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Abstract: To address the conflict between aesthetic expression and functional efficiency faced by renewable 

energy facilities in urban spaces, this study proposes a public art installation design framework that integrates 

interdisciplinary technologies. A multi-source data fusion module integrates geographic context and regional 

cultural symbols to jointly guide the parametric optimization of device morphology and the layout of energy 

harvesting components. Complementing this, an improved MPPT (Maximum Power Point Tracking) algorithm—

enhanced by a Kalman filter-based dynamic allocation strategy—ensures robust power extraction under the 

complex irradiance fluctuations induced by the artistic form. Meanwhile, a parametric aesthetic generation 

algorithm based on genetic algorithm morphological optimization and CycleGAN (Cycle-Consistent Generative 

Adversarial Network) texture fusion is developed to achieve the dual goals of urban public art as a renewable 

energy hub. Structural strength verification and interactive experience design ensure safety and public 

engagement, respectively. Experimental results demonstrate that the proposed scheme achieves a power 

generation efficiency of 93.4% of the theoretical value under sunny conditions, with a high public satisfaction rate 

of 85%. A measured annual internal rate of return of 10.6% verifies its environmental and economic benefits. This 

research provides an innovative paradigm for the synergy between aesthetics and functionality for sustainable 

urban development.  

Keywords: Aesthetic-Functional Synergy; Functional Design; Parametric Generation; Renewable Energy 

Hub; Urban Public Art 
 

1. Introduction 

The construction of urban renewable energy facilities is facing significant aesthetic challenges [1-4]. 

Although the overall support rate in the EU, the United States, and other regions is generally between 60% 

and 80% (for example, the support rate for wind power in the UK is over 80%; the public support for 

community solar energy in the United States is also over two-thirds), in the actual site selection, the 

public’s concerns about the impact on the landscape are particularly prominent [5]. For example, a binary 

survey in the United States shows that 45% of respondents believe that solar installations affect the 

aesthetics of the community, while 42% disagree. In historical and cultural blocks or scenic spots, once 

they enter the key visual range, local resistance often surges. There are also dilemmas at the technical 

level. In pursuit of aesthetic effects, some studies have proposed designing thin-film photovoltaics into 

spherical or curved shapes, but this unconventional structure usually results in an efficiency loss of 5-15%, 

and poor thermal management further accelerates annual performance degradation (0.8-4.9%). Therefore, 

there is a trade-off between high-density energy output and meeting urban aesthetic needs, which can 

only reduce efficiency or sacrifice aesthetics [6-8]. For this reason, achieving sustainable urban 
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transformation requires not only improving technical efficiency but also focusing on project site selection, 

community engagement, aesthetic design, and maintenance strategies [9-11] to mitigate visual friction and 

ensure long-term energy benefits. In this context, public art is not only an aesthetic node in urban space 

but also a multifunctional hub integrating energy harvesting, cultural communication, and citizen 

interaction. By embedding it into energy infrastructure systems and building a synergistic “art-energy-

city” trinity, it is hoped that this transcends the limitations of traditional technology deployment paths 

and brings about systematic changes in future urban form and energy structure. 

In the face of this challenge, Akrofi et al. [12] proposed incorporating solar energy considerations into 

urban planning/design as early as possible to ensure that future cities cannot only use solar energy but 

also use it to produce energy locally. Catalano et al. [13] proposed to solve the problem of biodiversity loss 

in urban environments through nature-oriented design. This approach focused on the 

building/city/landscape scale and was supported by emerging digital technologies. Chen’s team [14] 

studied the integration of renewable energy into the architectural field. Zhongshu et al. [15] developed 

public art installations that reflect and celebrate the culture and history of urban areas and promote closer 

connections between residents and the environment. Chen’s team [16] conducted research on a series of 

smart city quality of life areas in Macau, a tourist destination, and proposed a new concept of “smart city 

quality of life”. These studies have jointly established the strategic position of urban public art as a 

renewable energy hub. 

Existing technical solutions have systemic defects due to disciplinary barriers [17-19]. In the field of 

morphogenesis, Bhavsar’s team [20] focused on the urgent need to optimize the environmental 

performance of high-density residential areas and provided a replicable framework for creating resilient, 

energy-efficient, and environmentally sustainable communities. However, this framework did not fully 

consider the impact of the social and cultural diversity of high-density residential areas on community 

design. Ajadi et al. [21] used simplified calculations and algorithmic calculations as tools to discover the 

NURBS (Non-Uniform Rational B-Splines) tendencies of mud, providing new low-cost construction 

opportunities for buildings with irregular flow structures. However, simplified calculations and 

algorithms may not fully capture the complexity of mud flow, thus affecting the long-term stability of 

buildings. In the field of energy management, Dolatabadi et al. [22] developed a hybrid prediction model 

based on convolutional neural networks and bidirectional long short-term memory to overcome the risk 

of high intermittent photovoltaic power generation. However, this hybrid prediction model may rely too 

much on historical data, resulting in insufficient response capabilities to future emergencies. Shirzadi [23] 

proposed a mixed integer linear programming method to optimize the daily operating costs of power 

systems while improving their resilience, including wind turbines, batteries, and traditional power grids. 

However, the mixed integer linear programming method may lead to excessive computational complexity 

when dealing with large-scale systems, reducing the efficiency of the system's real-time optimization. In 

cultural integration technology, Tricarico’s team [24] outlined and constructed a conceptual model of 

cultural and creative enterprises, and proposed policy recommendations for solving the platform space 

regional development method, but the model failed to deeply consider the sustainable development of 

cultural and creative enterprises, which may lead to long-term development difficulties. Many studies 

have pointed out that modularization and integrated optimization often compromise the overall 

performance of the system: although flexibility and maintainability are improved, the comprehensive 

efficiency in actual application often cannot reach the ideal state, and is usually far below the theoretical 

optimal level [25-26]. Although these achievements have promoted the local optimization of urban energy 

and art facilities, they have not yet formed a collaborative design logic that spans architectural aesthetics, 

energy scheduling, and cultural expression. As a new urban interface, public art energy devices need to 

break through disciplinary barriers and build a cross-modal technology integration system at the level of 

perception structure, control mechanism, and morphological generation. 

Based on this, this paper proposes to transform urban public art into a strategic node of energy 

infrastructure, integrate data-driven morphological generation, aesthetic optimization, and energy control 

systems, and construct a triple response mechanism of “aesthetics-function-cognition”. This path not only 

improves the quality of urban space at the aesthetic level, but also enhances the responsiveness of urban 

energy systems to environmental fluctuations at the technical level (resilience), and enhances citizens’ 

understanding and engagement in energy operation mechanisms (energy democratization) through 
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public visualization devices, providing extra-institutional cultural motivation and perceptual support for 

sustainable urban development. The core breakthrough of this study lies in the construction of a 

“technology-humanities” dynamic coupling model. The study draws on the systematic review of 1,682 

academic studies on human adaptive response by the Thomas’ team [27], and on this basis establishes a 

geographical and cultural database adapted to regional differences. At the same time, combined with an 

innovative interactive 3D physical model called “urban pixel” proposed by the Assem’s team [28], 

multiple energy algorithms and texture generators share environmental sensor data, thereby optimizing 

system performance simultaneously. In terms of interactive systems, referring to the approach proposed 

by Lee’s team [29] to further explore and improve existing methods by leveraging the potential of digital 

traces, energy scheduling control based on real-time audience behavior data is implemented. The 

empirical test ultimately achieves a power generation efficiency of 93.4% on sunny days; the cultural 

symbol recognition rate reaches 4.55 points, and the public satisfaction rate is 85%, verifying the new 

paradigm of aesthetics empowering technology and energy, reshaping the cultural field. 

2. Algorithm Design 

2.1. Construction of Multi-source Data Fusion Module 

First, by calling the OpenStreetMap API (Application Programming Interface), the building outline, 

road network, and terrain elevation data of the target area are extracted to form a geographic spatial 

feature set G={g
1
,g

2
,…,g

n
}, where each g

i
 represents a multidimensional attribute vector of a geographic 

element in space. In terms of cultural information collection, based on the local museum database and 

WordNet semantic extension, a cultural keyword set C={c1,c2,…,cm} is constructed, and a graph database 

is constructed through entity and attribute relationships to form a cultural semantic network. 

To achieve data fusion, the geographic attribute matrix XG∈Rn×d is first reduced in dimension using 

principal component analysis (PCA), and the covariance matrix is set as: 

Σ=
1

n
∑ (

n

i=1

xi-x̄)(xi-x̄)⊤
 (1) 

x̄ is the mean vector of geographic data. Through eigendecomposition, there is: 

Σuk=λkuk,k=1,2,…,d (2) 

The first r eigenvectors {u1,…,ur} corresponding to the maximum eigenvalue λk  are selected to 

form the dimensionality reduction projection matrix U∈Rd×r , and the dimensionality reduction 

transformation is completed: 

ZG=XGU (3) 

ZG∈Rn×r is the geographic feature matrix after dimensionality reduction. 

For the cultural keyword set, the TF-IDF (Term Frequency-Inverse Document Frequency) weight 

matrix W∈Rm×k is calculated, whose elements are defined by Equation (4) as the weighted frequency of 

the j-th keyword in the i-th document: 

wij=tfij× log
N

df
j

 (4) 

tf
ij
 represents the frequency of keyword occurrence; df

j
 is the number of documents containing the 

keyword j; N is the total number of documents, which enhances the keyword discrimination. 

Finally, the reduced-dimensional geographic feature ZG  and the cultural feature vector ZC 

(obtained by weight matrix mapping) are fused into a unified feature vector: 

F=α⋅ZG+(1-α)⋅ZC,  α∈[0,1] (5) 

The weight coefficient α adjusts the fusion ratio of geographic and cultural features. The fused 

feature is imported into the Grasshopper platform through the Python-Rhino interface to control the 

NURBS curve control points and achieve parametric generation of the basic form of the device. The fused 

feature vector is not only used for morphological modeling but also serves as the basic input for the 

subsequent energy harvesting subsystem and aesthetic expression algorithm, realizing the full-process 



AETiC 2026, Vol. 10, No. 1 4 

www.aetic.theiaer.org 

embedding of geographic and cultural adaptability, so that the subsequent module design has a unified 

data starting point and semantic coherence, forming the first collaborative interface. The fused feature 

vector 𝐹  undergoes further normalization and quantization to generate two parameter sets: one for 

engineering optimization (e.g., MPPT gain coefficients, Kalman filter initial covariance) and another for 

aesthetic generation (e.g., initial population distribution for the genetic algorithm, style weights for 

CycleGAN). For instance, the density index of the cultural semantic network is mapped to the observation 

noise adjustment coefficient of the Kalman filter, while the mean curvature of geographic spatial features 

is converted into the structural preservation loss weight 𝜆𝑠𝑡𝑟 in CycleGAN. This mapping mechanism 

ensures that geographic and cultural data influence not only morphological design but also enable closed-

loop optimization in system control and aesthetic expression. The overall system design process is shown 

in Figure 1. 

 
Figure 1. Schematic diagram of the overall system design process 

2.2. Optimization of Energy Harvesting Subsystem 

The photovoltaic module parameters are established based on the Sandia photovoltaic model. Its 

current-voltage characteristic curve is described by the following equation: 

I=Iph-I0 [exp (
q(V+IRs)

nkT
) -1] -

V+IRs

Rsh
 (6) 

I and V are the photovoltaic module current and voltage, respectively; Iph is the photocurrent; I0 is 

the reverse saturation current; q  is the electron charge; n  is the ideal factor of the diode; k  is the 

Boltzmann constant; T is the junction temperature; Rs and Rsh are the series and parallel resistances, 

respectively. 

To improve the efficiency of maximum power point tracking (MPPT), the improved incremental 

admittance method is adopted. The current disturbance prediction term ΔIpred  is applied, and the 

maximum power point condition is modified as follows: 
dP

dV
=I+V

dI

dV
+ΔIpred≈0 (7) 

The disturbance prediction is calculated based on the current and historical changes, which 

effectively suppresses oscillations and accelerates convergence. 

The power prediction module establishes a second-order state space model, which is expressed as: 

{
xk+1=Axk+Buk+wk,

y
k
=Cxk+vk,

 (8) 

The state vector xk contains the power output and environmental disturbance variables, and the 

input uk is the collected wind speed and light intensity. The process noise wk and measurement noise vk 

obey zero-mean Gaussian distribution, respectively. Recursive Least Squares (RLS) is used to estimate 

parameters in real-time to ensure that the model can dynamically adapt to environmental changes. 

The filter stage is extremely important for the art-form device proposed because of its sculptural 

morphology that creates time-varying shading patterns, resulting in high-frequency irradiance fluctuation 

(on-site testing has validated the presence of high-frequency fluctuating irradiance). By not estimating 
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states, the fluctuations in irradiance would be considered an actual change in MPPT which results in 

negative consequences for the device. 

Sensor data is fused through the Extended Kalman Filter (EKF), and the nonlinear state update and 

observation equations are: 

xk+1=f(xk,uk)+wk, y
k
=h(xk)+vk (9) 

The filtering process relies on the linearized states of the Jacobian matrices Fk=
∂f

∂x
|x̂k|k-1  and 

Hk=
∂h

∂x
|x̂k|k-1, and dynamically corrects the state estimation to ensure the accuracy of multi-source data 

fusion and the stable operation of the system. In addition, the wind speed and light parameters processed 

by the filter are synchronously transmitted to the aesthetic algorithm module and the interactive system, 

driving the visual feedback mechanism while maintaining the stability of energy scheduling, and realizing 

the cross-module information coordination of “environment-energy-aesthetics”. Additionally, in real-

time, geo-cultural parameters from the fusion module are sent to the MPPT and Kalman filter, allowing 

both devices to change their settings for optimal filtering, tracking output fluctuations, and improving 

accuracy of the predicted outputs. When the cultural semantic network recognizes a "historically 

preserved area", the MPPT reduces the perturbation step size in order to have a smoother output; when 

the geographic features signal that the area is an "open area", the Kalman filter lowers its observation 

noise covariance for better predictions. Through the use of the parametric linkage method, both the 

Engineering System and Cultural Semantic Network will adaptively respond to geographic and cultural 

contexts. The key parameter settings are shown in Table 1. 

Table 1. Key parameter settings 
Parameter Description Symbol Value Unit 

Photogenerated current Iph 5.32 A 

Reverse saturation current I0 1.1×10-10 A 

Series resistance Rs 0.28 Ω 
Shunt resistance Rsh 460 Ω 

Diode ideality factor n 1.25 — 
Junction temperature T 318.15 K 

Current disturbance prediction ΔIpred  ±0.06 A 

State transition matrix A [
1 0.1
0 0.95

] — 

To accurately quantify the optical loss introduced by the aesthetic coating, this study conducted 

systematic spectral characteristic tests on the screen-printed colored coating. Based on data measured by a 

spectrophotometer, the average light transmittance of the coating within the photovoltaic response 

spectrum range (400–1100 nm) is 92.5%. The corresponding optical loss coefficient is defined as: 

𝑂𝑝𝑡𝑖𝑐𝑎𝑙 𝑙𝑜𝑠𝑠 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 1 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑎𝑛𝑐𝑒. The loss in performance of photovoltaic systems 

has been addressed by increasing efficiency in terms of light absorption; specifically, the photoelectric 

conversion efficiency term used within the Sandia photovoltaic system model was modified using a 

coating transmittance correction factor so that calculated theoretical performance may mimic actual 

physical/optical limits of the solar cell device type. 

2.3. Aesthetic Expression Generation Algorithm 

Cultural symbols are encoded as words using semantic vectors through embedding models like 

Word2Vec; this process calculates their cosine similarity with pre-set aesthetic styles (such as "stream-

lined", "geometric", "biomimetic") and these numbers are used as cultural fitness M values in the genetic 

algorithm weight coefficients for these models. Geographic attributes such as curvature, slope and visual 

corridors are converted into normalised parameters between 0 and 1 to provide a method of controlling 

the strength/degree of style transfer and colour saturation during texture fusion in CycleGANs. For 

example; when looking at highly curved areas, their textures receive more emphasis (higher texture fusion 

weights) due to their strong visual attractiveness; however, historical districts generally receive less 

emphasis (low colour saturation) since they are considered to be culturally restrained. Morphological 

generation is represented by B-spline curves, which are defined by control points {Pi}i=0
n  and basis 

functions Ni,k(t) in the parameter region t∈[0,1]: 
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C(t)= ∑  

n

i=0

Ni,k(t)Pi 

Among them Ni,1(t)= {
1,    ti≤t<ti+1

0,    Other    
,Ni,k(t)=

t-ti
ti+k-1-ti

Ni,k-1(t)+
ti+k-t

ti+k-ti+1
Ni+1,k-1(t). 

(10) 

In the genetic algorithm, a comprehensive fitness function F  is defined, combining the device 

projection area A, curvature continuity index S, and cultural feature fit M: 

F=w1

A

Amax
+w2 (1-

∫ |
1

0
κ'(t)|dt

Smax
) +w3

M

Mmax
 (11) 

The weight w1 satisfies ∑ wii =1, and the curvature change rate κ'(t) measures the smoothness of the 

curve. The three together guide the morphological optimization to take into account both structural 

aesthetics and semantic expression. 

Texture fusion is based on the CycleGAN framework, and the training objective function includes the 

generation adversarial loss LGAN, cycle consistency loss Lcyc, and structure preservation loss Lstr: 

L=LGAN(G,DX,Y)+LGAN(F,DY,X)+λcycLcyc(G,F)+λstrLstr(G) (12) 

Lstr(G)=Ex∼Pdata(x)[‖ϕ(x)-ϕ(G(x))‖
2
] (13) 

ϕ  represents the structural features extracted from the pre-trained network, which is used to 

maintain the consistency of local details and global structure of the texture mapping. 

The final parameters are passed in real-time by calling the Rhino API through Grasshopper, 

achieving a high degree of integration of morphology, color, and texture, significantly improving the 

visual appeal and cultural recognition of the device. To achieve seamless fusion of aesthetic texture with 

photovoltaic functionality, this study employs screen-printed colored photovoltaic glass coating 

technology as the physical medium. First, the two-dimensional texture image generated by CycleGAN is 

converted into a translucent color block distribution map, where each color block corresponds to a specific 

screen-printing ink formulation to ensure color fidelity. This coating is precisely printed on the back 

surface of the photovoltaic glass, forming a laminated structure that avoids external wear and 

contamination. The coating thickness is controlled at 15–20 micrometers to balance color saturation and 

light transmittance. This process ensures visual expression of the texture while minimizing blocking and 

scattering of incident light. The cultural characteristics embedded in texture generation are derived from 

the output of the fusion module in Section 2.1. The geometric morphology must be compatible with the 

safety thresholds of the structural parameters in Section 2.4, thus forming a two-way constraint between 

aesthetic design and structural performance. This process, which enables the simultaneous control of 

morphology, structure, and texture parameters on the Rhino platform, is the core of system collaboration. 

The morphology generation process is shown in Figure 2. 

 
Figure 2. Schematic diagram of the morphology generation process 
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2.4. Structural Strength Verification Method 

After the three-dimensional model of the device is imported, the TetGen tool is used to generate 

tetrahedral elements based on the curvature-driven adaptive mesh strategy to meet the meshing 

requirements of dense distribution in high curvature areas. The material properties adopt the anisotropic 

elastic-plastic constitutive model, and the stress-strain relationship is defined as: 

σ=D:(ε-εp) (14) 

σ is the stress tensor; ε is the total strain tensor; εp is the plastic strain part; D is the elastic stiffness 

matrix of the anisotropic material. This model can characterize the nonlinear response of composite 

materials under multiaxial loading. 

Static analysis is implemented using ANSYS APDL. After applying boundary conditions such as 

deadweight, wind pressure, and fixed support, the node displacement u must satisfy the linear system: 

Ku=F (15) 

K is the global stiffness matrix, and F is the load vector. The principal stress trajectory obtained after 

the solution is used for subsequent fatigue evaluation. 

The fatigue life calculation adopts the Goodman correction model, which is expressed as follows: 
σa
σe

+
σm
σu

≤1 (16) 

σa is the stress amplitude; σm is the average stress; σe is the material fatigue limit; σu is the ultimate 

tensile strength. If the inequality is satisfied, the structure is considered safe. Otherwise, the feedback 

mechanism is triggered to automatically adjust the control point layout in the parameterized model, 

thereby achieving the linkage optimization of structural performance and aesthetics. When a high stress 

risk area is identified in the structural analysis, the system automatically triggers the feedback adjustment 

of the aesthetic generation module, and by modifying the local curvature or control point layout, a 

collaborative closed-loop of design intent and engineering safety is achieved. This feedback mechanism 

and Section 2.3 jointly construct a “strength-morphology” two-way linkage strategy to ensure overall 

stability while maintaining visual expression. The material mechanical parameters are shown in Table 2. 

Table 2. Material mechanical parameters 
Parameter Description Symbol Value Unit Note 

Fatigue strength limit σe 260 MPa Used in Goodman criterion (Eq. 16) 
Ultimate tensile strength σu 680 MPa Used in Goodman criterion (Eq. 16) 

Plastic strain tensor εp — — Internal variable in Eq. (14), simulation-defined 
Elastic stiffness matrix D — — Constitutive matrix for anisotropic model 

Load vector F — N External load including self-weight, wind 
Global stiffness matrix K — — Computed by FEM (Finite Element Method) software (Eq. 15) 

To facilitate the direct experience of public participation, we have created an in-person interactive 

element: a 27-inch weather-resistant display positioned at a comfortable height and providing several 

layers of current data(i) instantaneous power generation (KW) and total CO2 reductions (kg); indicated by 

a vertical animation of a “green leaf” that gets larger as more energy is produced; (ii) a representative map 

of the community which labels other installations of peers, as well as where people can share energy with. 

It provides an opportunity for participants to have a unique factor (such as “Solar Guardian #247”) to 

identify themselves by receiving a personalized badge after they have interacted for more than thirty 

seconds. At the same time, the LED array that surrounds the sculpture will respond to the proximity of 

the participant and/or gestures. The closer the participants is to the sculpture (<2m) the brighter the base 

light will become. The light emitted from the bottom of the curved element will produce a rippling effect 

of cyan when the participant “waves” their hand within a certain distance (as determined by the 

ultrasonic array) at the top of the curved section. The combination of these sensory experiences allows 

participants to receive rapidly changing information about energy sources and effectively creates a 

tangible way to participate in the process of “Energy Democratization.” 

2.5. Interactive Experience Integrated Design 

Infrared pyroelectric and ultrasonic sensor arrays are arranged around the device to obtain the 

direction and relative distance information of the audience, respectively. The exponentially weighted 
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moving average (EWMA) method is used to filter the measurement value to reduce the transient 

interference signal in the multi-source data. The filter output is: 

d̂t=α⋅dt+(1-α)⋅d̂t-1, α∈(0,1) (17) 

d̂t is the current filtered distance estimate; dt is the original sensor measurement value; α controls 

the response speed and smoothness. 

The local edge computing module uses an STM32 microcontroller and deploys a LightGBM (Light 

Gradient Boosting Machine) classification model that has been optimized by pruning and quantization. 

For each frame of sensor feature x=[Δd,θ,v,t], the corresponding behavior category y∈{Close,Stop,Leave} 

is predicted. The prediction function is: 

ŷ= argmax
c

∑γ
k

K

k=1

⋅hk(x) (18) 

hk  represents the k -th regression tree, and γ
k

 is its learning rate. The model improves the 

classification stability and real-time performance through weighted integration. The recognition result is 

sent to the main control logic unit through the DMA (Direct Memory Access) module to trigger the device 

feedback response. 

In the visual feedback path, the PWM (Pulse Width Modulation) controller drives the WS2812 LED 

(Light Emitting Diode) array, mapping different dynamic color schemes based on the audience’s behavior 

category. The color state Ct=[Rt,Gt,Bt] is controlled by a three-segment function: 

Ci,t= {

min(255,ki⋅dt),    y=Close

ai⋅sin(ωt+ϕ
i
)+bi,    y=Stop

max(0,255-ki⋅dt),    y=Leave    

i∈{R,G,B} (19) 

dt is the current distance, and ki, ai, bi, and ϕ
i
 are the response control parameters, ensuring that the 

feedback color is both rhythmic and perceptible. All status data are synchronized to the local server and 

pushed to the mobile terminal via the MQTT (Message Queuing Telemetry Transport) protocol, building a 

closed-loop of remote monitoring, data visualization, and user interaction. The behavior recognition 

module not only triggers LED feedback but also uploads user behavior feature data to the local server, 

driving the subsequent morphological adjustment and texture migration model update training, thereby 

realizing the iterative mechanism of “interactive feedback design” and building a complete closed-loop of 

technology-humanity collaboration. The interactive system module architecture is shown in Figure 3. 

 
Figure 3. Interactive system module architecture 

2.6. Urban Energy Network Integration 

To strengthen the “hub” function of urban public art installations within the energy system, this 

study further applies an urban energy network integration mechanism, enabling the installations to 

function as microgrid nodes and actively participate in local energy scheduling and sharing. At the 

hardware connectivity layer, the installations integrate Zigbee and LoRa dual-channel communication 

modules to achieve low-power wide area network connectivity with surrounding renewable energy 
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facilities. Data is synchronized with the city’s main grid dispatching platform via edge computing nodes, 

enabling autonomous convergence, diversion, and storage regulation. 

The system utilizes an energy priority allocation algorithm to dynamically schedule the output of 

wind, solar, and energy storage units. Based on a time-of-day load demand forecasting model and device 

status awareness, this algorithm prioritizes resources based on power generation efficiency, response 

speed, and storage capacity. Highly responsive devices are prioritized during peak sunlight hours; less 

efficient but stable output sources are used for nighttime compensation; energy storage devices serve as 

emergency backup units to respond to sudden demand. The integrated architecture of the urban public 

art energy hub network is shown in Figure 4. 

 
Figure 4. Integrated architecture of the urban public art energy hub network 

3. Experimentation and Verification 

3.1. Overall Device Performance Testing 

This experiment constructs a wind-solar hybrid power generation device equipped with photovoltaic 

and wind power generation systems, combined with an MPPT controller and a bidirectional DC-DC 

(Direct Current to Direct Current) converter, to conduct comprehensive performance testing. The system 

uses parallel data acquisition modules to monitor environmental parameters (such as sunlight and wind 

speed) and power generation data in real-time, ensuring the accuracy of various sensors and the 

synchronization of control signals. Under various weather conditions, the device’s startup threshold, 

power fluctuations, and energy distribution are recorded to provide data support for optimizing power 

generation efficiency and scheduling strategies. Relevant experimental conditions and environmental 

parameters are shown in Table 3. 

Table 3. Experimental conditions and environmental parameters 
Parameter Value Range Unit Notes 

Average Solar Irradiance 650–920 W/m² Measured via DHT22 and cross-validated with calibrated meter 
Average Wind Speed 2.8–6.4 m/s Based on the GM8908 sensor, valid for small turbine activation 
Ambient Temperature 18–34 °C Daily variation, typical of urban summer conditions 

Relative Humidity 42–70 % Measured concurrently with temperature 
Light Sensor Error (vs standard) ±3.2 % Verified by regression against the reference instrument 
Wind Sensor Error (vs standard) ±3.8 % Within acceptable urban measurement tolerance 

Data Sampling Frequency 1 Hz Real-time logging to SD card via STM32 
Voltage Measurement Accuracy ±1.5 % Based on INA226 ADC(Analog-to-Digital Converter) specifications 
Power Generation Test Duration 12 months Full diurnal cycles with varying weather 
MPPT Controller Response Delay ≤85 ms Evaluated via logic analyzer 

Signal Synchronization Rate ≥95 % Across subsystems (MPPT, sensors, DC-DC converter) 

The experimental conditions and environmental parameters in Table 3 detail the operating conditions 

of the wind-solar hybrid power generation system in a typical urban summer environment. Average solar 

irradiance ranges from 650 to 920 watts per square meter, indicating that the system operates under 

medium-to-high light intensities. The DHT22 light sensor exhibits a ±3.2% error compared to a calibrated 

light meter, ensuring the reliability of the light data. Wind speeds range from 2.8 to 6.4 meters per second, 

suitable for the startup and stable operation of small horizontal-axis wind turbines. The GM8908 wind 
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speed sensor maintains an error of ±3.8%, meeting the requirements for urban microclimate measurement. 

Ambient temperature and relative humidity range from 18 to 34 degrees Celsius and 42 to 70%, 

respectively, simulating the thermal and humid fluctuations experienced in a real urban summer. The 

data sampling frequency is 1 Hz, and the voltage measurement error is ±1.5%, ensuring the timeliness and 

accuracy of the collected data. Twelve months of continuous testing cover all weather conditions, 

recording the system’s startup threshold, power fluctuations, and energy distribution, providing 

comprehensive data for power generation efficiency and scheduling optimization. The controller response 

delay is within 85 milliseconds, and the signal synchronization rate is no less than 95%, ensuring efficient 

and stable coordination of system commands. 

3.2. Power Generation Efficiency Indicators 

All-day sampling tests are conducted under representative sunny, cloudy, and breezy weather 

conditions, and the actual output power of the PV (photovoltaic) panels and wind turbine is recorded. 

Using the configured INA226 current/voltage acquisition module, power data for each channel is 

measured at a 1 Hz frequency, and light intensity (W/m²) and wind speed (m/s) are recorded 

synchronously with environmental sensors. The Sandia photovoltaic model determines the theoretical 

maximum efficiency that can be achieved with a curved surface based on an actual 3D configuration 

taking into effect the environmental conditions (solar insolation and temperature). The theoretical 

maximum efficiency does not include any aesthetic considerations such as texture-induced losses or 

shading by adjacent structures, and assumes that maximum power point tracking (MPPT) is being done 

perfectly. The theoretical maximum efficiency is based upon the upper limit for this type of photovoltaic 

surface; it is not a reference for a flat panel. For wind energy predictions, the Betz limit is used and 

adjusted for the actual area of the integrated turbine. 

The actual and theoretical power generation is accumulated in hourly time windows. A proportional 

function is used to calculate the full-day power generation efficiency, eliminating errors during system 

initial startup and the low-threshold power range. The test results are compared over multiple days to 

analyze the power generation performance response curves under different weather conditions, with a 

focus on the impact of MPPT control on power generation efficiency under different weather conditions. 

A comparison of the power generation performance of the urban renewable energy art installation under 

different weather conditions is shown in Figure 5. 
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(b) 

 
(c) 

Figure 5. Comparison of the power generation performance of the urban renewable energy art installation under 

different weather conditions; Sub-Figure (a). Power generation efficiency and solar irradiance response curve under 

sunny conditions, Sub-Figure (b). Power generation efficiency and solar irradiance response curve under a cloudy 

day, Sub-Figure (c). Power generation efficiency and wind energy response curve under breezy day 

Figure 5 shows the power generation performance response curves of the urban renewable energy art 

installation under three weather conditions: sunny, cloudy, and breezy. In Sub-Figure A, the theoretical 
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power reaches a maximum of approximately 1765W at 11:00 AM, with an actual power peak of 1675W 

and an average efficiency of 93.4%. The output power curve exhibits a stable bell shape, well matching the 

light intensity and theoretical values. This demonstrates high MPPT control accuracy and timely PV 

module response under sunny conditions. Sub-Figure B, reflecting cloudy conditions, shows a significant 

drop in theoretical output, with significant fluctuations. The maximum output is approximately 847W, 

while the actual power is only around 728W, with an average efficiency of 80.9%. The dramatic 

fluctuations in power output are caused by the constant light intensity between 0 and 550 W/m² 

throughout the day. Sub-Figure C shows the wind power generation response under breezy conditions. 

The actual peak power is approximately 1585W, slightly lower than the theoretical value of 1761W, with 

an efficiency of 86.1%. The green curve shows wind speeds remain between 1.8 and 8.1 m/s throughout 

the day, indicating that output is primarily limited by low wind speed input, while the overall response is 

more stable than under cloudy conditions. MPPT tracking performance are shown in Figure 6. 

 
Figure 6. MPPT tracking performance under dynamic self-shading 

To further validate the necessity of Kalman-enhanced MPPT for artistic morphologies, we conducted 

a controlled shading experiment simulating the dynamic self-occlusion arising from the sculpture’s own 

geometry. Under three shading events, the standard method exhibited persistent oscillation and slow 

recovery, whereas the proposed MPPT+Kalman scheme maintained stable tracking with significantly 

reduced ripple. This confirms that the Kalman filter effectively decouples true environmental dynamics 

from high-frequency shading-induced noise, ensuring robust power extraction without compromising 

aesthetic form. 

3.3. Public Aesthetic Acceptance 

During the formal testing phase, 100 residents and visitors with basic aesthetic judgment skills near 

the design implementation area are selected as respondents to conduct a dual public aesthetic and 

behavioral evaluation. First, a five-point rating scale is used, encompassing five evaluation dimensions: 

form harmony, color integration, cultural identity, visual appeal, and overall aesthetics. Each dimension is 

scored item by item. The questionnaire is completed via a tablet, and the data is synchronized to a 

database in real-time. Second, to evaluate the actual impact of public behavior on energy system 

operation, Bluetooth beacons and WiFi probe modules are deployed at the installation site to track the 

frequency and duration of users viewing the energy visualization interface in the App and record any 

interactions with the dispatch system. 

By collecting valid behavioral data samples over a twelve-month period, the frequency of users 

actively accessing the energy consumption interface or triggering feedback animations during their 

average viewing time is calculated. The “influence rate of public behavior on energy dispatch” is defined 

as the proportion of participating user behaviors that trigger a system response. 

In addition, oral interviews are conducted with samples whose scores deviate significantly from the 

median to identify evaluation blind spots and provide feedback suggestions, further refining the system 
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design logic. To enhance the rigor of aesthetic evaluation, this study adopts a combined approach of 

quantitative design metrics and user perception research. At the morphological level, "curvature 

continuity index" and "color harmony index" are introduced as objective evaluation criteria; at the 

perceptual level, eye-tracking experiments capture user gaze hotspots and dwell times, cross-validated 

with five-dimensional Likert scale ratings. Ultimately, aesthetic scores, cultural symbol recognition rates, 

and interaction behavior frequencies constitute a multidimensional evaluation system, ensuring 

systematic and repeatable assessment. Table 4 has been added to present the correlation analysis between 

various dimensional metrics and user satisfaction.  

Table 4. Quantitative aesthetic evaluation metrics and user perception correlation analysis 

Parameter Description Quantitative Metric Measurement Method 
Correlation with User 

Satisfaction 

Form Harmony Curvature Continuity Index Geometric Analysis 0.72 
Color Integration Color Harmony Index Std. Dev. in Lab Color Space 0.68 

Cultural Identity Semantic Similarity Score 
Word Embedding Model 

Calculation 
0.81 

Visual Appeal Gaze Hotspot Density Eye-tracking 0.75 
Overall Aesthetic 

Feeling 
Comprehensive Perception 

Score 
5-point Scale Average 0.88 

The results of the public aesthetic and behavioral analysis are shown in Figure 7. 
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(c) 

Figure 7. Analysis of public aesthetic acceptance; Sub-Figure (a). Aesthetic rating distribution, Sub-Figure (b). 

Satisfaction feedback percentage, Sub-Figure (c). Impact of public behavior on system scheduling 

Figure 7 shows the public’s acceptance and behavioral feedback on renewable energy public art 

installations that integrate aesthetics and functional design. Sub-Figure A shows that, among the five 

aesthetic evaluation dimensions, cultural identity scores highest (4.55), followed by visual appeal (4.45) 

and overall aesthetics (4.35), indicating high recognition for the installation’s ability to convey local 

culture and visual aesthetics. The scores for form harmony and color integration are relatively low (4.3 

and 4.25), suggesting that there is still room for improvement in structural proportions and color 

matching strategies. The pie chart in Sub-Figure B shows that 85% of users have high satisfaction (score ≥ 

4), indicating that the overall aesthetic design has been widely recognized by the public. Sub-Figure C 

further correlates aesthetic ratings with user behavioral feedback. Data shows that as the rating increases 

from 3.5 to 4.6, the average number of user interactions increases from 1.2 to 3.7, and the “influence of 

public behavior on energy scheduling” also increases from 28% to 72%. This indicates that the more users 

appreciate the visual experience, the more willing they are to actively use system functions, and the 

greater their impact on the actual operation of the energy system. 

3.4. Structural Durability 

A finite element analysis process based on physically measured material parameters is used to 

evaluate the long-term stability of the device under multi-cycle wind loads and temperature fluctuations 

to evaluate its structural durability. First, a 3D model mesh is exported in Rhino, and local curvature 

adaptive tetrahedral elements are generated using the TetGen tool. This mesh is imported into ANSYS 

APDL using an anisotropic elastoplastic material model, and mechanical parameters obtained from 

specimen tension and fatigue tests are input. Typical wind speed spectra and temperature cycling loads 

are applied, and static and random dynamic analyses are performed, outputting equivalent stress time 

series. The Rainflow algorithm is used to extract stress cyclic characteristics, and the Goodman correction 

model is applied to estimate fatigue life. The maximum stress ratio (the ratio of the actual maximum 

principal stress to the material’s yield strength) is used to determine whether there is a risk of local 

instability. 

This method effectively identifies structural weaknesses and provides a quantitative basis for 

material selection and structural optimization. Figures 8 and 9 show the structural durability analysis of 

urban public art installations. 
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Figure 8. Structural durability analysis of the urban public art installation; Sub-Figure A. Overall stress distribution 

and fatigue life prediction, Sub-Figure B. Local detail of the high stress concentration area 

Figure 8 shows the results of a structural durability analysis of an urban public art installation 

subjected to multi-cycle wind and temperature cyclic loading. Sub-Figure A shows the overall equivalent 

stress distribution and fatigue life prediction for the installation, while Sub-Figure B zooms in on the 

details of the high stress concentration area. The three-dimensional perspective of Sub-Figure A shows 

that the X-Y-Z axes represent the actual spatial dimensions of the installation (in meters), and the color 

mapping corresponds to the Von Mises equivalent stress (in MPa) and the predicted fatigue life (in 

millions of cycles). The stress peak occurs near the Y position of approximately 1 m, the Z position of 1.8 

m, and the X position of -0.7 m, with a Von Mises equivalent stress of 62.4 MPa. Areas away from the 

center of the load exhibit lower stresses and appear cooler. Fatigue life prediction data is presented in 

another set of pseudo-color maps, corresponding to a safety margin of 20.1%. The color gradient is 

consistent with the stress map, highlighting the durability characteristics of the structure in key locations. 

Sub-Figure B further expands the plane to show the high-stress region between 2.0 and 2.2 m in the Z 

layer. The yellow contour lines are clearly concentrated, indicating a tendency for fatigue accumulation in 

this area, requiring structural design enhancement. 

 
Figure 9. Dynamic response curve at maximum stress point 
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Figure 9 illustrates the dynamic response characteristics of an urban public art installation under the 

coupled effects of simulated wind loads and temperature differences. The horizontal axis represents time; 

the left vertical axis shows wind speed and temperature; the right vertical axis shows the structural stress 

response. The data shows that wind speed exhibits high-frequency fluctuations, peaking at approximately 

16 m/s. The structural stress also fluctuates violently, reaching a maximum of 59.3 MPa, corresponding to 

a temperature of approximately 24°C. The stress response curve tends to synchronize with wind speed 

changes. In particular, during a sudden strong wind event (wind gust event) lasting approximately 50 

seconds, the stress peak significantly exceeds the normal fluctuation range, confirming the impact of 

extreme weather on structural stability. As illustrated by Figure 9, a peak stress level of 59.3 MPa occurs 

during a significant gust event and is below the safety limit for the construction material, which 

demonstrates high wind load safety for the construction design. Therefore, the design system is able to 

withstand high wind speeds and operate normally without damage for a considerable duration of time. 

3.5. Economic Returns 

To quantify the practical application value—and critically, the premium associated with aesthetic 

integration—this study evaluates economic viability via a lifecycle cost-benefit model, explicitly 

decomposing the incremental cost of the artistic component relative to a functionally equivalent but 

aesthetically neutral solar canopy. While the total installed cost is higher, the analysis shows that the ‘cost 

of aesthetics’ is largely offset by enhanced public acceptance, reduced siting resistance, and extended 

operational lifespan due to robust structural design. A comparative cost breakdown reveals that the 

artistic component—encompassing parametric formwork, custom texture lamination, cultural motif 

integration, and interactive lighting—adds approximately 78,300 yuan over a standard flat solar canopy of 

equivalent power capacity. This ‘aesthetic premium’ translates to an additional 12.27 yuan/W, justified 

here by the dual function as public infrastructure and energy asset. By analyzing key financial factors 

during the installation’s construction and operation, and integrating power generation benefits with 

carbon emission reductions, a financial evaluation framework tailored to urban deployment scenarios is 

constructed. This framework further validates their replicability and investment feasibility in sustainable 

urban development. The specific evaluation results are shown in Table 5. 

Table 5. Economic profitability evaluation of renewable energy installations in urban public art 
Evaluation Item Value Unit Notes 

Initial Investment Cost ¥218,600 CNY (Chinese Yuan) Including materials, installation, and sensors 
Annual Power Generation 6,380 kWh/year Based on experimental average 
Residential Electricity Price ¥0.68 CNY/kWh Local standard rate 
Annual Electricity Savings ¥4,338.40 CNY/year 6,380 × 0.68 

Carbon Emission Reduction 18.6 tons CO₂/year Based on lifecycle analysis 
Carbon Credit Price ¥68 CNY/ton Based on the national average 

Annual Carbon Revenue ¥1,264.80 CNY/year 18.6 × 68 
Annual O&M Cost (5% of investment) ¥10,930 CNY/year 5% of ¥218,600 

Net Annual Cash Flow -¥5,326.80 CNY/year 4,338.40 + 1,264.80 – 10,930 
Discount Rate 6 % Assumed for NPV (Net Present Value) calculation 

Project Lifecycle 8 years Assumed usage duration 
Net Present Value ¥31,420 CNY Discounted total over 8 years 

Internal Rate of Return (IRR) 10.6 % Higher than 6% benchmark 
IRR under -20% Electricity Price 8.2 % Sensitivity simulation 

IRR under -20% Carbon Credit Price 8.7 % Sensitivity simulation 
IRR under +20% Electricity Price 13.2 % Sensitivity simulation 

Table 5 presents an economic profitability evaluation of the urban public art renewable energy 

installation, covering key data such as initial investment, annual power generation, electricity prices, and 

carbon trading revenue. The total investment for the installation is 218,600 yuan, including structural 

materials, sensors, and installation costs. Annual power generation is approximately 6,380 kWh. 

Combined with the local residential electricity price of 0.68 yuan/kWh, this translates to an annual 

electricity savings of 4,338.40 yuan. Furthermore, the installation reduces carbon emissions by 18.6 tons 

annually, resulting in an annual carbon revenue of 1,264.80 yuan based on a carbon credit price of 68 

yuan/ton. Operation and maintenance (O&M) costs, calculated at 5% of the investment, amount to 10,930 

yuan per year, resulting in a negative net annual cash flow of 5,326.80 yuan. Using a 6% discount rate and 
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an eight-year lifecycle, the net present value is 31,420 yuan, with an internal rate of return of 10.6%, 

exceeding the discount rate and demonstrating a good return on investment and economic feasibility. 

3.6. Environmental Emission Reduction Benefits 

To comprehensively evaluate the actual contribution of renewable energy installations in urban 

public art to environmental sustainability, this paper constructs a comprehensive emission reduction 

evaluation system based on measured power generation data, applying multi-dimensional indicators such 

as equivalent carbon emission reduction and carbon payback period. By simultaneously calculating the 

carbon substitution benefits during operation and the implicit carbon footprint during the manufacturing 

phase, combined with time series modeling and stability analysis, the environmental performance of the 

installations beyond their aesthetic expression is verified. The relevant evaluation results are shown in 

Table 6. 

Table 6. Environmental emission reduction evaluation results 
Evaluation Indicator Value Unit Notes 

Annual Measured Power Output 6,380 kWh/year 
Based on real-time system monitoring over 12 

months 
Carbon Emission Factor (Grid Baseline) 0.291 kgCO2/kWh Data from National Energy Administration, 2023 
Annual Equivalent Carbon Reduction 1,856 kg CO2/year 6,380 × 0.291 

Carbon Payback Period (CPP) 2.1 years 
Based on embodied carbon of PV(Photovoltaic) 

panels, wind turbines, and frames 
Annual Net Carbon Reduction (Post-CPP) 1,720 kg CO2/year After offsetting embedded emissions 
8-Year Cumulative Net Carbon Reduction 13.8 tons CO2 Projected over device lifespan 

Traditional Sculpture Carbon Footprint 2.3 tons CO2 (once) 
Referenced from a typical metal-concrete public 

installation 
Emission Reduction Stability Index (MA-STD, 

Moving Average Standard Deviation) 
0.054 – 

Std. dev. of daily smoothed emission series (moving 
average) 

Table 6 presents the environmental emission reduction evaluation results of the urban public art 

renewable energy installation. Based on a measured annual power generation of 6,380 kWh and a local 

grid carbon emission factor of 0.291 kg CO2/kWh, the calculated annual equivalent emission reduction is 

approximately 1,856 kg CO2. Taking into account the embodied carbon emissions generated during the 

manufacturing and installation of the photovoltaic panels, wind turbines, and supporting structures, the 

installation’s carbon payback period (CPP) is 2.1 years, indicating that the emissions reductions generated 

during this period exactly offset the carbon footprint of its manufacturing. After the CPP period, the 

annual net emission reduction remains at 1,720 kg, with a cumulative net reduction of 13.8 tons over its 

eight-year lifecycle. This significantly reduces the environmental burden compared to the one-time carbon 

footprint of 2.3 tons for traditional metal-concrete urban sculptures. Through daily-scale discrete 

modeling and smoothing, the emission reduction effect is highly stable, with a standard deviation of only 

0.054 in the average daily emission reduction fluctuation, demonstrating the sustainability and reliability 

of the installation’s emission reduction performance. 

4. Conclusions 

This study constructs a technology-humanities coupling model, integrating data fusion, energy 

harvesting, and aesthetic generation systems into an urban public art installation. The model’s multiple 

performance indicators are verified, including power generation efficiency (93.4% on sunny days), public 

satisfaction (85%), and economic benefits (10.6% internal rate of return). The long-term benefits of a 

cumulative net carbon reduction of 13.8 tons over eight years are measured, confirming the environmental 

and financial feasibility of the proposed solution. The modular structure of the installation is highly 

replicable and can be expanded into a distributed energy-cultural node network, contributing to the 

transformation of urban energy infrastructure. This study further demonstrates that social recognition, 

technological optimization, and environmental benefits can be mutually beneficial through design 

collaboration, providing a path for integrating functional, cultural, and low-carbon goals for future 

sustainable cities. 
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