of the signal, w = 2rf and represents the
angular frequency while j represents the imaginary part. The limits of the integral are from —oo to +oo
because the CFT needs an infinite amount of frequency and time ranges [48]. The DFT is used to convert
discrete-time signals into the representation of their discrete-frequency approach. Usually, DFT uses FFT.
The formula of DFT is:

j2mkn

X[kl = ZnZg x[n] «e™ W @)

Where X[k] represents the Discrete Signal in its frequency domain, x[n] represents the signal in its time
domain, n represents the number of samples, and k represents the frequency.

The FFT transforms a signal into discrete spectral units and as a result, it is able to issue information
about the signal. The FFT is employed in many different areas of SP such as control of quality, monitoring
of systems or machines and fault analysis. It is an advanced algorithm used for DFT implementation. When
we sample a signal during a time period, the signal is split into its frequency units. These units are sine

oscillations at marked frequencies, every one of them possessing its phase and amplitude. Because of this,
FFT is able to decrease the complexity of the computation of the DFT [49].

Short Fourier Transform (SFT) is employed to establish the phase content and the frequency of a
sinusoidal signal while it alternates gradually. During this method, a longer signal is split into segments
which are shorter and the length of these segments is the same. After this, we perform the Fourier
Transformation on every one of these short segments.

Another process of SP is “modulation”. Modulation is the conversion of information into waves of
radio by the addition of data to an optical or electromagnetic (EM) carrier signal. A carrier signal is a signal
with a stable waveform. This means that a carrier signal has its frequency, height and amplitude constant,
before it is changed or “modulated” by the information/data signal. The data can be appended onto the
carrier signal by differing its: polarization, frequency, phase, amplitude or a combination of these. There are
different types of modulations such as Amplitude Modulation (AM), Phase Modulation (PM), Frequency
Modulation (FM), Quadrature Amplitude Modulation (QAM) and Phase Shifting Keying (PSK). AM is
employed in order to broadcast messages with the help of a radio wave. In this form of modulation, the
wave amplitude is varied in sympathy to the ratio of the signal of the message. The message signal carries
the required data which may be video or audio and on the other side, the transmission frequency is
determined by the carrier signal. The signal data are held by a lower sideband, an upper sideband and a
carrier wave. PM is another modulation type during which the carrier signal’s phase is modified based on
the amplitude of the message signal. This type of modulation is usually employed in communication
between satellites. FM takes place when the frequency of a carrier signal is modified based on the amplitude
of the message signal. FM is able to issue a better quality for the signal since it is less susceptible to
interference and noise. QAM employs both phase components and amplitude components in order to issue
a modulation form which can provide very high levels of efficiency. So, in other words, this is a combination
of both PM and AM. QAM may be employed for both Analogue and Digital Modulation. When it is
employed for radio waves transmission, it can transfer very large data rates compared to the usual PM
schemes and AM schemes. While for basic signals, there are only two points in which the transfer is allowed,
by employing QAM there are many more different positions in which the signal may be transferred, every
one of them having a certain phase and amplitude. When we plot a graph of QAM based on phase and
amplitude these positions are denoted as points and based on the number of points in these graphs we are
able to determine what kind of QAM it is. It may be: 2-QAM, 4-QAM, 8-QAM, 16-QAM, 64-QAM or 256-
QAM, etc. [50]. PSK is a modulation process that transfers information by modifying the phase of a constant-
frequency carrier signal. This type of modulation is achieved by differing the inputs of sine and cosine at
an accurate time. PSK includes: Binary Phase Shift Keying (BPSK), in which the carrier signal contains two
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phases; Quadrature Phase Shift Keying (QPSK), in which the carrier signal contains four phases; 8-Phase
Shift Keying (8-PSK), in which the carrier signal contains eight phases, etc. Every phase represents a bit
sequence, which permits the information transmission to be as efficient as possible [51]. Fig. 2, below, shows
the major modulation classifications based on a digital carrier being used.
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Figure 2. The Principal Modulation Types. (Adapted from [52])

3. AI Algorithms

Al is the ability of machines to perform tasks without being supervised all the time by people. It is very
powerful and it is very useful nowadays. The prime subset of Al is ML. ML is a term used for algorithms
that can make a device learn without programming it in an explicit way. In Supervised Learning, the data
is labelled before being taken under processing. It means that if we have different images of apples and
oranges and want to classify which images will be oranges and which will be apples, then the data is divided
between images which are apples and the images which are oranges. By doing this, after each data entering
in these algorithms, it will be able to recognize which image belongs to specific class. Differently from that
when we are using Unsupervised Learning there is no labelling of the data before processing. Based on the
example above, all of the images of apples and oranges are put inside the algorithms and if another image
comes, it will only be recognisable by the program based on the similarity of the image in comparison to all
the images. Reinforcement Learning is another type of ML algorithms. In this algorithm we have an agent
being put inside a specific environment. Based on the achievements it will make through its actions; it will
also take different rewards. The algorithms or RL are usually employed for computer games.

DL Algorithms are a subset of ML. Differently from usual ML algorithms these types of algorithms
contain more than one-layer, specifically at least three-layers in their structure. The DL Algorithms may be
supervised, such as: Artificial Neural Networks (ANNs) [54], Convolutional Neural Networks (CNNs) [55]
and Recurrent Neural Networks (RNNs) [56]; unsupervised, such as: Auto-encoder [57] or part of
Reinforcement Learning algorithms [58], such as Deep RL [59][60] or Deep Q-Learning (DQN) [61]. Fig. 3,
below, shows the top five ML algorithm classifications and their typical application scenarios.

ANNSs [54] have taken their name from biological neurons. The structure of an artificial neuron is
shown in Fig. 4, below.

The ANN [54] begins with an input data x which may be taken from a previous layer inside the
structure or from an outsider factor. These input data contain a numerical value. After these input nodes
we have weight. Weight is the framework that is able to convert the input data inside the hidden layer as
well as to reduce the error. After all the input data is summed-up we have the bias b. Bias is a constant that
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is added to the sum of the products of the input data and weight. After that we have the activation function.
The activation function decides if our function should be activated or not. There are different types of
activation functions such as: Reactive Linear Unit (ReLU) [63], Sigmoid [64], LeakyReLU [65], SoftMax [66],
etc. ReLU [63] is a function that for each x < 0 then y = 0 and for each x > 0 then y = x. Sigmoid function

[64] is a function that for each x we have y =

each: x < 0theny = 0.1 * x and for eachx > 0 then y = x. SoftMax [66] is an activation function that is
able to scale the numbers into probabilities.
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X
j
Its mathematical function for each x is y; = S oon v, Where N is the number of different classes inside of

a classifier, which is multilevel. The final part of an art1f1c1al neuron is the output, which is the predicted
value of all process inside the neuron. So, the function of ANN [54] is:
y=XN x;*w;+b 3)
in which y represents the output, x represents the input data, w represent the weight, b represents the
bias, i represents the number of iterations and N represents the total number of the inputs.
Input

@ Activation Function  Output

@ @ @-» 760 |—> »
@ / Bias @

Figure 4. The Structure of a Neuron [62]

ANN [54] is feed-forward, so it means that the movement of data inside its neural network structure
is from the input to the hidden layer/s until the output. There is no turning back from the hidden layer to
the input layer or from the output layer to the hidden layer.

> Filip Projcheski, “List of Top 5 Powerful Machine Learning Algorithms That Will Solve 99% of Your Problems”, Laconic Machine
Learning, 18 July 2020, Available: https://laconicml.com/machine-learning-algorithms/ [Accessed: 24 June 2024].
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Another type of ANN [54] is the CNN [55]. These structures are employed in many fields of today’s
technology such as Computer Vision, Medicine, etc. Differently from ANNs [54], CNNs contain types of
layers such as Convolutional Layer, Pooling Layer and Flatten Layer. The Convolutional Layer can apply a
convolution computation inside the input layer, proceeding the result to the following layer. The
convolution transforms the whole pixels to its accessible field all together into a single value, e.g. if we could
perform an image convolution, we would be reducing the size of the image, moreover bringing the whole
information inside the field all together into a single pixel. A filter or also known as a kernel, implements an
element-wise multiplication over the input data. After we sum up all the results, we take only a single
output pixel. The next layer in the CNN is the Pooling Layer. The aim of the Pooling Layer is to reduce the
hidden layer dimensions, by uniting the neuron clusters” output from the preceding layer to a single neuron
into to the succeeding layer. There exist two different forms of pooling operation, which are: Average Pooling
and Max Pooling. In the Average Pooling layer, we calculate the average of the input values and take their
mean. In Max Pooling, later we take the largest value of the input values. The Flatten Layer is employed to
transform all the resultant 2-D arrays from maps of pool attribute into a line vector, which is continuous
[67]. Fig. 5, below, is an abstraction of a typical CNN architecture.

Input Output
Pooling Pooling  Pooling e
e L02 | Horse
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Figure 5. A Typical CNN (Convolutional Neural Network) [55, 67] Architecture®
Another type of ANN [54] is RNNs [56]. Unlike the previous types of ANNSs [54], these type of ANNs
[54] are Feed-backward, so the data flows not only in one direction from the input to the output, but also
backwards, from the hidden layer to the input, also from the output to hidden layer/s or directly from the
output to the input. A typical RNN [56] is shown in Fig. 6, below.

Dense Output
layers layer

Input

layer QOutput

>

Recurrent neural network |

Feedback loop
Figure 6. A Typical Recurrent Neural Network Architecture [74]

In RNNss [56], this movement of data usually form a loop. For this reason, these algorithms are good
for Speech Recognition [68] and Natural Language Processing (NLP) [69-70]. Two of the most well-known
layers of RNNs are Long Short-Term Memory (LSTM) [69, 71-72] and Gated Recurrent Unit (GRU) [69, 72].
The LSTM [71] layer is composed of a cell, an input gate, a forget gate and an output gate. The cell is able to

6 Analytixlabs, “Convolutional Neural Networks — Definition, Architecture, Types, Applications, and more”, 8 January 2024,
Available: https://www.analytixlabs.co.in/blog/convolutional-neural-network/ [Accessed: 24 June 2024].
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recall the values above intervals of time. The input gate, the forget gate and the output gate control the flux of
information inside and outside of the cell. The input gate determines what chunks of information should be
loaded in the present state by giving a value of 0 (not to load the information) or 1 (to load the information).

The forget gate determines what chunks of information should be discarded from the previous state by
giving them a value of 0 (to discard the information) or 1 (to keep the information). The output gate
determines what chunks of information into the present state should be output by giving a value of 0 (which
represents the previous state) or 1 (which represents the current state). LSTM [71-72] can preserve valuable,
long-term dependencies to make predictions, both in present and future time-steps, by selectively
outputting accurate information from its present state. Gated Recurrent Unit (GRU) [69, 72] is just a version
of LSTM [71-72]; however, it is much less complex than LSTM [71-72]. Unlike LSTM [71-72], GRU [69, 72]
does not contain on output gate [73].

3.1. Advantages of Using CNNs over RNNs for Denoising and Classification in Signal Channels

The advantages of CNNs over RNNs when used for denoising or classification tasks in signal channels
include:

e Spatial Hierarchy: CNNs are designed to capture spatial hierarchies in data through convolutional
layers. This capability allows them to effectively learn features from local regions of input data,
making them particularly suited for image-like data in signal processing.

e Parameter Sharing: CNNs use shared weights for convolutional filters, which significantly reduces
the number of parameters in the model. This leads to faster training times and less risk of over-
fitting; this is especially beneficial in scenarios where limited data is available.

e Translation Invariance: The pooling layers in CNNs enable the model to become invariant to small
translations in the input signal. This property is crucial for applications in signal processing, where
the exact location of a signal feature may vary.

o Reduced Complexity: For tasks like denoising, CNNs can process entire batches of data in parallel,
enhancing computational efficiency. In contrast, RNNs process sequences step-by-step, which can
be slower and less efficient for high-dimensional data typical in signal processing.

Another type of ANN [54] is the Generative Adversarial Networks (GANs) [75]. GANs [75] are a
procedure which includes the implementation of ANNs [54] into Generative Modelling [76-77]. Generative
Modelling [76-77] uses unsupervised learning, which includes finding and learning patterns or regularities
inside the input information so that the model may be employed in order to generate new samples that
probably may have been taken from the original dataset. GANs [75] are a smart method of generative
modelling [76-77] training by formulating this type of issue as a supervised learning issue, which contains
two sub-models: a generator model [78], which is trained in order to generate new samples and a
discriminator model [78], which attempts to segregate the samples into real (which belong to the domain)
and fake (which are generated). A modern GAN generator and discriminator architecture is shown in Fig.
7, below. Fig. 8, below, shows a typical complete GAN [75] architecture. We train these two types of models
together inside a zero-sum game [79], till the point that the model of the discriminator is deceived for about
half a time, which means that the model of the generator is still generating possible samples. GANSs [75] are
employed in many fields such as image-to-image translation [78] and for generating photorealistic images
[80].

Auto-encoders [57] are also DL [63, 73] algorithms but function differently from traditional ANNs [54].
These types of algorithms are unsupervised learning algorithms. These algorithms are very useful for
dimensionality reduction [81-82] and data compression [83]. Auto-encoders [57] are able to learn image
reconstruction, text reconstruction, also different types of data reconstruction, from different compressed
varieties of themselves.

The structure of an auto-encoder is composed of three layers, as shown in Fig. 9, which are the Encoder
Layer (input cells), Code Layer (hidden cells) and the Decoder Layer (match input output cells). The function
of the Encoder Layer is to compress the input data to a representation of latent space. This means that the
Encoder Layer can encode the input data like a representation which is compressed inside a dimension which
is reduced. The compressed data is a twisted version of the original data. The next layer that is the Code
Layer, illustrates the compressed data input which is sent to the Decoder Layer. The Decoder Layer is able to
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decode the encoded data back into its initial dimensions. This decoded data is re-established from the

representation of the latent space. There are several types of auto-encoders [84].
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Figure 7. A Modern GAN Generator and Discriminator Architecture [78]
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Figure 8. A Typical Generative Adversarial Network (GAN) Architecture”

One type of Auto-encoder is De-noising Auto-encoder [85]. This type of Auto-encoder is able to

generate a distorted copy of the original input by adding noise. This is helpful in order to evade auto-
encoders from making copies of the original input into the output without learning data attributes. De-
noising auto-encoders [85] extract a relatively distorted input during the time of training to retrieve the

7 Stephan Miiller, “Generative Adversarial Networks: How Data Can Be Generated With Neural Networks”, statworx(R) blog, 10t
October, 2020, Available: https://www.statworx.com/en/content-hub/blog/generative-adversarial-networks-how-data-can-be-
generated-with-neural-networks/ [Accessed: 24 June 2024].
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initial input. In order to remove the extra noise, this auto-encoder learns a field of vectors for shifting the
input data to a lower dimensionality manifold that represents the real data [84].

Auto Encoder (AE) Sparse AE (SAE) Variational AE (VAE)

Input Cell

é Noisy Input Cell

() Hidden cell

© Probablistic Hidden Cell
@ Match Input Output Cell

Figure 9. Architecture of four Types of Autoencoders?

Another type of Auto-encoder is the Sparse Auto-encoder [86]. In Sparse Auto-encoder [86], the hidden
vertexes are more sizeable compared to input vertexes. These Auto-encoders [86] are able to find essential
attributes from data. A common Sparse Auto-encoder is conceptualized where the complexity of a vertex
matches with the activation level. Restriction of sparsity is established inside the hidden layer. This is done
in order to obviate the output layer to copy data from the input layer. Sparsity can be established by further
terms inside the loss function in the course of the process of training, either through probability distribution
comparison of hidden layer activations, or by making all the strongest hidden layer activations zero [87].

Another type of Auto-encoder is the Convolutional Auto-encoder (CAE) [88]. These Auto-encoders
[84] employ the convolution function [89] in order to utilize this examination. They first learn to transform
the input into a collection of straightforward signals before trying to reconstruct its input data from these
signals or alter the resulting image’s geometry or reflectivity. They are cutting-edge tools for convolutional
filter unsupervised learning. These filters can be used to extract attributes from any input once they have
been trained. Therefore, these attributes can be applied to any task that calls for a condensed representation
for the data, such as classification.

RNN auto-encoders (LSTM auto-encoders) [90] is the application of a sequence data auto-encoder by
employing the LSTM [69, 71-72] in an encoder-decoder architecture. The LSTM layer [69, 71-72] is trained
for reading the input data, encoding the input data, decoding the input data and finally rewriting it. The
model performance is estimated according to its capability to reconstruct the input data.

Deep Reinforcement Learning (DRL) [59-61, 91-92] algorithms are algorithms that are connected to
both DL [55] and Reinforcement Learning (RL) [58]. As part of RL algorithms, it employs an agent inside an
environment. But unlike the usual RL [58], it also incorporates Neural Networks [64] algorithms inside it.
These algorithms are able to grab very big data and determine on what actions must be accomplished in
order to improve the intensions.

4. Materials and Methods
4.1. Applicability of MNIST and CIFAR-10 Datasets to Signal Processing

The MNIST® (Modified National Institute of Standards and Technology) dataset is a dataset which
contains different handwritten digits. This dataset is composed of 70,000 digits, 60,000 of which are
employed for training while 10,000 of them are employed for testing. The size of the digits has been
normalized. These digits are concentrated around an image whose size is fixed. The dimensions of this
dataset are 28x28 pixels. This dataset is usually used for image processing. The MNIST dataset was

8 Tallaswapna,  "Types of  Autoencoders in Deep Learning’, Medium, 10 July 2023, Available:

https://medium.com/@tallaswapna9/types-of-autoencoders-in-deep-learning-383cfecc4ddOe [Accessed: 24 June 2024].
9 Kaggle, “MNIST Dataset”, Available: https://www .kaggle.com/datasets/hojjatk/mnist-dataset [last accessed: 27 June 2025].
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generated by the rearrangement of the National Institute of Standards and Technology (NIST) dataset
samples [87].

A much more advanced dataset is the CIFAR-100 (Canadian Institute for Advanced Research)
dataset. The CIFAR-100 dataset comprises 60,000 images. Unlike the MNIST dataset, these images are
coloured images. 50,000 of these images are employed for training while the other 10,000 are employed for
testing [93]. The MNIST and CIFAR-10 datasets offer valuable insights into signal processing for the
following reasons, given below.

4.1.1. Pattern Recognition

Both datasets focus on object recognition, akin to identifying patterns in signals. Signal processing often
involves recognizing and classifying patterns amidst noise, making these datasets relevant for training
models in similar tasks.

4.1.2. Image Characteristics

The images in MNIST (28x28 grayscale) and CIFAR-10 (32x32 colour) are structured similarly to
signals. Their two-dimensional data representation aligns well with signal processing techniques that
analyse spatial and temporal dimensions.

4.1.3. Benchmarking

These datasets serve as benchmarks for evaluating the performance of Al algorithms. The insights
gained from training on such well-established datasets can be extrapolated to real-world signal processing
applications, enhancing model reliability and accuracy.

4.2, Library Used for Deep Learning (DL)

The library used for calling DL algorithm is Keras!! [87]. Keras is a freely available library written in
Python™12 which is able to implement ANNS5s [54]. It is able to run easily regardless if we are implementing
this library for a GPU (Graphics Processing Unit) or a CPU (Central Processing Unit). All models of ANNs
[54] are accessible in this library. This library is modular and can be used for research in the field of
innovation. In order to build a Keras model in programming, there are six steps that should be followed.
The first step is the establishment of the network, along with layers and their inter-connections. Keras has
two model types which are Functional and Sequential. The second step of establishing a Keras [87] model is
by compiling this network that we built. This implies that the code that we have written must be
transformed in appropriate form so that the machine will be able to understand. The third steps involve
compilation of the model. This is carried out by specifying three parameters which are: the optimizer, which
is used to minimize the losses; metrics, which is employed in order to discover the model’s accuracy; and
the loss function, which is used to compute the model’s losses. After compiling the model, the fourth step is
to fit the data. This method is used in order to train the model. The fifth step is to make the model evaluation.
This is done in order to evaluate the error of the model. The sixth and final step is to make predictions:
‘model.predict()’ is used, we then employ the model on the new data in order to make these predictions.

4.3. Model Training Architecture Variations and Optimisation Techniques in Al for SP

4.3.1. Training Techniques

Effective training of CNNs for signal processing tasks involves techniques such as data augmentation,
which helps in generating additional training samples by transforming existing ones (e.g. by flipping or
rotation). This is particularly useful in scenarios where the training dataset is small.

4.3.2. Architecture Variations

Variations in CNN architecture can significantly impact performance. For instance, deeper networks
with more convolutional layers can capture more complex features but may require more extensive training
data to avoid overfitting. Using residual connections can also help in training deeper models effectively.

4.3.3. Regularization Techniques

10 University of Toronto, “The CIFAR-100 dataset”, Available: https://www.cs.toronto.edu/~kriz/cifar.html [Accessed: 27 June 2025].
1 Keras, “A superpower for ML developers”, Available: https://keras.io/ [Accessed: 26 June 2025].
12 Python Software Foundation, python™, Available: https://www.python.org/ [Accessed: 26 June 2025].
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Regularization methods such as L2 regularization and Dropout are crucial in preventing overfitting.
Dropout, which randomly deactivates a subset of neurons during training, encourages the network to learn
more robust features, enhancing generalization.

4.3.4. Optimization Techniques

The choice of optimizer can greatly influence training efficiency. Techniques like Adam or RMSprop
dynamically adjust learning rates during training, allowing for faster convergence. Additionally, the use of
learning rate schedules can help in fine-tuning the model as training progresses.

4.4. Comparison of AI Models and Traditional Signal Processing Approaches
While traditional signal processing techniques such as Fast Fourier Transform (FFT), filtering and
modulation have been foundational in the field, Al models present distinct advantages and challenges.

4.4.1. Advantages of AI Models

Adaptability: Al models, particularly DL algorithms, can adapt to complex, non-linear relationships
in data. Unlike traditional methods that rely on predefined mathematical models, Al can learn from the
data itself, making it suitable for dynamic environments.

Feature Extraction: AI models, especially CNNs, excel at automatic feature extraction. Traditional
techniques require manual feature engineering, which can be time-consuming and may not capture all
relevant information.

Performance on Large Datasets: With the increasing availability of large datasets, AI models can
leverage vast amounts of information to improve performance. Traditional methods might struggle with
high-dimensional data, whereas AI models can efficiently process and learn from it.

4.4.2. Limitations of AT Models Compared to Traditional Approaches

Data Dependency: Al models often require large amounts of labelled data for training. In contrast,
traditional methods can be effective with smaller datasets since they rely on established mathematical
principles.

Computational Resources: Training Al models, particularly deep learning architectures, demands
significant computational power and can be time-consuming. Traditional signal processing techniques can
often be implemented more quickly and with less computational overhead.

Interpretability: Traditional methods provide clear mathematical foundations that allow for greater
interpretability. Al models, particularly deep neural networks, can operate as “black boxes”, making it
challenging to understand how decisions are made.

Overfitting: Al models, particularly deep learning architectures, can easily overfit to training data,
especially when datasets are small or noisy. Overfitting occurs when a model learns the noise in the training
data rather than the underlying patterns, leading to poor performance on unseen data. Regularization
techniques and cross-validation are essential to mitigate this issue, but they can increase complexity.

Generalizability: The ability of an Al model to generalize to new, unseen data is critical for its practical
application. However, models trained on specific datasets may not perform well when applied to different
environments or conditions. This limitation is particularly pronounced in signal processing, where
variations in noise, interference, or system parameters can significantly impact model performance.

Model Robustness: Many Al models can be sensitive to minor changes in input data, resulting in
decreased performance in real-world applications. Robustness is crucial in signal processing, where signals
can be affected by various factors such as environmental conditions or hardware imperfections. Developing
more robust models that can maintain performance under varying conditions remains a key challenge.

4.5. Al Implementations of Signal Processing (AI SP)

In supervised DL algorithms, the model type is Sequential, i.e. the data is able to proceed from one layer
(starting from the input layer) to another one, in specific order, till it reaches the final layer (output layer).
For ANNSs [54] in this experiment, we have used fully-connected layers, which are simply known as Dense
Layers [94]. “Dense” is a neurons’ layer that is fully connected to the previous layer, which indicates that
the neurons inside the layer are linked to each neuron of the previous layer. The Dense Layer of each
artificial neuron inside of a model obtains its output from each artificial neuron of its previous layer, in
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which a matrix vector multiplication is implemented by neurons. In order for this multiplication to take
place, the output row vector of the previous layers should be equivalent to the currents dense layer’s column
vector. So, the formula for this multiplication is:

a1 Q12 .. Qg X11

A= | G2t %2 x21] l \ )
Am1 Am2 .. Amaly nx1

In which:

A represents the values inside the matrix;

x represents the values inside the vector;

b represent the values inside their product;

m X n represents the dimensions of the matrix which has m-rows and #n-columns;

n X 1 represents the dimensions of the vector which has n-rows and one column and

m X 1 represents the dimensions of the product vector which has m-rows and one column.

The values that are inside the matrix are the parameters that are trained on the previous layers. Their
parameters may be upgraded using the method of Back-propagation [95]. Inside the ANNS5s [54], this method
calculates the loss function gradient in regard to network weights for single output or input. The Dense
layer is employed in order to alternate the vector dimensions by employing each neuron. Inside the Dense
layers, two parameters, which are: Units and Activation. Units have been used to determine the output size
through the Dense Layer. Usually in these algorithms the number of Units is a multiplier of the number two
on input layer and hidden layers while in the output layer it will have the value of different samples used
for classification. In both cases using the MNIST dataset and CIFAR-10"3 dataset we had ten different
classified groups, so the number in both output layers was ten. Activation determines the activation function
which will convert the values of neuron inputs. Because the Dense layer is linear, we use the Rectified Linear
Unit (ReLU) [63][65] activation function in all the hidden layers. In the output layer, we use the SoftMax
[66] activation function because we want to determine the percentage of accuracy in this algorithm.

Convolutional Neural Networks (CNNs) [55, 67], besides these fully connected layers, include different
layers such as 2D Convolutional Layer [96] (Conv2D), 2D MaxPooling Layers [96, 97] (MaxPooling2D) and
a Flatten layer [98]. Inside the 2D-Convolutional layer [96], a filter (also known as a kernel) is employed to
accomplish the element-wise multiplication of the input data. After that, all the results are summed up in
just one output pixel. This the filter is able to accomplish this multiplication in each area that it slides over,
thus converting the 2-Dimensional matrix of attributes into a divergent 2-Dimensional matrix of attributes.
Two other elements inside the 2-D CNN are strides and padding [96]. Strides show up to which degree the
filter is able to move in just a single direction. It means that if the strides number is (1, 1), it means that the
filter is able to move one pixel horizontally and one pixel vertically. Similarly, if the number of strides is
(2,2), it means that the filter is able to move two pixels horizontally and two pixels vertically at a certain
time. So, the number of strides determine the steps number which we are proceeding in every convolution.
Padding is important for the creation of Convolutional Neural Networks [55, 67]. It is employed in order to
maintain the dimensions of inside an input image after operations of convolution are performed inside an
attribute map. Padding includes the addition of further pixels throughout the border of the input attribute
map before the time of the convolution. In our model, we have used padding ‘same’ because it is employed
in order to maintain the dimensions of the attribute map. The other method of padding is called ‘valid” and
it is employed in order to decrease the dimensions of the attribute map. 2-D MaxPooling Layer [96-97] is
the operation of computing the biggest value of every patch inside every attribute map. It also has a kernel
which has the same function as the kernel of the Convolutional layer. The final hidden layer is the Flatten
Layer [98] which is employed to transform the input spatial dimensions to the channel dimension. It has no
elements inside its layer.

Another Layer besides the fully connected layer that is used in RNNs [56, 69, 74] is the LSTM layer [69,
71, 72]. LSTM is a type of RNNs which is able to learn long-term dependences, distinctly in problems which
involve sequence predictions. Differently from the previous layers which have only feed-forward [54]

13 University of Toronto, “The CIFAR-100 dataset”, Available: https://www.cs.toronto.edu/~kriz/cifar.html [Accessed: 27 June 2025].
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connections, this layer has also feed-backward [56] connections. The activation function of LSTM layers is
the Rectified Linear Unit [63, 65]. It has a high level of accuracy as an algorithm.

In Sparse Auto-encoders [86] we use the same layers such as in ANN (the fully-connected layers dense).
Differently from ANNs in Sparse auto-encoders [86] the layers are divided in three parts which as
previously mentioned are the Encoded part, Code part and Decoded Part. The first part of the structure is
the Decoded part. In these layers, the number of units is divided by two, compared to the previous layer.
The second part is the Code part which is composed of just one layer and it has the smallest number of units
compared to other layers. It is used to transfer the information from the Encoded Part to the Decoded part.
The number of layers in the decoded part is equal to the number of layers in the Decoded part. In the
decoded part the units of each layer are divided by two and the final hidden layer in the decoded part has
the same number of units as the input layer inside the sparse auto-encoder [86]. The activation function is
the same as ANN.

In De-noising Auto-encoder [85] we add a noise factor at the input. Here we use Convolutional Layers,
MaxPooling Layers in the encoded part and in the decoded part we use Convolutional layers and
Upsampling layers in the decoded part. Differently from the previous auto-encoder in this type of auto-
encoder we multiply by two the units in the encoded part and the units are divided by two in the decoded
part. Upsampling is employed in order to return the dimensions of the dataset at the output to the same as
in the input. A parameter which defines the Upsampling layer is the size which determine in what scale the
decompressed image will be resized.

In CNN-autoencoder [99] we use the same layers that we mentioned earlier which are Convolutional
and MaxPooling in Encoder and Convolutional and Upsampling into decoder. In CNN, padding is the
same. The units of Encoder are multiplied by two after each CNN layer and it is divided by two in the
decoder after each CNN layer.

In RNN autoencoder [100] besides LSTM we use another layer which is Repeat-Vector. Repeat-Vector
is employed in order to repeat the set number’s input as many times as we want. In the encoded part, the
LSTM layer units are divided by two after each layer and in the decoded part, they are multiplied by two
after each layer until they reach the original shape.

The optimization algorithm used for all these implementations, is “Adam” (Adaptive Moment
Estimation) [101]. This algorithm is able to integrate the advantages of two different algorithm of
optimization which are RMSProp (Root Mean Squared Propagation) [102] and Adagrad (Adaptive
Gradient) [103-104]. This algorithm is well known in terms of the efficiency it has. It is robust and is
employed in many different tasks of DL. These algorithms calculate individual learning rates for various
frameworks by computing the gradients first moments and second moments. This optimizer integrates
manners of momentum by using the mean (the first moment) of the gradients, furthermore it examines the
gradients’ scale across the variance (the second moment). These characteristics make Adam one of the most
powerful optimizers [101].

5. Results and Discussion

As we see from the results obtained using the two datasets show in Tables 4 and 5, the seven algorithms
investigated, provide a high level of accuracy for SP. These algorithms are powerful and scalable. Because
of their complexity and their multilayered structure, they are highly efficient in this topic. As the results
show, all seven algorithms provide at least 80% rate of accuracy - which is very good for these kinds of
problems. Their activation functions that we choose for this study such as ReLU (Rectified Linear Unit) and
LeakyReLU (Leaky Rectified Linear Unit) in input and hidden layers provide as well as SoftMax (a
probability function) are very helpful for their efficiency and the classification of different types of signals.
Another reason for this high level of accuracy is the optimization algorithm, Adam, that we have used.
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Table 4. MNIST Dataset

Order No Algorithms Accuracy Score
1 CNN Auto-encoder 99.77%
2 Artificial Neural Networks (ANNSs) 99.13%
3 Sparse Auto-encoder 99%
4 Convolutional Neural Networks (CNNs) 98.39%
5 Recurrent Neural Networks (RNNs) 97.86%
6 De-noising Auto-encoder 97.59%
7 Auto-encoder RNN 96.46%

Table 5. CIFAR-10 Dataset
Order No | Algorithms Accuracy
1 RNNs 96%
2 CNN Auto-encoder 94.5%
3 ANNs 93.79%
4 De-Noising Auto-encoder 92%
5 Sparse Auto-Encoder 84%
6 CNNs 82%
7 Auto-Encoder RNN 80%

5.1. Comparison of Algorithms Based on Key Parameters

Table 6, below provides a comparison of the key algorithms in terms of their complexity, data
requirements, processing time and effectiveness (filtering, prediction and noise reduction).

Table 6. Comparison of Algorithms based on Key Parameters

E .
. . Data Processing Effectiveness Effectiveness ffeChYeness

Algorithm Complexity . . . . . for Noise

Requirements | Time for Filtering for Prediction .
Reduction

CNN Low to Medium | Moderate Low High High High

RNN Medium to High | High Medium Medium High Medium

ANN Low Moderate Low Medium Medium Low

Sparse Auto-encoder | Medium Low Medium Medium Medium High

De-noising Auto- Medium Moderate Medium High Medium High

encoder

CNN-Autoencoder Medium Moderate Medium High High Very High

5.2. Real-world Deployments of Al in Signal Processing

Al technologies have been successfully deployed in various real-world applications within signal

processing, including;:

e Al-Enhanced 5G Receivers: These systems utilize Al algorithms for adaptive channel estimation
and interference cancellation, improving the reliability and quality of wireless communication. Al
enables the receivers to dynamically adapt to changing signal conditions, optimizing performance.

e Adaptive Beamforming Using Neural Networks: In telecommunications, neural networks are
employed for adaptive beamforming, allowing antennas to focus on specific signal sources while
minimizing interference from others. This approach enhances signal clarity and quality in
environments with multiple signal sources.

e Medical Imaging: Al algorithms are increasingly being used in medical imaging to enhance signal
processing tasks such as noise reduction and feature extraction from MRI or ultrasound images,
resulting in better diagnosis and treatment planning.

6. Conclusions and Recommendations

Both the Autoencoders and ANN algorithms have shown high accuracies. However, there are several
disadvantages using these algorithms. Firstly, their applications are still in their infancy and require further
research to avoid bias and hallucinations; secondly, powerful hardware is required for their real-time
execution - whilst traditional algorithms have a long-tested application history with the required hardware
for their real-time execution. Another problem that is added with the time spent implementing these
algorithms (through research, coding, training and testing) is the computing power they expend in
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comparison to traditional algorithms. However, this hardware constraint may be seen to be temporary as
GPUs continue to evolve, becoming faster in their implementations of Al algorithms. In the field of SP, our
results and that from the literature have shown and continue to show a lot of benefits using Al, especially
in terms of: signal accuracy, detection, recognition, reconstruction and integrity. As was shown from our
results exploring seven of the latest Al algorithms, these algorithms are powerful compared to traditional
algorithms and are already revolutionizing the industry of SP in applications such as SDR (Software
Defined Radio) and Cognitive Radio. Especially neural networks have shown a great efficiency in this field.
As we see these Al algorithms are taking the place of traditional SP algorithms such as FFT or DFT in the
field of SP. So, it is possible that in the future these techniques will become more sophisticated and
consequently faster with evolving hardware than they are now with ubiquity.

The research in particular concluded that specially auto-encoders can be used for SP, with the CNN-
Autoencoder and De-noising Encoder obtaining a minimum of 92% accuracy. Future work will involve:
testing with real 6G radio communication channel data and other Al algorithms such as Deep Q Learning
and Deep Temporal Difference Learning.

6.1. Future Research

To address the limitations and enhance the application of Al in signal processing, several targeted
research avenues can be pursued, as discussed below.

6.1.1. Hybrid Approaches

Future research could focus on developing hybrid models that integrate traditional signal processing
techniques with Al. Such models could leverage the strengths of both approaches, using Al for adaptive
feature extraction while maintaining the interpretability and efficiency of traditional methods.

6.1.2. Transfer Learning

Exploring transfer learning strategies could help improve model generalizability. By training models
on diverse datasets and transferring knowledge to new tasks, researchers can enhance performance in
specific signal processing applications with limited labelled data.

6.1.3. Model Robustness Enhancements

Investigating techniques to enhance model robustness is critical. Research could explore adversarial
training, where models are trained on intentionally perturbed data, or develop new architectures designed
to be more resilient to variations in input data.

6.1.4. Explainable AI (XAI)

Developing frameworks for explainable Al in signal processing can help bridge the gap between
performance and interpretability. Research in this area can focus on methods that provide insights into
model decisions, making it easier for practitioners to trust and apply Al solutions in critical applications.

6.1.5. Real-time Processing Solutions

With the demand for real-time signal processing increasing, research should focus on optimizing Al
models for deployment in real-time systems. This includes developing lightweight models that can run
efficiently on edge devices while maintaining performance.
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