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Abstract: Timely and specific interventions can substantially help in managing the disease, provided that the PD 

is diagnosed at an early stage. This paper compares machine learning (ML) and deep learning (DL) methods of PD 

detection with the help of vocal characteristics of a canonical sample (197 samples with 22 voice attributes pre-

extracted).  To reduce the issue of class imbalance, the Synthetic Minority Over-Sampling Technique (SMOTE) was 

used on the training data, which enhanced the strength of the models.  The classical Machine Learning (ML) 

classifiers, such as Logistic Regression, Support Vector Machine, Random Forest, Extra Trees, Decision Tree, 

AdaBoost, and K-Nearest Neighbors (KNN) were evaluated, and KNN produced the best accuracy of 85% as well as 

competitive accuracy, recall, F1 score, and AUC ROC. In the case of deep learning, 1D CNN, 2D CNN, and LSTM 

were used, and 2D CNN and LSTM performed better than 1D CNN, with test accuracy of 89.7% and 84.6%, 

respectively, indicating their capability to learn both time-based and spatial patterns in data. Interpretability was 

added through Local Interpretable Model Agnostic Explanations (LIME) to ML models that point to Spread2, 

Recurrence Period Density Entropy, and MDVP-related frequency measures as significant vocal biomarkers. 

Although the framework has constraints relating to data volume and single modality, it offers a reproducible, 

interpretable baseline of PD detection and highlights the possibilities of explainable AI and neural networks as an 

assistant clinical decision-making tool. In the future, larger, multi-modal datasets are needed to offer better 

generalizability. 

Keywords: Parkinson’s Disease Diagnosis; Tabular Data; Machine Learning; Deep Neural Network 
 

1. Introduction 

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that predominantly affects the 

elderly population. Its prevalence continues to increase and is approaching that of Alzheimer’s disease, 

making it one of the most common neurodegenerative conditions worldwide. PD typically manifests after 

the age of 60 and is characterized by motor symptoms such as rigidity, resting tremor, bradykinesia, 

dysphonia, and postural instability [1]. Among these manifestations, vocal impairments often emerge at an 

early stage of the disease, sometimes preceding more evident motor symptoms. Consequently, acoustic 

analysis of speech has gained increasing attention as a non-invasive and cost-effective approach for early 

PD detection, particularly due to the ease of collecting voice recordings in both clinical and home-based 

settings [2]. 

Despite these advances, accurate diagnosis of PD remains challenging because of substantial inter-

patient variability in symptom presentation and disease progression. Clinical diagnosis primarily relies on 

the assessment of motor symptoms such as tremor, stiffness, and bradykinesia [3]; however, these 

symptoms may initially be mild or overlap with other neurological conditions. In addition, non-motor 
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symptoms—including sleep disturbances, cognitive impairment, and mood disorders—may appear years 

before motor symptoms but are frequently under-recognized in early diagnostic stages [4]. The 

heterogeneous progression of PD further complicates the establishment of consistent diagnostic patterns, 

and no single definitive clinical test currently exists. As a result, PD diagnosis depends largely on clinical 

judgement supported by imaging and laboratory investigations to exclude alternative disorders. 

Recent advances in artificial intelligence (AI) and machine learning (ML) have demonstrated 

considerable potential in supporting PD identification through the analysis of speech, movement, and 

handwriting patterns. However, the effectiveness and generalizability of ML-based diagnostic tools are 

strongly influenced by dataset diversity, sample size, and data quality. The limited availability of diverse 

and large-scale PD datasets presents a major challenge, often restricting model robustness and clinical 

applicability. Prior studies [5–7] have consistently reported that a substantial proportion of individuals with 

PD exhibit measurable vocal abnormalities, even in early disease stages. These findings support the use of 

voice-based biomarkers as a practical, non-invasive, and affordable screening modality for PD. Motivated 

by this evidence, the present study explores ML-based analysis of vocal features for early PD detection 

using a well-established benchmark dataset from the UC Irvine Machine Learning Repository. 

The proposed framework systematically evaluates multiple ML and DL classifiers for PD detection 

using vocal features. The dataset consists of 197 samples with 22 pre-extracted voice-related features. Data 

preprocessing includes feature scaling, correlation-based removal of redundant features, and class 

imbalance correction using the Synthetic Minority Over-sampling Technique (SMOTE). The dataset is 

partitioned into training and testing subsets using an 80:20 split. An extensive range of machine and deep 

learning models, such as Logistic Regression, Support Vector Machine, Random Forest, Extra Trees, 

Decision Tree, AdaBoost, Gradient Boosting, XGBoost, Gaussian Naive Bayes, K-Nearest Neighbor, 1D 

CNN, 2D CNN, and LSTM, were trained and hyperparameters optimized by grid search to maximize 

accuracy. Model interpretability was also adopted using Local Interpretable Model Agnostic Explanations 

(LIME) and permutation-based feature importance analysis to make our approach transparent. 

⚫ A comprehensive and reproducible benchmarking of classical ML and DL models for PD detection 

using vocal features, achieving up to 89% classification accuracy. 

⚫ Identification of clinically relevant vocal biomarkers, including Spread2, RPDE, and MDVP-

related frequency measures, that contribute most significantly to PD prediction. 

⚫ Integration of explainable AI techniques to provide instance-level interpretability, supporting 

transparency and potential clinical adoption of ML-based diagnostic tools. 

The remainder of this paper is organized as follows. Section II presents a critical review of related work 

on speech-based PD detection and ML methodologies. Section III details the proposed methodology, 

including data preprocessing, model training, and interpretability techniques. Section IV reports 

experimental results and comparative analyses. Finally, Section V concludes the paper with key findings, 

limitations, and directions for future research. 

2. Related Works 

The application of machine learning (ML) techniques for Parkinson’s disease (PD) detection using 

vocal data has gained substantial attention over the past decade. Early studies primarily focused on 

handcrafted dysphonia features and classical classifiers to demonstrate the feasibility of speech-based PD 

diagnosis. Little et al. [8] were among the first to investigate this direction by analyzing sustained vowel 

phonations from a small cohort of 31 subjects. Using Support Vector Machines, they demonstrated that 

dysphonia measurements could discriminate between PD and healthy controls; however, the limited 

sample size and lack of external validation constrained the generalizability of their findings. 

Subsequent research expanded on these early efforts by incorporating more advanced classifiers and 

optimization strategies. Ali et al. [9] combined L1-regularised SVM with deep neural networks and reported 

exceptionally high accuracies using Leave-One-Subject-Out and k-fold validation. While these results 

appear promising, later analyses have noted that such high performance is often influenced by strict 

validation protocols, limited subject diversity, and incomplete clinical metadata, which may not reflect real-

world diagnostic conditions. Similarly, studies employing genetic algorithms, neural networks, and linear 

discriminant analysis on pre-extracted vocal features have reported accuracies exceeding 95% [13]; 
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however, these works frequently rely on imbalanced datasets or lack transparency in feature extraction and 

evaluation procedures. 

More recent studies have explored ensemble learning and deep learning approaches to improve 

robustness. Neto et al. [10] evaluated multiple ML and ensemble models across datasets from the UCI 

repository and Figshare, reporting moderate to high accuracies depending on model complexity and data 

source. Their findings highlight the sensitivity of model performance to dataset composition and reinforce 

the importance of cross-dataset validation. Other works have employed Bayesian frameworks and 

replicated voice recordings to address intra-subject variability [11], though limited validation and restricted 

dataset size remain common constraints. 

Deep learning approaches have also been investigated using both canonical and large-scale clinical 

datasets. Wang et al. [14] utilized the Parkinson’s Progression Markers Initiative dataset and achieved high 

classification accuracy using deep neural networks. Despite their strong performance, such models are often 

criticized for their black-box nature and limited interpretability, which pose challenges for clinical adoption. 

Similarly, Gunduz et al. [15] applied convolutional neural networks to vocal feature sets from the UCI 

dataset, achieving competitive accuracy but focusing primarily on single-modal inputs without extensive 

interpretability analysis. 

Overall, the literature demonstrates that vocal biomarkers are a viable and informative modality for 

PD detection. However, reported performance varies widely across studies due to differences in dataset 

size, feature engineering strategies, validation protocols, and model transparency. In particular, many high-

accuracy results are achieved under controlled experimental conditions that may not generalize to 

heterogeneous clinical environments. Moreover, only a limited number of studies explicitly address 

interpretability, despite its importance for clinician trust and decision support. 

2.1. Identified Gaps 

Despite notable progress in ML-based PD detection using vocal data, several key limitations persist in 

the existing literature. First, a significant proportion of studies rely on small, canonical, or class-imbalanced 

datasets, which restricts the robustness and generalizability of reported results to real-world clinical 

settings. Second, most approaches focus on single-modal vocal features, without considering integration 

with complementary modalities such as gait, tremor, or imaging data, thereby limiting diagnostic 

completeness. 

Third, while deep learning models often achieve high predictive accuracy, they are frequently 

deployed as black-box systems with minimal interpretability, making them difficult to translate into clinical 

practice. Finally, comparative evaluations across multiple ML models using consistent preprocessing, 

validation, and evaluation metrics are often lacking, complicating fair benchmarking and reproducibility 

Motivated by these gaps, the present study aims to provide a transparent and reproducible 

benchmarking framework for PD detection using vocal features. By systematically evaluating multiple 

classical ML models, explicitly addressing class imbalance, and integrating explainable AI techniques for 

instance-level interpretation, this work seeks to bridge the gap between predictive performance and clinical 

interpretability while acknowledging the limitations imposed by dataset size and modality. 

3. Methodology 

Figure 1 shows that the proposed workflow in the study of Parkinson's disease diagnosis is based on 

data preprocessing, feature selection, machine learning, and deep learning model training, and 

interpretability analysis to deliver a precise and transparent outcome. 

3.1. Dataset Description 

The dataset, sourced from the UC Irvine ML Repository [8], is multivariate, encompassing 197 

instances across 22 features. It comprises data from 31 individuals, 23 of whom are diagnosed with PD, and 

includes diverse biological voice measurements. Each column in the dataset represents a distinct voice 

metric, while each row corresponds to one of the 195 voice recordings from these individuals, identified in 

the "name" column. The "status" column is binary-coded, with 0 indicating healthy subjects and 1 indicating 
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those with PD. The dataset's primary objective is to facilitate the differentiation between healthy individuals 

and those afflicted with the disease. Table 1 presents the feature names and their descriptions. 

 
Figure 1. Proposed Methodology 

Table 1. Features names and their descriptions. 
Feature Name Description 

MDVP: Fo (Hz)  Average vocal fundamental frequency 

MDVP: Fhi (Hz)  Maximum vocal fundamental frequency 

MDVP: Flo (Hz)  Minimum vocal fundamental frequency 

MDVP: Jitter (%)  variation in the duration of the voice cycles, measured as a percentage 

MDVP: Jitter (Abs)  variation in the duration of the voice cycles, measured in absolute values 

MDVP: RAP  Relative Amplitude Perturbation, a measure of the variation in the amplitude of the voice 

MDVP: PPQ  Pitch Period Perturbation Quotient, a measure of the variation in the amplitude of the voice  

Jitter: DDP  Average Absolute Difference of Differences, a measure of the variation in the duration of the voice cycles 

MDVP: Shimmer  Shimmer (local). The variation in the amplitude of the voice, related to the roughness of the voice 

MDVP: 
Shimmer(dB) 

 Shimmer (decibels). The variation in the amplitude of the voice, measured in decibels 

Shimmer: APQ3  Shimmer (three-point amplitude perturbation quotient), a measure of the variation in the amplitude of the 
voice 

Shimmer: APQ5  Shimmer (five-point amplitude perturbation quotient), a measure of the variation in the amplitude of the 
voice 

MDVP: APQ  Shimmer (amplitude perturbation quotient), a measure of the variation in the amplitude of the voice 

Shimmer: DDA  Shimmer (dB-by-delta amplitude), a measure of the variation in the amplitude of the voice 

NHR Noise-to-Harmonics Ratio, a measure of the amount of noise in the voice signal 

HNR  Harmonics-to-Noise Ratio, a measure of the amount of noise in the voice signal 

Status Health status of the patient, where a 0 = subject is healthy, and 1 = subject has Parkinson’s disease 

RPDE Recurrence Period Density Entropy, a measure of the complexity of the voice signal 

DFA Detrended Fluctuation Analysis, a measure of the long-range dependence in the voice signal 

Spread1 The first spectral moment, statistical measure of the voice signal’s frequency spread 

Spread2 The second spectral moment, a statistical measure of the voice signal’s frequency spread 

D2 A nonlinear dynamic parameter, a statistical measure of the complexity of the voice signal 

PPE Pitch Period Entropy, a measure of the variation in fundamental frequency 

3.2. Data Preprocessing and Feature Engineering 

Data preprocessing and feature engineering are essential steps for developing reliable and 

generalizable machine learning (ML) models. Before model training, the dataset was examined for missing 

values and outliers to ensure data integrity and consistency. Feature scaling was applied to normalize the 

range of input variables, which is particularly important for distance-based classifiers such as K-Nearest 
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Neighbors. These preprocessing steps help stabilize model training and reduce the risk of biased 

predictions. 

Class imbalance is a common issue in medical datasets and can negatively impact model performance, 

particularly for minority-class predictions. To address this issue, the Synthetic Minority Over-sampling 

Technique (SMOTE) was applied exclusively to the training set to prevent data leakage. SMOTE generates 

synthetic samples for the minority class by interpolating between existing instances. After applying SMOTE, 

the training dataset achieved a balanced class distribution with 118 samples per class, while the test set 

remained untouched to ensure a fair and unbiased evaluation. 

In addition to class balancing, correlation-based feature analysis was performed to reduce redundancy 

and mitigate overfitting. Pearson’s correlation coefficient was used to quantify linear relationships between 

features. Features exhibiting a correlation coefficient greater than 0.8 were considered highly correlated and 

redundant. Figure 2 illustrates the correlation matrix before feature removal, highlighting several strongly 

correlated feature pairs. Based on this analysis, redundant features were removed, and the resulting 

reduced feature set was used for model training. Figure 3 presents the correlation matrix after the removal 

of highly correlated features, demonstrating a more compact and less redundant feature representation. 

This preprocessing pipeline ensures that the models are trained on balanced, non-redundant, and 

appropriately scaled data, thereby improving model robustness, interpretability, and reproducibility. 

 
Figure 2. Correlation Matrix before removing highly correlated features 

 
Figure 3. Correlation Matrix after removing highly correlated features 
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3.3. Model Training 

The dataset was partitioned into training and testing subsets using an 80:20 split. All model 

optimization and resampling procedures were performed exclusively on the training set to prevent data 

leakage. Hyperparameter tuning was conducted using grid search combined with stratified cross-validation 

to identify optimal model configurations. Performance optimization was guided by balanced evaluation 

metrics to ensure reliable classification of both Parkinson’s disease and healthy subjects. 

A diverse set of classical machine and deep learning models was evaluated to identify the most 

effective approach for Parkinson’s disease detection using vocal features. 

3.3.1. Logistic Regression (LR) 

In LR, a logistic function is used to represent a binary dependent variable. LR is a statistical method 

that can be used to predict the probability of different experimental outcomes [17]. It offers a simple and 

understandable way to determine the presence of PD by assuming a linear relationship between the features 

and the log-odds of the outcome. The mathematical representation of LR models in the Equation (1) the 

probability P of the binary outcome (PD or not) as a function of input features (X). Where, β0 the intercept 

term and βi are the coefficients for the input features  Xi. 

P(Y = 1|X) =
1

1+e−(β0+β1X1+β2X2+⋯+βnXn)                                (1) 

3.3.2. Support Vector Machine (SVM) 

For classification tasks, a supervised learning approach called SVM is employed. It functions by 

determining the ideal hyperplane that maximally divides data points belonging to various classifications 

[18]. SVM uses biological voice measurements to categorize people as either healthy or suffering from PD. 

SVM can handle non-linear relationships in the data because of the usage of kernels. As a result, a strong 

model is produced that successfully differentiates across classes using intricate feature patterns. SVM aims 

to find a hyperplane that best separates the two classes (PD or not) which is state in Equation (2). Where, w 

is the weight vector and b is the bias term. 

𝑓(X) = w ⋅ X + 𝑏                                                                   (2) 

3.3.3. Random Forest (RF) 

During training, a RF Classifier builds several DTs and produces a class that is the mean of the classes 

(classification) of the individual trees. It employs biological voice measurements to detect Parkinson's illness 

and build a strong model that reduces overfitting and boosts accuracy. It improves prediction performance 

and stability by averaging the outcomes of numerous DTs, which helps it distinguish between people in 

good health and those who have PD. Equation (3) shown how final prediction is made by aggregating the 

predictions of all individual trees, typically through majority voting. Where, Ti are the individual DTs in the 

forest. 

Ŷ = mode(T1(X), T2(X), … , Tm(X))                        (3) 

3.3.4. Gradient Boosting (GB) 

An ensemble learning technique called a GB Classifier develops several weak learners in a sequential 

manner. The model employs biological voice measurements to iteratively repair prior trees' faults in PD 

identification. Every new tree is trained using the residuals (errors) of the older trees, with an emphasis on 

situations that are challenging to categorize. The accuracy and robustness of the model are enhanced by this 

procedure. Equation (4) represents the final prediction. Where, αm are the learning rates and hm are the 

weak learners. 

Ŷ = ∑ αmhm(X)M
m=1                        (4) 

3.3.5. eXtreme Gradient Boosting (XGBoost) 

XGBoost is a distributed GB library that has been tuned for maximum efficiency, versatility, and 

portability. It is a sophisticated version of the GB algorithm that is frequently applied to regression and 

classification applications in ML [19]. It sequentially builds a set of DTs, with each tree trained to fix the 

mistakes of its predecessors. Because of its reputation for scalability, speed, and performance, the prediction 

is similar to Equation (4), with additional regularization terms to prevent overfitting. Where, regularization 

is applied to control the complexity of the trees. 



AETiC 2026, Vol. 10, No. 1 51 

www.aetic.theiaer.org 

3.3.6. K-Nearest Neighbors (KNN) 

It is a powerful algorithm that is widely used in the field of ML. It is particularly useful for classification 

tasks, as it allows us to compare a data point with its closest neighbors in order to make accurate predictions 

[20]. Regarding the Parkinson's dataset, the model is configured with k=3, which implies that it considers 

the three closest data points for classification. It computes the distance (typically Euclidean) between the 

test instance and all training instances. The test instance is assigned to the class that has the highest number 

of neighbors. This approach assumes that data points with similar characteristics (voice measurements and 

other features) belong to the same category (healthy or Parkinson's). KNN classifies a new instance based 

on the majority class among its KNN. Equation (5) demonstrate the decision rule. Where,  YNNi
 are the 

classes of the KNN. 

Ŷ = mode(YNN1
, YNN2

, … , YNNk
)                                            (5) 

3.3.7. Gaussian Naive Bayes (GNB) 

It is a classifier that uses probabilistic calculations and assumptions about feature independence and 

feature distribution to make predictions. Within the context of the Parkinson's dataset, it computes the 

likelihood of each category (healthy or Parkinson's) for a given instance by analyzing its characteristics. The 

model assigns the class with the highest calculated probability to the instance. This approach is highly 

effective when dealing with small datasets and data with a high number of dimensions. It is especially 

valuable in this context because of its straightforwardness and effectiveness in managing the different 

characteristics obtained from voice measurements. GNB calculates the posterior probability using Bayes' 

theorem (Equations 6 and 7), assuming feature independence and Gaussian distribution. Where, uic and 

σic are the mean and standard deviation of feature Xi for class c. 

P(Y = c|X) =
P(Y=c) ∏ P(Xi|Y = c)n

i=1

P(X)
                    (6) 

P(Xi|Y = c) =
1

√2πσic
2

exp (−
(Xi−μic)2

2σic
2 )                               (7) 

3.3.8. Decision Tree (DT) 

Decision Tree (DT) constructs hierarchical decision rules by recursively partitioning the feature space 

using impurity-based criteria such as Gini index or entropy. Each internal node represents a decision based 

on a feature threshold, and each leaf node corresponds to a class label. While highly interpretable, decision 

trees are susceptible to overfitting and are therefore included primarily as comparative baselines. 

3.3.9. AdaBoost 

AdaBoost is an ensemble learning method that iteratively combines multiple weak learners, typically 

decision trees, by assigning higher weights to misclassified samples in successive iterations. The final 

prediction is obtained through a weighted majority vote of the individual learners. 

3.3.10. 1D Convolutional Neural Network (1D CNN) 

The 1D CNN is a method that is intended to isolate local features in sequential or time-series data. This 

research, it deals with sequences of vocal features to determine useful patterns related to Parkinson's 

disease. Convolutional layers store time-related dependencies, and pooling layers decrease the 

dimensionality and enhance generalization, and then, fully connected layers are used to perform 

classification. 

3.3.11. 2D Convolutional Neural Network (2D CNN) 

The 2D CNN is used to process two-dimensional data of the vocal data, including spectrograms or 

feature matrices. Convolutional layers learn spatial features and hierarchical features presentation, enabling 

the model to acquire intricate relationships among features. Layers with pooling decrease the spatial 

dimensions, and the last layers of the network are fully connected and do the ultimate classification. 

3.3.12. Long Short-Term Memory Network (LSTM)  

LSTM is a kind of recurrent neural network that is specially created to represent long-term reliance in 

sequential information. It has been useful in identifying the temporal patterns in the sequences of vocal 

features to detect Parkinson's disease. The LSTM units make use of memory cells and gating systems to 



AETiC 2026, Vol. 10, No. 1 52 

www.aetic.theiaer.org 

selectively remember and forget, and therefore, the network can learn short-term and long-term trends in 

the data. 

3.4. Model Interpretation and Explanation 

Feature importance and explainable AI methods are essential for interpreting ML models. Feature 

importance quantifies each input feature's contribution to a model's predictions, helping identify crucial 

features in the decision-making process. Permutation importance, a specific method of feature importance, 

assesses the impact of randomly rearranging feature values on model performance, revealing the model's 

dependency on that feature. Mathematically, if (f̂) is the trained model and (L(f̂)) is the loss function, the 

permutation importance of feature (j) is Importance(j) = L(f̂) − L(fπ(j)
̂ ) . Where (fπ(j)

̂ )  represents the 

model's prediction after shuffling feature (j). 

LIME is another powerful method for explaining individual predictions by approximating the model 

locally with an interpretable model, such as a linear model. LIME achieves this by generating perturbed 

samples around the instance of interest and fitting a simple, interpretable model, such as (𝑦̂ = 𝛽0 + 𝛽1𝑥1 +

𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛),, where (𝑦̂) is the predicted value, (𝛽𝑖) are the coefficients, and  (xi) are the feature values. 

3.5. Evaluation Metrics 

For binary classification, we assessed the performance of each model using standard evaluation metrics 

including accuracy, precision, recall, and F1-score. Accuracy measures the overall correctness of the 

classification, while precision quantifies the proportion of true positive predictions among all positive 

predictions. Recall, also known as sensitivity, measures the proportion of true positives correctly identified 

by the model. The F1-score, the harmonic mean of precision and recall, provides a balanced measure of the 

model's performance. These metrics can be computed using Equation 10-13. 

Accuracy =
TP+TN

TP+TN+FP+FN
                (10) 

Precision =
TP

TP+FP
               (11) 

Recall =
TP

TP+FN
                (12) 

F1 =
2×Precision×Recall

Precision+Recall
               (13) 

4. Experimental Setup and Result Analysis 

4.1. Comparative Analysis and Visualization of Machine Learning Models 

Figure 4 depicts the performance of ML models across four metrics: Accuracy, Precision, Recall, and 

F1 Score. Among these models, KNN emerges as the best performer, consistently achieving high scores 

across all metrics. KNN demonstrates an impressive balance with its Accuracy closely matching that of 

advanced ensemble methods like RF, GB, XGBoost, and AdaBoost. Additionally, KNN maintains high 

Precision, Recall, and F1 Score, highlighting its robustness and reliability in classification tasks. While LR, 

SVM, and the ensemble methods also exhibit strong performance, KNN's consistency across all evaluation 

criteria sets it apart. In contrast, Naive Bayes and DT show relatively moderate performance, particularly 

with lower Recall and F1 Score. 

The learning curve for the KNN model (Figure 6) depicts the relationship between the number of 

training examples and the model's performance, including training score and cross-validation score. The 

red curve reflects the training score, demonstrating strong performance on training data, while the green 

curve illustrates the cross-validation score, reflecting model performance on unseen data. Initially, the 

training score is high, indicating a good fit to the training data, while the cross-validation score is lower, 

suggesting poor generalization. As the number of training examples increases, both scores improve, 

indicating reduced overfitting and better generalization. The convergence of the two scores suggests 

improved model performance with more data. The shaded regions around the curves represent variability, 

with narrower regions indicating lower variability. The confusion matrix of KNN is depicted in Figure 5. 
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Figure 4. Comparison of Model Performance 

 
Figure 5. Confusion Matrix for KNN 

 
Figure 6. Learning Curve for KNN. 

 
Figure 7. Prediction probabilities of KNN 

Figure 7 displays prediction probabilities for two classes: ‘healthy’ (0.60) and ‘parkinson’ (0.40). On the 

right side, features with corresponding weights are listed. Notably, “D2 <= -0.70” has the highest weight 
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(around 0.30), favoring a ‘Parkinson’ prediction, while other features contribute differently. In Figure 8, 

features with positive values are considered to have a positive impact on the model’s outcome, while those 

with negative values have a lesser or negative impact. For instance, ‘MDVP:Flo(Hz)’ has a positive value of 

0.17, indicating a favorable influence, whereas ‘RPDE’ has a negative value of -1.14, suggesting a less 

significant or negative influence. 

 
Figure 8. Feature analysis of the KNN model 

The study into vocal biomarkers for the early identification and monitoring of PD using ML models 

represents a notable breakthrough in medical diagnostics. Through the analysis of voice samples, the study 

utilizes a non-intrusive and easily accessible data source, potentially enabling more convenient and timely 

diagnosis for patients. It is worth mentioning the significance of explainable AI, as it not only assists in 

making predictions but also offers transparency and comprehension of how the models make decisions. 

Recognizing Spread2, RPDE, and MDVP (Hz) as significant vocal biomarkers highlights the complex 

connection between voice and neurological conditions. Spread2's analysis of pitch fluctuation, RPDE's 

assessment of voice pattern complexity, and MDVP's evaluation of fundamental frequency range provide 

a comprehensive method for comprehending the effects of PD on speech. Observing the lower fundamental 

frequencies in Parkinson's patients, as indicated by MDVP (Hz), could potentially be a valuable indicator 

for early detection, prompting additional medical investigation. The study's alignment with previous 

research not only confirms these findings but also adds to the existing body of knowledge, contributing to 

the ongoing efforts to combat PD. Considering the future, the proposal to include time-series voice data and 

a wider range of demographics in upcoming research demonstrates a dedication to improving the strength 

and understandability of the models.  Figures 7 and 8 highlights both the KNN model’s prediction 

probabilities for ‘healthy’ and ‘Parkinson’ classes and the relative impact of individual vocal features, with 

Spread2, RPDE, and MDVP (Hz) identified as key biomarkers influencing the model’s decisions. With these 

advancements, healthcare solutions can become more personalized and accurate, resulting in a significant 

improvement in the quality of life for individuals impacted by PD. The combination of ML and vocal 

analysis in medical research shows great potential, and the results of this study have the potential to inspire 

new and creative approaches in the healthcare industry.  

4.2. Comparative Analysis and Visualization of Deep Learning Models 

Table 2 presents the results of three deep learning models: 1D CNN, LSTM, and 2D CNN in the 

classification of Parkinson's disease. The test accuracy of LSTM and 2D CNN was highest with 89.74% and 

84.62%, respectively, whereas 1D CNN was 84.62. The fact that the training and test accuracies are similar 

indicates that, once the models are trained, they all generalize well to unseen data. The reason why LSTM 

works well is probably that it is sensitive to time trends in the data, whereas 2d CNN is sensitive to spiciness 

on the image representations. All in all, LSTM and 2D CNN are more suitable for accurately diagnosing 

Parkinson’s disease. Confusion matrices are presented in Figure 9 for all deep learning models to provide a 

detailed view of their classification behavior. 

Table 2. Training and test accuracies of different deep learning models for Parkinson’s Disease diagnosis. 
Model Training Accuracy Test Accuracy 

1D CNN 0.8526 0.8462 

LSTM 0.8718 0.8974 

2D CNN 0.8718 0.8974 



AETiC 2026, Vol. 10, No. 1 55 

www.aetic.theiaer.org 

 

Confusion matrices of 1D CNN, 2D CNN, and LSTM models on the test set are provided in Figure 9. 

The 1D CNN with 3 false negatives and 3 false positives rightly classified 26 samples of Class 1 and 7 of 

Class 0. The 2D CNN with 2 false negatives and 2 false positives, and rightly classified 27 samples of Class 

1 and 8 of Class 0. The LSTM model with 0 false positives and 4 false negatives rightly classified 29 samples 

of Class 1 and 6 of Class 0. 

 
Figure 9. Confusion matrix of all evaluated deep learning models. 

5. Conclusion  

These results indicate the potential of voice-based analysis in accurately diagnosing Parkinson’s 

disease, with both machine learning and deep learning models able to successfully differentiate between 

patients with the condition and without it, and deep learning models (1D CNN, 2D CNN, and LSTM) show 

better predictive accuracy. Rigorous data handling and model selection guarantee the credibility of the 

tools, and by tackling the issue of class imbalance, deep learning models can be improved to achieve better 

predictive performance. Methods such as LIME and permutation importance provide valuable insights into 

model predictions, assisting clinicians in making informed decisions. Our study is limited by the use of a 

single, canonical voice dataset, which may not fully capture the variability in real-world clinical settings. 

Additionally, the model’s performance on multi-modal or larger, more complex datasets remains untested 

and requires further investigation. Efforts are continuously being made to improve the models' strength 

and ability to apply to various situations. This is achieved through long-term research, validation using 

different datasets, and working closely with medical professionals. With the incorporation of diagnostic 

techniques based on ML, there is great potential for early detection and personalized management of PD. 

This can ultimately result in better patient outcomes and improved quality of life. 
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