Annals of Emerging Technologies in Computing (AETiC)
Vol. 10, No. 1, 2026

Research Article

Explainable AI-Assisted Parkinson’s
Disease Diagnosis Using Machine
Learning and Deep Neural Networks

Ferdaus Ibne Aziz, Daniel Ojeda Rosales, Becky Firomssa Gudeta and Jia Uddin*

Woosong University, Republic of Korea
shifatshaheen92@gmail.com; d.ojedaro@gmail.com; becky1737@gmail.com; jia.uddin@wsu.ac.kr
*Correspondence: jia.uddin@wsu.ac.kr

Received: 23 July 2024; Accepted: 31 December 2025; Published: 1 January 2026

Abstract: Timely and specific interventions can substantially help in managing the disease, provided that the PD
is diagnosed at an early stage. This paper compares machine learning (ML) and deep learning (DL) methods of PD
detection with the help of vocal characteristics of a canonical sample (197 samples with 22 voice attributes pre-
extracted). To reduce the issue of class imbalance, the Synthetic Minority Over-Sampling Technique (SMOTE) was
used on the training data, which enhanced the strength of the models. The classical Machine Learning (ML)
classifiers, such as Logistic Regression, Support Vector Machine, Random Forest, Extra Trees, Decision Tree,
AdaBoost, and K-Nearest Neighbors (KNN) were evaluated, and KNN produced the best accuracy of 85% as well as
competitive accuracy, recall, F1 score, and AUC ROC. In the case of deep learning, 1D CNN, 2D CNN, and LSTM
were used, and 2D CNN and LSTM performed better than 1D CNN, with test accuracy of 89.7% and 84.6%,
respectively, indicating their capability to learn both time-based and spatial patterns in data. Interpretability was
added through Local Interpretable Model Agnostic Explanations (LIME) to ML models that point to Spread2,
Recurrence Period Density Entropy, and MDVP-related frequency measures as significant vocal biomarkers.
Although the framework has constraints relating to data volume and single modality, it offers a reproducible,
interpretable baseline of PD detection and highlights the possibilities of explainable AI and neural networks as an
assistant clinical decision-making tool. In the future, larger, multi-modal datasets are needed to offer better
generalizability.
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1. Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that predominantly affects the
elderly population. Its prevalence continues to increase and is approaching that of Alzheimer’s disease,
making it one of the most common neurodegenerative conditions worldwide. PD typically manifests after
the age of 60 and is characterized by motor symptoms such as rigidity, resting tremor, bradykinesia,
dysphonia, and postural instability [1]. Among these manifestations, vocal impairments often emerge at an
early stage of the disease, sometimes preceding more evident motor symptoms. Consequently, acoustic
analysis of speech has gained increasing attention as a non-invasive and cost-effective approach for early
PD detection, particularly due to the ease of collecting voice recordings in both clinical and home-based
settings [2].

Despite these advances, accurate diagnosis of PD remains challenging because of substantial inter-
patient variability in symptom presentation and disease progression. Clinical diagnosis primarily relies on
the assessment of motor symptoms such as tremor, stiffness, and bradykinesia [3]; however, these
symptoms may initially be mild or overlap with other neurological conditions. In addition, non-motor
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symptoms—including sleep disturbances, cognitive impairment, and mood disorders —may appear years
before motor symptoms but are frequently under-recognized in early diagnostic stages [4]. The
heterogeneous progression of PD further complicates the establishment of consistent diagnostic patterns,
and no single definitive clinical test currently exists. As a result, PD diagnosis depends largely on clinical
judgement supported by imaging and laboratory investigations to exclude alternative disorders.

Recent advances in artificial intelligence (AI) and machine learning (ML) have demonstrated
considerable potential in supporting PD identification through the analysis of speech, movement, and
handwriting patterns. However, the effectiveness and generalizability of ML-based diagnostic tools are
strongly influenced by dataset diversity, sample size, and data quality. The limited availability of diverse
and large-scale PD datasets presents a major challenge, often restricting model robustness and clinical
applicability. Prior studies [5-7] have consistently reported that a substantial proportion of individuals with
PD exhibit measurable vocal abnormalities, even in early disease stages. These findings support the use of
voice-based biomarkers as a practical, non-invasive, and affordable screening modality for PD. Motivated
by this evidence, the present study explores ML-based analysis of vocal features for early PD detection
using a well-established benchmark dataset from the UC Irvine Machine Learning Repository.

The proposed framework systematically evaluates multiple ML and DL classifiers for PD detection
using vocal features. The dataset consists of 197 samples with 22 pre-extracted voice-related features. Data
preprocessing includes feature scaling, correlation-based removal of redundant features, and class
imbalance correction using the Synthetic Minority Over-sampling Technique (SMOTE). The dataset is
partitioned into training and testing subsets using an 80:20 split. An extensive range of machine and deep
learning models, such as Logistic Regression, Support Vector Machine, Random Forest, Extra Trees,
Decision Tree, AdaBoost, Gradient Boosting, XGBoost, Gaussian Naive Bayes, K-Nearest Neighbor, 1D
CNN, 2D CNN, and LSTM, were trained and hyperparameters optimized by grid search to maximize
accuracy. Model interpretability was also adopted using Local Interpretable Model Agnostic Explanations
(LIME) and permutation-based feature importance analysis to make our approach transparent.

® A comprehensive and reproducible benchmarking of classical ML and DL models for PD detection

using vocal features, achieving up to 89% classification accuracy.

® Identification of clinically relevant vocal biomarkers, including Spread2, RPDE, and MDVP-

related frequency measures, that contribute most significantly to PD prediction.

® Integration of explainable Al techniques to provide instance-level interpretability, supporting

transparency and potential clinical adoption of ML-based diagnostic tools.

The remainder of this paper is organized as follows. Section II presents a critical review of related work
on speech-based PD detection and ML methodologies. Section III details the proposed methodology,
including data preprocessing, model training, and interpretability techniques. Section IV reports
experimental results and comparative analyses. Finally, Section V concludes the paper with key findings,
limitations, and directions for future research.

2. Related Works

The application of machine learning (ML) techniques for Parkinson’s disease (PD) detection using
vocal data has gained substantial attention over the past decade. Early studies primarily focused on
handcrafted dysphonia features and classical classifiers to demonstrate the feasibility of speech-based PD
diagnosis. Little et al. [8] were among the first to investigate this direction by analyzing sustained vowel
phonations from a small cohort of 31 subjects. Using Support Vector Machines, they demonstrated that
dysphonia measurements could discriminate between PD and healthy controls; however, the limited
sample size and lack of external validation constrained the generalizability of their findings.

Subsequent research expanded on these early efforts by incorporating more advanced classifiers and
optimization strategies. Ali et al. [9] combined L1-regularised SVM with deep neural networks and reported
exceptionally high accuracies using Leave-One-Subject-Out and k-fold validation. While these results
appear promising, later analyses have noted that such high performance is often influenced by strict
validation protocols, limited subject diversity, and incomplete clinical metadata, which may not reflect real-
world diagnostic conditions. Similarly, studies employing genetic algorithms, neural networks, and linear
discriminant analysis on pre-extracted vocal features have reported accuracies exceeding 95% [13];
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however, these works frequently rely on imbalanced datasets or lack transparency in feature extraction and
evaluation procedures.

More recent studies have explored ensemble learning and deep learning approaches to improve
robustness. Neto et al. [10] evaluated multiple ML and ensemble models across datasets from the UCI
repository and Figshare, reporting moderate to high accuracies depending on model complexity and data
source. Their findings highlight the sensitivity of model performance to dataset composition and reinforce
the importance of cross-dataset validation. Other works have employed Bayesian frameworks and
replicated voice recordings to address intra-subject variability [11], though limited validation and restricted
dataset size remain common constraints.

Deep learning approaches have also been investigated using both canonical and large-scale clinical
datasets. Wang et al. [14] utilized the Parkinson’s Progression Markers Initiative dataset and achieved high
classification accuracy using deep neural networks. Despite their strong performance, such models are often
criticized for their black-box nature and limited interpretability, which pose challenges for clinical adoption.
Similarly, Gunduz et al. [15] applied convolutional neural networks to vocal feature sets from the UCI
dataset, achieving competitive accuracy but focusing primarily on single-modal inputs without extensive
interpretability analysis.

Overall, the literature demonstrates that vocal biomarkers are a viable and informative modality for
PD detection. However, reported performance varies widely across studies due to differences in dataset
size, feature engineering strategies, validation protocols, and model transparency. In particular, many high-
accuracy results are achieved under controlled experimental conditions that may not generalize to
heterogeneous clinical environments. Moreover, only a limited number of studies explicitly address
interpretability, despite its importance for clinician trust and decision support.

2.1. Identified Gaps

Despite notable progress in ML-based PD detection using vocal data, several key limitations persist in
the existing literature. First, a significant proportion of studies rely on small, canonical, or class-imbalanced
datasets, which restricts the robustness and generalizability of reported results to real-world clinical
settings. Second, most approaches focus on single-modal vocal features, without considering integration
with complementary modalities such as gait, tremor, or imaging data, thereby limiting diagnostic
completeness.

Third, while deep learning models often achieve high predictive accuracy, they are frequently
deployed as black-box systems with minimal interpretability, making them difficult to translate into clinical
practice. Finally, comparative evaluations across multiple ML models using consistent preprocessing,
validation, and evaluation metrics are often lacking, complicating fair benchmarking and reproducibility

Motivated by these gaps, the present study aims to provide a transparent and reproducible
benchmarking framework for PD detection using vocal features. By systematically evaluating multiple
classical ML models, explicitly addressing class imbalance, and integrating explainable AI techniques for
instance-level interpretation, this work seeks to bridge the gap between predictive performance and clinical
interpretability while acknowledging the limitations imposed by dataset size and modality.

3. Methodology

Figure 1 shows that the proposed workflow in the study of Parkinson's disease diagnosis is based on
data preprocessing, feature selection, machine learning, and deep learning model training, and
interpretability analysis to deliver a precise and transparent outcome.

3.1. Dataset Description

The dataset, sourced from the UC Irvine ML Repository [8], is multivariate, encompassing 197
instances across 22 features. It comprises data from 31 individuals, 23 of whom are diagnosed with PD, and
includes diverse biological voice measurements. Each column in the dataset represents a distinct voice
metric, while each row corresponds to one of the 195 voice recordings from these individuals, identified in
the "name" column. The "status" column is binary-coded, with 0 indicating healthy subjects and 1 indicating

www.aetic.theiaer.org



AETiC 2026, Vol. 10, No. 1 48

those with PD. The dataset's primary objective is to facilitate the differentiation between healthy individuals
and those afflicted with the disease. Table 1 presents the feature names and their descriptions.

Data Collection and Understanding

*Understand the data collected by Little et al. (2008)
*Get familiar with the features available
+Perform exploratory data analysis (EDA) to obtain insights

Data Preprocessing and Feature Engineering

*Handle missing values and outliers
*Encode categorical variables
*Scale the features

Train-Test Split

»Split the dataset into training and testing to evaluate the
model's performance

Model Training and Evaluation

*Train and test different machine learning algorithms
*Hypertune the mode using grid search
*Evaluate the model's performance

Model Interpretation and Explanation

s Comprehend the model's behavior process and feature
importance

s Leverage Explainable Techniques scuh as LIME to understand
the model's decision making process

Figure 1. Proposed Methodology

Table 1. Features names and their descriptions.
Feature Name Description
MDVP: Fo (Hz) Average vocal fundamental frequency
MDVP: Fhi (Hz) Maximum vocal fundamental frequency
MDVP: Flo (Hz) Minimum vocal fundamental frequency

MDVP: Jitter (%) variation in the duration of the voice cycles, measured as a percentage
MDVP: Jitter (Abs) variation in the duration of the voice cycles, measured in absolute values
MDVP: RAP Relative Amplitude Perturbation, a measure of the variation in the amplitude of the voice
MDVP: PPQ Pitch Period Perturbation Quotient, a measure of the variation in the amplitude of the voice
Jitter: DDP Average Absolute Difference of Differences, a measure of the variation in the duration of the voice cycles
MDVP: Shimmer Shimmer (local). The variation in the amplitude of the voice, related to the roughness of the voice
MDVP: Shimmer (decibels). The variation in the amplitude of the voice, measured in decibels
Shimmer(dB)
Shimmer: APQ3 Shimmer (three-point amplitude perturbation quotient), a measure of the variation in the amplitude of the
voice
Shimmer: APQ5 Shimmer (five-point amplitude perturbation quotient), a measure of the variation in the amplitude of the
voice
MDVP: APQ Shimmer (amplitude perturbation quotient), a measure of the variation in the amplitude of the voice
Shimmer: DDA Shimmer (dB-by-delta amplitude), a measure of the variation in the amplitude of the voice
NHR Noise-to-Harmonics Ratio, a measure of the amount of noise in the voice signal
HNR Harmonics-to-Noise Ratio, a measure of the amount of noise in the voice signal
Status Health status of the patient, where a 0 = subject is healthy, and 1 = subject has Parkinson’s disease
RPDE Recurrence Period Density Entropy, a measure of the complexity of the voice signal
DFA Detrended Fluctuation Analysis, a measure of the long-range dependence in the voice signal
Spread1 The first spectral moment, statistical measure of the voice signal’s frequency spread
Spread2 The second spectral moment, a statistical measure of the voice signal’s frequency spread
D2 A nonlinear dynamic parameter, a statistical measure of the complexity of the voice signal
PPE Pitch Period Entropy, a measure of the variation in fundamental frequency

3.2. Data Preprocessing and Feature Engineering

Data preprocessing and feature engineering are essential steps for developing reliable and
generalizable machine learning (ML) models. Before model training, the dataset was examined for missing
values and outliers to ensure data integrity and consistency. Feature scaling was applied to normalize the
range of input variables, which is particularly important for distance-based classifiers such as K-Nearest
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Neighbors. These preprocessing steps help stabilize model training and reduce the risk of biased
predictions.

Class imbalance is a common issue in medical datasets and can negatively impact model performance,
particularly for minority-class predictions. To address this issue, the Synthetic Minority Over-sampling
Technique (SMOTE) was applied exclusively to the training set to prevent data leakage. SMOTE generates
synthetic samples for the minority class by interpolating between existing instances. After applying SMOTE,
the training dataset achieved a balanced class distribution with 118 samples per class, while the test set
remained untouched to ensure a fair and unbiased evaluation.

In addition to class balancing, correlation-based feature analysis was performed to reduce redundancy
and mitigate overfitting. Pearson’s correlation coefficient was used to quantify linear relationships between
features. Features exhibiting a correlation coefficient greater than 0.8 were considered highly correlated and
redundant. Figure 2 illustrates the correlation matrix before feature removal, highlighting several strongly
correlated feature pairs. Based on this analysis, redundant features were removed, and the resulting
reduced feature set was used for model training. Figure 3 presents the correlation matrix after the removal
of highly correlated features, demonstrating a more compact and less redundant feature representation.

This preprocessing pipeline ensures that the models are trained on balanced, non-redundant, and
appropriately scaled data, thereby improving model robustness, interpretability, and reproducibility.

Correlation Matrix of Parkinson's Detection Dataset
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Figure 2. Correlation Matrix before removing highly correlated features

Correlation Matrix of Reduced Parkinson's Detection Dataset
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Figure 3. Correlation Matrix after removing highly correlated features
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3.3. Model Training

The dataset was partitioned into training and testing subsets using an 80:20 split. All model
optimization and resampling procedures were performed exclusively on the training set to prevent data
leakage. Hyperparameter tuning was conducted using grid search combined with stratified cross-validation
to identify optimal model configurations. Performance optimization was guided by balanced evaluation
metrics to ensure reliable classification of both Parkinson’s disease and healthy subjects.

A diverse set of classical machine and deep learning models was evaluated to identify the most
effective approach for Parkinson’s disease detection using vocal features.

3.3.1. Logistic Regression (LR)

In LR, a logistic function is used to represent a binary dependent variable. LR is a statistical method
that can be used to predict the probability of different experimental outcomes [17]. It offers a simple and
understandable way to determine the presence of PD by assuming a linear relationship between the features
and the log-odds of the outcome. The mathematical representation of LR models in the Equation (1) the
probability P of the binary outcome (PD or not) as a function of input features (X). Where, 3, the intercept
term and B; are the coefficients for the input features X;.

P(Y = 1]X) = !

14+e—(Bo+B1X1+B2X2++BnXn) )

3.3.2. Support Vector Machine (SVM)

For classification tasks, a supervised learning approach called SVM is employed. It functions by
determining the ideal hyperplane that maximally divides data points belonging to various classifications
[18]. SVM uses biological voice measurements to categorize people as either healthy or suffering from PD.
SVM can handle non-linear relationships in the data because of the usage of kernels. As a result, a strong
model is produced that successfully differentiates across classes using intricate feature patterns. SVM aims
to find a hyperplane that best separates the two classes (PD or not) which is state in Equation (2). Where, w
is the weight vector and b is the bias term.

fX)=w-X+b )

3.3.3. Random Forest (RF)

During training, a RF Classifier builds several DTs and produces a class that is the mean of the classes
(classification) of the individual trees. It employs biological voice measurements to detect Parkinson's illness
and build a strong model that reduces overfitting and boosts accuracy. It improves prediction performance
and stability by averaging the outcomes of numerous DTs, which helps it distinguish between people in
good health and those who have PD. Equation (3) shown how final prediction is made by aggregating the
predictions of all individual trees, typically through majority voting. Where, T, are the individual DTs in the
forest.

Y = mode(Ty(X), T, (X), ..., Tn(X)) ©)

3.3.4. Gradient Boosting (GB)

An ensemble learning technique called a GB Classifier develops several weak learners in a sequential
manner. The model employs biological voice measurements to iteratively repair prior trees' faults in PD
identification. Every new tree is trained using the residuals (errors) of the older trees, with an emphasis on
situations that are challenging to categorize. The accuracy and robustness of the model are enhanced by this
procedure. Equation (4) represents the final prediction. Where, a, are the learning rates and hy,, are the
weak learners.

T=yM_ a h.(X) )

3.3.5. eXtreme Gradient Boosting (XGBoost)

XGBoost is a distributed GB library that has been tuned for maximum efficiency, versatility, and
portability. It is a sophisticated version of the GB algorithm that is frequently applied to regression and
classification applications in ML [19]. It sequentially builds a set of DTs, with each tree trained to fix the
mistakes of its predecessors. Because of its reputation for scalability, speed, and performance, the prediction
is similar to Equation (4), with additional regularization terms to prevent overfitting. Where, regularization
is applied to control the complexity of the trees.
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3.3.6. K-Nearest Neighbors (KNN)

It is a powerful algorithm that is widely used in the field of ML. It is particularly useful for classification
tasks, as it allows us to compare a data point with its closest neighbors in order to make accurate predictions
[20]. Regarding the Parkinson's dataset, the model is configured with k=3, which implies that it considers
the three closest data points for classification. It computes the distance (typically Euclidean) between the
test instance and all training instances. The test instance is assigned to the class that has the highest number
of neighbors. This approach assumes that data points with similar characteristics (voice measurements and
other features) belong to the same category (healthy or Parkinson's). KNN classifies a new instance based
on the majority class among its KNN. Equation (5) demonstrate the decision rule. Where, Yyy, are the
classes of the KNN.

Y = mode(Ynn,, Ynn,» - YNNy) (5)

3.3.7. Gaussian Naive Bayes (GNB)

It is a classifier that uses probabilistic calculations and assumptions about feature independence and
feature distribution to make predictions. Within the context of the Parkinson's dataset, it computes the
likelihood of each category (healthy or Parkinson's) for a given instance by analyzing its characteristics. The
model assigns the class with the highest calculated probability to the instance. This approach is highly
effective when dealing with small datasets and data with a high number of dimensions. It is especially
valuable in this context because of its straightforwardness and effectiveness in managing the different
characteristics obtained from voice measurements. GNB calculates the posterior probability using Bayes'
theorem (Equations 6 and 7), assuming feature independence and Gaussian distribution. Where, u;. and
0. are the mean and standard deviation of feature X; for class c.

P(Y=0)TI~,P(X;lY =
P(Y = c|X) = BT =9 ©)

1 Xi—Hic)?
POGIY = ©) = ——exp (- B8 ™
chizc 1c

3.3.8. Decision Tree (DT)

Decision Tree (DT) constructs hierarchical decision rules by recursively partitioning the feature space
using impurity-based criteria such as Gini index or entropy. Each internal node represents a decision based
on a feature threshold, and each leaf node corresponds to a class label. While highly interpretable, decision
trees are susceptible to overfitting and are therefore included primarily as comparative baselines.

3.3.9. AdaBoost

AdaBoost is an ensemble learning method that iteratively combines multiple weak learners, typically
decision trees, by assigning higher weights to misclassified samples in successive iterations. The final
prediction is obtained through a weighted majority vote of the individual learners.

3.3.10. 1D Convolutional Neural Network (1D CNN)

The 1D CNN is a method that is intended to isolate local features in sequential or time-series data. This
research, it deals with sequences of vocal features to determine useful patterns related to Parkinson's
disease. Convolutional layers store time-related dependencies, and pooling layers decrease the
dimensionality and enhance generalization, and then, fully connected layers are used to perform
classification.

3.3.11. 2D Convolutional Neural Network (2D CNN)

The 2D CNN is used to process two-dimensional data of the vocal data, including spectrograms or
feature matrices. Convolutional layers learn spatial features and hierarchical features presentation, enabling
the model to acquire intricate relationships among features. Layers with pooling decrease the spatial
dimensions, and the last layers of the network are fully connected and do the ultimate classification.

3.3.12. Long Short-Term Memory Network (LSTM)

LSTM is a kind of recurrent neural network that is specially created to represent long-term reliance in
sequential information. It has been useful in identifying the temporal patterns in the sequences of vocal
features to detect Parkinson's disease. The LSTM units make use of memory cells and gating systems to
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selectively remember and forget, and therefore, the network can learn short-term and long-term trends in
the data.

3.4. Model Interpretation and Explanation

Feature importance and explainable AI methods are essential for interpreting ML models. Feature
importance quantifies each input feature's contribution to a model's predictions, helping identify crucial
features in the decision-making process. Permutation importance, a specific method of feature importance,
assesses the impact of randomly rearranging feature values on model performance, revealing the model's

dependency on that feature. Mathematically, if (f) is the trained model and (L(f)) is the loss function, the

permutation importance of feature (j) is Importance(j) = L(f) — L(f;(\])) . Where (f;(\])) represents the
model's prediction after shuffling feature (j).

LIME is another powerful method for explaining individual predictions by approximating the model
locally with an interpretable model, such as a linear model. LIME achieves this by generating perturbed
samples around the instance of interest and fitting a simple, interpretable model, such as (§ = By + By x; +
Baxy + -+ + Buxy),, where (9) is the predicted value, (;) are the coefficients, and (x;) are the feature values.

3.5. Evaluation Metrics

For binary classification, we assessed the performance of each model using standard evaluation metrics
including accuracy, precision, recall, and Fl-score. Accuracy measures the overall correctness of the
classification, while precision quantifies the proportion of true positive predictions among all positive
predictions. Recall, also known as sensitivity, measures the proportion of true positives correctly identified
by the model. The F1-score, the harmonic mean of precision and recall, provides a balanced measure of the
model's performance. These metrics can be computed using Equation 10-13.

TP+TN
Accuracy = —————— (10)
TP+TN+FP+FN
Precision = —— (11)
" TP+FP
TP
Recall = (12)
TP+FN
2XPrecisionxRecall
F1 = — (13)
Precision+Recall

4. Experimental Setup and Result Analysis
4.1. Comparative Analysis and Visualization of Machine Learning Models

Figure 4 depicts the performance of ML models across four metrics: Accuracy, Precision, Recall, and
F1 Score. Among these models, KNN emerges as the best performer, consistently achieving high scores
across all metrics. KNN demonstrates an impressive balance with its Accuracy closely matching that of
advanced ensemble methods like RF, GB, XGBoost, and AdaBoost. Additionally, KNN maintains high
Precision, Recall, and F1 Score, highlighting its robustness and reliability in classification tasks. While LR,
SVM, and the ensemble methods also exhibit strong performance, KNN's consistency across all evaluation
criteria sets it apart. In contrast, Naive Bayes and DT show relatively moderate performance, particularly
with lower Recall and F1 Score.

The learning curve for the KNN model (Figure 6) depicts the relationship between the number of

training examples and the model's performance, including training score and cross-validation score. The
red curve reflects the training score, demonstrating strong performance on training data, while the green
curve illustrates the cross-validation score, reflecting model performance on unseen data. Initially, the
training score is high, indicating a good fit to the training data, while the cross-validation score is lower,
suggesting poor generalization. As the number of training examples increases, both scores improve,
indicating reduced overfitting and better generalization. The convergence of the two scores suggests
improved model performance with more data. The shaded regions around the curves represent variability,

with narrower regions indicating lower variability. The confusion matrix of KNN is depicted in Figure 5.
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Figure 7 displays prediction probabilities for two classes: ‘healthy’ (0.60) and ‘parkinson’ (0.40). On the
right side, features with corresponding weights are listed. Notably, “D2 <= -0.70” has the highest weight
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(around 0.30), favoring a ‘Parkinson’ prediction, while other features contribute differently. In Figure 8,
features with positive values are considered to have a positive impact on the model’s outcome, while those
with negative values have a lesser or negative impact. For instance, 'MDVP:Flo(Hz)" has a positive value of
0.17, indicating a favorable influence, whereas ‘RPDE’ has a negative value of -1.14, suggesting a less
significant or negative influence.

Feature  Value

[RPDE -1.14
[DFA 0.08

Figure 8. Feature analysis of the KNN model

The study into vocal biomarkers for the early identification and monitoring of PD using ML models
represents a notable breakthrough in medical diagnostics. Through the analysis of voice samples, the study
utilizes a non-intrusive and easily accessible data source, potentially enabling more convenient and timely
diagnosis for patients. It is worth mentioning the significance of explainable Al, as it not only assists in
making predictions but also offers transparency and comprehension of how the models make decisions.
Recognizing Spread2, RPDE, and MDVP (Hz) as significant vocal biomarkers highlights the complex
connection between voice and neurological conditions. Spread2's analysis of pitch fluctuation, RPDE's
assessment of voice pattern complexity, and MDVP's evaluation of fundamental frequency range provide
a comprehensive method for comprehending the effects of PD on speech. Observing the lower fundamental
frequencies in Parkinson's patients, as indicated by MDVP (Hz), could potentially be a valuable indicator
for early detection, prompting additional medical investigation. The study's alignment with previous
research not only confirms these findings but also adds to the existing body of knowledge, contributing to
the ongoing efforts to combat PD. Considering the future, the proposal to include time-series voice data and
a wider range of demographics in upcoming research demonstrates a dedication to improving the strength
and understandability of the models. Figures 7 and 8 highlights both the KNN model’s prediction
probabilities for ‘healthy” and ‘Parkinson’ classes and the relative impact of individual vocal features, with
Spread2, RPDE, and MDVP (Hz) identified as key biomarkers influencing the model’s decisions. With these
advancements, healthcare solutions can become more personalized and accurate, resulting in a significant
improvement in the quality of life for individuals impacted by PD. The combination of ML and vocal
analysis in medical research shows great potential, and the results of this study have the potential to inspire

new and creative approaches in the healthcare industry.

4.2, Comparative Analysis and Visualization of Deep Learning Models

Table 2 presents the results of three deep learning models: 1D CNN, LSTM, and 2D CNN in the
classification of Parkinson's disease. The test accuracy of LSTM and 2D CNN was highest with 89.74% and
84.62%, respectively, whereas 1D CNN was 84.62. The fact that the training and test accuracies are similar
indicates that, once the models are trained, they all generalize well to unseen data. The reason why LSTM
works well is probably that it is sensitive to time trends in the data, whereas 2d CNN is sensitive to spiciness
on the image representations. All in all, LSTM and 2D CNN are more suitable for accurately diagnosing
Parkinson’s disease. Confusion matrices are presented in Figure 9 for all deep learning models to provide a
detailed view of their classification behavior.

Table 2. Training and test accuracies of different deep learning models for Parkinson’s Disease diagnosis.
Model @ Training Accuracy Test Accuracy

1D CNN | 0.8526 0.8462
LSTM 0.8718 0.8974
2D CNN | 0.8718 0.8974
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Confusion matrices of 1D CNN, 2D CNN, and LSTM models on the test set are provided in Figure 9.
The 1D CNN with 3 false negatives and 3 false positives rightly classified 26 samples of Class 1 and 7 of
Class 0. The 2D CNN with 2 false negatives and 2 false positives, and rightly classified 27 samples of Class
1 and 8 of Class 0. The LSTM model with 0 false positives and 4 false negatives rightly classified 29 samples
of Class 1 and 6 of Class 0.

Confusion Matrix of 2D CNN Confusion Matrix of 1D CNN Confusion Matrix of LSTM

Confusion Matrix Confusion Matrix (1D CNN) Confusion Matrix (LSTM)

@

Class 0
W
s
-
-

Class 0

True Label

True Label

True Label
]

Class 1
Class 1
Class

Class 0 Class 1 Class 0 Class 1 Class 0 Class 1
Predicted Label Predicted Label Predicted Label

Figure 9. Confusion matrix of all evaluated deep learning models.

5. Conclusion

These results indicate the potential of voice-based analysis in accurately diagnosing Parkinson’s
disease, with both machine learning and deep learning models able to successfully differentiate between
patients with the condition and without it, and deep learning models (1D CNN, 2D CNN, and LSTM) show
better predictive accuracy. Rigorous data handling and model selection guarantee the credibility of the
tools, and by tackling the issue of class imbalance, deep learning models can be improved to achieve better
predictive performance. Methods such as LIME and permutation importance provide valuable insights into
model predictions, assisting clinicians in making informed decisions. Our study is limited by the use of a
single, canonical voice dataset, which may not fully capture the variability in real-world clinical settings.
Additionally, the model’s performance on multi-modal or larger, more complex datasets remains untested
and requires further investigation. Efforts are continuously being made to improve the models' strength
and ability to apply to various situations. This is achieved through long-term research, validation using
different datasets, and working closely with medical professionals. With the incorporation of diagnostic
techniques based on ML, there is great potential for early detection and personalized management of PD.
This can ultimately result in better patient outcomes and improved quality of life.
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