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Abstract: Unmanned vehicles represent a significant advancement in automotive technology, with their 

development hinging on sophisticated perception, decision-making, and control capabilities. However, existing 

path planning methods for driverless cars face challenges in complex road environments due to their susceptibility 

to environmental factors. This paper aims to address this issue by first providing an overview of trajectory planning 

algorithms for driverless cars. Subsequently, a novel global path planning approach is proposed, leveraging an 

improved A* algorithm and a predictive model of travel time. The proposed method enhances path planning 

accuracy by integrating the A* algorithm with predictive capabilities regarding travel time. By considering not only 

the shortest path but also the anticipated time required to traverse it, the model can account for dynamic factors such 

as traffic congestion and road conditions. This predictive aspect adds a layer of adaptability to the path planning 

process, enabling intelligent vehicles to make informed decisions in real-time. Simulation results demonstrate the 

efficacy of the proposed model in accurately planning trajectories for intelligent vehicles. The research results 

indicate that the prediction results of the bidirectional LSTM network are highly consistent with the actual values, 

demonstrating good predictive ability. From the perspective of prediction error, the MAE (Mean Absolute Error) of 

the bidirectional LSTM model is 7.3165, which is superior to the other three models. Especially compared with 

unoptimized BPNN, bidirectional LSTM reduced MAE, MAPE, and RMSE by 32%, 38%, and 3%, respectively, which 

fully demonstrates the advantages of bidirectional LSTM in processing time series data. It can accurately predict the 

inflow of road segments in real time and calculate the travel time of a future road segment. 

Keywords: Autonomous driving; Bidirectional LSTM network; Path planning; Predicting inflow volume; Swarm 

intelligence algorithm; Vehicle trajectory 
 

1. Introduction 

Data mining is a comprehensive field that integrates multiple disciplines such as business intelligence 

(BI), data analysis (DA), big data (BD), and decision support (DS). These fields are all products of the cross 

integration of data mining technology with other industries [1]. Data mining has the ability to predict future 

trends or overall development directions, which helps us make proactive predictions, reveal hidden 

patterns and correlations behind data, and make decisions faster and more accurately. Especially in the field 

of transportation, especially in densely populated and complex central cities with intricate road networks, 

scientific planning, road construction evaluation, design of sidewalks, overpasses, underground passages, 

and layout of subway stations all urgently require data support [2]. Scientific and rational planning and 

layout are crucial for achieving the intelligence and convenience of cities. With the continuous growth of 

the number of cars, urban traffic congestion is becoming increasingly severe, and traffic accidents occur 
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frequently, resulting in a large number of casualties and huge economic losses every year. The frequent 

occurrence of traffic accidents, worsening traffic congestion, and severe environmental pollution have 

jointly promoted the rapid development of autonomous vehicle technology [3]. 

Driverless cars contain many advanced technologies, including computers, automatic control, and 

artificial intelligence technologies [4]. Because of its good autonomous driving function, driverless cars can 

effectively perform driving tasks in complex and dangerous environments and have good application value 

in many fields. Path planning is one of the core technologies in the research and development of unmanned 

vehicles. Its task is to obtain a safe and collision-free trajectory to ensure that the vehicle can safely reach 

the target point from the starting point along the trajectory [5]. In the process of travelling, the unmanned 

vehicle needs to avoid dynamic and static obstacles while ensuring the shortest path to achieve energy 

optimization. The increasing progress of driverless, smart car technology is not only conducive to 

alleviating traffic congestion but also reducing casualties caused by car accidents, realizing the research 

value in the automotive industry [6]. As the key to unmanned vehicles, the development of path-planning 

technology will definitely promote the qualitative leap of unmanned vehicle technology, which has very 

important research significance and application prospects [7]. 

This article aims to address the challenges faced by autonomous vehicles in path planning in complex 

road environments, particularly their sensitivity to environmental factors. Therefore, this article first 

outlines the trajectory planning algorithm for autonomous vehicles and proposes a new global path 

planning method. This method combines an improved A * algorithm and a travel time prediction model, 

taking into account dynamic factors such as traffic congestion and road conditions by predicting the 

expected time required for crossing the route. The research objective of this article is to verify the 

effectiveness of the proposed model in accurately planning the trajectory of autonomous vehicles and 

demonstrate the advantages of bidirectional LSTM networks in predicting road inflow and travel time. 

2. Related work 

Research In the 1960s, related research on mobile robots was first started, and the first generation of 

mobile robots was successfully developed. After that, unmanned driving-related technologies have been 

developed rapidly [8]. In 2016, Waymo began live-testing work on driverless vehicles. The Waymo 

unmanned vehicle is equipped with a rotary laser rangefinder on the roof. The device can emit 64 laser 

beams, with a detection range of 200 meters, and a relatively accurate 3D data map can be obtained [9], [10]. 

The data processing system will fuse the obtained map data with high-precision maps stored internally to 

calculate multiple data models. The system uses a camera installed on the front windshield for close range 

detection, which can accurately identify obstacles and pedestrians in the image. And record the 

environmental information and traffic signs of the road, which can be further integrated and analyzed in 

the future. Meanwhile, sensors installed on the tires can monitor whether the autonomous vehicle is 

following a predetermined trajectory. In addition, the system can also achieve safe parking function and 

quickly calculate the distance to obstacles behind it during reversing [11]. 

Swarm intelligence algorithms are inspired by the social behavior of natural biological populations and 

aim to optimize algorithm performance. In this algorithm, individual members learn from each other, share 

information, and conduct search activities in parallel. Due to the inherent uncertainty of individual and 

group behavior, the search space exhibits randomness, making it impossible to guarantee the discovery of 

all efficient itemsets [12]. However, each individual can guide the search direction based on their own fitness 

value, and they can directly or indirectly interact with other individuals or environments, continuously 

learn, and iteratively update themselves. During this process, individuals tend to explore in a positive 

direction, focusing on searching smaller subspaces in order to obtain as much useful information as possible 

and discover efficient itemsets [13].According to the scope of action, the path planning algorithm is 

generally divided into local and global planning. Global path planning has a wide range of maps and is 

generally planned in a static environment [14, 15]. Local path planning is mainly path planning in a dynamic 

environment, which plays a role in avoiding obstacles. When the vehicle cannot travel according to the 

global planned path, the local path planning needs to quickly plan a feasible and safe path according to the 

current environmental information to ensure that it can avoid obstacles after avoiding obstacles [16]. In the 
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case of the path planning algorithm, when the starting and ending positions are known, global path 

planning can play the role of navigation and constraints for the unmanned vehicle. 

Compared to global path planning, local path planning is based on it and aims to generate collision 

free driving paths in real-time in dynamic driving environments [17-19]. When facing partially or 

completely unknown local road conditions, the system needs to rely on the perception layer to capture road 

condition information and surrounding environmental data, and update and correct them in a timely 

manner according to changes in road conditions. This requires the entire system to have excellent data 

processing and analysis capabilities, and to be able to provide feedback and adjust path planning results 

based on environmental information. Through the synergistic effect of global and local factors, autonomous 

vehicles can find the most suitable driving path [20]. In this process, the A* algorithm is used to calculate 

the shortest path, while intelligent biomimetic algorithms and sampling algorithms play an important role 

[21]. 

Although significant progress has been made in the field of autonomous vehicle path planning, there 

are still some research gaps. For example, existing methods often have high sensitivity to environmental 

factors and face challenges in complex road environments. In addition, how to strike a balance between 

real-time performance and accuracy, as well as how to effectively integrate multiple sensor data to improve 

the robustness of path planning, are urgent issues that need to be addressed. In response to these research 

gaps, this paper proposes a new global path planning method that combines an improved A * algorithm 

and a travel time prediction model. By predicting the expected time required to cross the path, this method 

takes into account dynamic factors such as traffic congestion and road conditions, adding an layer of 

adaptability to the path planning process. The proposed method aims to improve the accuracy of path 

planning, enabling intelligent vehicles to make informed decisions in real-time in complex road 

environments. Through simulation experiments, the method proposed in this paper has demonstrated 

significant advantages in accurately planning the trajectory of autonomous vehicles. 

3. Research on Global Path Planning Based on Improved A* 

3.1. A* algorithm 

Current work often focuses on path planning in static environments or only focuses on path planning 

at a certain level (such as global or local). This study emphasizes the importance of real-time performance 

and adaptability in dynamic driving environments, especially in local path planning. Real time road 

condition information and surrounding environment data are obtained through the perception layer, and 

the path planning results are updated and corrected in a timely manner according to changes in road 

conditions, ensuring that autonomous vehicles can drive safely and efficiently. The traditional A* algorithm 

mainly focuses on finding the shortest path, while the method proposed in this paper achieves dynamic 

adjustment of the path planning process by introducing a travel time prediction model. This combination 

not only considers the length of the path, but also takes into account dynamic factors such as traffic 

congestion and road construction that may be encountered during actual driving, thereby improving the 

accuracy and practicality of path planning. To obtain a more practical algorithm, the grid map of the 

uniform space decomposition method is used to model the global map information, and then the traditional 

A* algorithm is improved in efficiency and feasibility of generating a global path. 

3.1.1 Establishment of an environmental model 

An environment model suitable for the operation of unmanned vehicles is established to facilitate the 

application of the A* algorithm in path planning. The main principle is to facilitate the storage, processing, 

use and updating of the driverless car microprocessor. In the environment model, the environment map is 

evenly divided into several equal parts and filled. Each square cut out uniformly is defined as an obstacle 

grid or a passable grid. Inflation processing is to inflate the obstacles in the environment map, and the effect 

is shown in Figure 1.  
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Figure 1. Environment model building 

3.1.2. Path planning process 

In the traditional A* algorithm, the heuristic function K(n) is generally defined using the Euclinde-

distance. Then the expression of the heuristic function is as follows: 

K(n)=√(𝑥𝑡 − 𝑥𝑛)
2 + (𝑦𝑡 − 𝑦𝑛)

2 (1) 

Then the cost function, when the driverless car travels to n nodes, is 

p(n)=g(n)+√(𝑥𝑡 − 𝑥𝑛)
2 + (𝑦𝑡 − 𝑦𝑛)

2 (1.1) 

Figure 2 shows a uniform grid map of the driving environment of a driverless car, with green, red, 

blue, and black representing start, endpoints, obstacles, and free-travel space, respectively. 

 
Figure 2. Environment model building 

Through the above necessary elements, the shortest path from the starting point to the destination 

point is solved in these grids. The traditional A* algorithm path planning program flow is shown in Figure 

3. 

 
Figure 3. Traditional A* algorithm path planning 
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3.2. Improved A* algorithm 

3.2.1. Optimizing the heuristic function 

When using A* to find the most suitable path, the heuristic function is usually defined by geometric 

distance, as shown in Formula (1 to 3). From this, it can be known that the planning accuracy and speed of 

the traditional A* algorithm are static and unchanged during the whole process of path planning. However, 

the practicality of the heuristic function for geometric distance design is not high. Design of this section 

A heuristic function closer to the actual cost value 𝐻(𝑛) is obtained, namely: 

𝐻(𝑛) = {
√2𝑑𝑥(𝑛) + 𝑑𝑦(𝑛) − 𝑑𝑥(𝑛), 𝑑𝑦(𝑛) > 𝑑𝑥(𝑛) 

√2𝑑𝑦(𝑛) + 𝑑𝑥(𝑛) − 𝑑𝑦(𝑛), 𝑑𝑦(𝑛) < 𝑑𝑥(𝑛)
 (2) 

Although the heuristic function of the traditional A* algorithm has been redesigned above, the speed 

of path planning has not been changed. Therefore, a controllable factor needs to be added as follows: 

p(n)=g(n)+(2 − g(n)/𝑅)k(n) (2.1) 

Among them, 𝑅 is the distance from the starting point to the target point. The accuracy and speed of 

the improved A* algorithm have been improved. 

3.2.2. Sub-node expansion optimization design: 

The most primitive A * algorithm is the same when generating its child nodes. Therefore, the 

characteristics of its child nodes are the same, and the determination of its child nodes and parent nodes 

ultimately depends on the size of the f value. Therefore, the resulting planned path may pose a risk of 

friction between autonomous vehicles and obstacle vertices. However, due to the presence of obstacles, their 

attributes cannot be the same, so we should assign them equal identities to effectively avoid and reduce the 

occurrence of such situations. As shown in Figure 4, it can be seen that there are eight adjacent nodes (M, 

N, B, C, Z, Y, E, X) around node Q. Now we will treat them differently and divide (M, N, B, C) into a group 

called I, which has the highest level; The remaining nodes (Z, Y, E, X) are divided into another group called 

II, with the lowest level. Because I have the highest level, it is the primary level when generating the current 

node in a child node. The specific principles are shown in Figure 4: 

 
Figure 4. The child node generation strategy of node Q 

3.2.3. Floyd algorithm optimization path 

The principle of Floyd's algorithm can be represented by a simple mathematical model shown in Figure 

5: 

 
Figure 5. Floyd algorithm principle 
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L(A,D) is the distance between points M and C. As shown in Figure 5, if there are obstacles in M and 

C, then you can set L(M,C)=+∞, R(M,C)=M ->C. It can be seen from Figure 5 that point N is the planned node 

between points M and C like: 

(M,N)+L(N,C)＜L(M.C) (3) 

But 

L(M.C)=L(M,N)+L(N,C) (3.1) 

R(M,C)=M-＞N-＞C (3.2) 

Insert point B between N and C line segments if: 

L(M,B)+L(B,C)＜L(M,N)+L(N,C) (3.3) 

But 

L(M.C)=L(M,B)+L(B,C) (3.4) 

R(M,C)=M-＞B-＞C (3.5) 

Remove point B, then replace the planned path from point M to point C with an optimized arc-shaped 

path R(M, C) - the path the car travels on. 

4. Prediction model of travel time of road segment 

4.1. Road segment travel time estimation model construction 

Through the relationship between the numerical value and the travel time, a quantitative travel time 

estimation model is constructed to indirectly obtain the time it takes to pass a road segment with known 

traffic and known road conditions. The travel time of the road segment is expressed by the travel time of 

the non-congested road segment and the queuing delay time at the intersection. It is defined as follows: 

𝐶𝑎(𝑡)=𝐶𝑓(𝑡)+𝐶𝑑(𝑡) (4) 

Among them, 𝐶𝑎(𝑡) represents the travel time (s) of the vehicle entering the road segment a at time 

t,  𝐶𝑓(𝑡)Indicates the travel time (s) of the vehicle in the non-congested part of the road section, 𝐶𝑑(𝑡) 

Indicates the vehicle's queue delay time (s) at the intersection downstream of road segment a. 

According to the relevant theories of traffic engineering,  𝐶𝑓(𝑡)  and  𝐶𝑑(𝑡)  can be expressed as the 

incoming flow on road segment a 𝑋𝑎(𝑡) (veh)、outflow 𝑦𝑎(𝑡)（veh）、traffic flow 𝑞𝑎(𝑡)（veh）, that is, 

formula (4.1) can be expressed as: 

𝐶𝑎(𝑡)=𝐶𝑎(𝑥𝑎(𝑡),(𝑦𝑎(𝑡),(𝑞𝑎(𝑡)) (4.1) 

The incoming flow, outgoing flow and traffic flow of a road segment can be replaced with each other 

so that it can be further expressed as a function only related to the incoming flow, namely: 

𝐶𝑎(𝑡)=𝐶𝑎(𝑥𝑎(1),(𝑥𝑎(2),...,(𝑥𝑎(𝑡)) (4.2) 

Suppose the length of vehicles travelling on a non-congested road section is 𝐿𝑎
𝑓
(𝑡), and the length of 

vehicles queuing at the intersection is 𝐿𝑎
𝑑(𝑡)(km), so the length of road section a is 

𝐿𝑎(𝑡)=𝐿𝑎𝑓(𝑡)+𝐿𝑎𝑑(𝑡) (4.3) 

Assume that the vehicle's driving speed is 𝑣𝑎(𝑡)(km/h), and according to the relationship between 

distance, speed and time, it can be known that the vehicle's driving time in a non-congested road section is 

𝑐𝑎(𝑡) =
𝐿𝑎 − 𝐿𝑎

𝑑(𝑡)

𝑣𝑎(𝑡)
 (4.4) 

Therefore, in order to obtain the time 𝑐𝑓(𝑡) when the vehicle travels on a non-congested road section, 

it is necessary first to obtain 𝐿𝑎
𝑑(𝑡) the length of the vehicle queuing at the intersection.According to the 

traffic fluctuation theory, the wave speed of the stop wave before the intersection 𝜔𝑠(𝑡)(km/h) and the traffic 

density upstream of the intersection 𝑘𝑎 (veh/km/lane)、 the blocking density before the intersection 

𝑘𝑎
𝑗
(veh/km/lane) is related to the free-flow velocity 𝑣𝑎

𝑓
(km/h) of the road section as follows: 

𝜔𝑠(𝑡)=-𝑣𝑎
𝑓
∙
𝑘𝑎

𝑘𝑎
𝑗  (4.5) 

Suppose the length of the red light at the intersection is r(s), then the distance:  

|𝜔𝑠(𝑡)| ∙ 𝑟 (4.6) 
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t that the parking wave moves upstream is: 

𝑁𝑎
𝑑(𝑡)=|𝜔𝑠(𝑡)| ∙ 𝑟 ∙ 𝑘𝑎

𝑗
=𝑣𝑎

𝑓
∙ 𝑘𝑎 ∙ 𝑟 (4.7) 

The Greenshield speed-density model is shown in Equation (4.8), and the relationship between traffic 

flow, density and speed is shown in Equation (4.9). According to Equation (4.8) to Equation (4.10), Equation 

(4.11) is obtained: 

𝑣𝑎(𝑡) = 𝑣𝑎
𝑓
(1 −

𝑘𝑎

𝑘𝑎
𝑗
) (4.8) 

𝑥𝑎(𝑡) = 𝑣𝑎(𝑡). 𝑘𝑎 (4.9) 

𝑘𝑎
2

𝑘𝑎
𝑗
− 𝑘𝑎 +

𝑥𝑎(𝑡)

𝑣𝑎
𝑓

= 0 (4.10) 

𝑘𝑎 =
1

2
𝑘𝑎
𝑗
(1 ± √1 − 4

𝑥𝑎(𝑡)

𝑘𝑎
𝑗
. 𝑣𝑎

𝑓
) (4.11) 

Among them, it is required 𝑥𝑎(𝑡) ≤
1

4
𝑘𝑎
𝑗
𝑣𝑎
𝑓
 that 𝑥𝑎(𝑡) when the value is larger, take the positive sign; 

when the 𝑥𝑎(𝑡)value is smaller, take the negative sign. Therefore, the number of queued vehicles 𝑁𝑎
𝑑(𝑡)(veh) 

at the intersection downstream of the road segment at the moment is 

𝑁𝑎
𝑑(𝑡) =

1

2
𝑘𝑎
𝑗
𝑣𝑎
𝑓
𝑟(1 ± √1 − 4

𝑥𝑎(𝑡)

𝑘𝑎
𝑗
. 𝑣𝑎

𝑓
 ) (4.12) 

If the time is discretized, 𝑁𝑎
𝑑(𝑡)  and 𝑁𝑎

𝑑(𝑡 + 1)  represent the number of queued vehicles at the 

intersection downstream𝑎  of the road segment at the start time∆t and end𝑡 , 𝑡+∆t of the time interval, 

respectively. That is, 𝑁𝑎
𝑑(𝑡) and 𝑁𝑎

𝑑(𝑡 + 1)  are the number of vehicles queuing in continuous time, 

𝑁𝑎
𝑑(𝑡)represents the number of queued vehicles in discrete time sense, then take the average of the number 

of queued vehicles in the time∆t interval, namely 

𝑁𝑎
𝑑(𝑡) =

1

2
(𝑁𝑎

𝑑(𝑡) + 𝑁𝑎
𝑑(𝑡 + 1))= 

1

4
𝑘𝑎
𝑗
𝑣𝑎
𝑓
𝑟 {(1 ± √1 − 4

𝑥𝑎(𝑡)

𝑘𝑎
𝑗
. 𝑣𝑎

𝑓
 ) + (1 ± √1 − 4

𝑥𝑎(𝑡 + 1)

𝑘𝑎
𝑗
. 𝑣𝑎

𝑓
 )} 

(4.13) 

Since the time interval is too small, xa(t) the incoming flow of road segments in adjacent periods and 

upstream traffic density 𝑘𝑎 approximately equal, so 

𝑁𝑎
𝑑(𝑡) =

1

2
𝑘𝑎
𝑗
𝑣𝑎
𝑓
𝑟(1 ± √1 − 4

𝑥𝑎(𝑡)

𝑘𝑎
𝑗
. 𝑣𝑎

𝑓
 ) (4.14) 

Let the average vehicle length of vehicles be 𝑙𝑐(km), then the 𝐿𝑎
𝑑(𝑡) length of vehicles queuing at the 

intersection is 

𝐿𝑎
𝑑(𝑡) = 𝑁𝑎

𝑑(𝑡)𝑙𝑐 =
1

2
𝑣𝑎
𝑓
. 𝑟. 𝑙𝑐 . 𝑘𝑎

𝑗
(1 ± √1 − 4

𝑥𝑎(𝑡)

𝑘𝑎
𝑗
. 𝑣𝑎

𝑓
 ) (4.15) 

 Known, 𝑁𝑎
𝑗
=

1000𝑛

𝐻𝑑
, 𝐻𝑑 is the average head-to-head distance (km), equal to the sum of the average 

blocking clearance and the average body length, 𝑛 is the number of one-way motor vehicle lanes, so the 

driving time of vehicles in the non-congested road section is 

𝑐𝑓(𝑡) =
𝐿𝑎

𝑣𝑎(𝑡)
− 500

𝑣𝑎
𝑓
. 𝑟. 𝑙𝑐 . 𝑛 (1 ± √1 −

𝑥𝑎(𝑡)𝐻𝑑

250𝑛. 𝑣𝑎
𝑓)

𝑣𝑎(𝑡)𝐻𝑑
 

(4.16) 

The queuing delay time of vehicles at the intersection downstream of the 𝑎 road section is determined 

by the number of queuing vehicles and the traffic capacity 𝑄𝑎(veh) of the intersection. 
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𝑐𝑑(𝑡) =
𝑁𝑎
𝑑(𝑡)

𝑄𝑎
= 500

𝑣𝑎
𝑓
. 𝑟. 𝑛(1 ± √1 −

𝑥𝑎(𝑡)𝐻𝑑

250𝑛. 𝑣𝑎
𝑓)

𝑄𝑎𝐻𝑑
 

(4.17) 

Substituting formula (4.16) and formula (4.17) into formula (4.1), the travel time of the vehicle on the 

entire road 𝑎 section can be obtained, 

𝑐𝑑(𝑡) =
𝐿𝑎

𝑣𝑎(𝑡)
− 

500

𝑣𝑎
𝑓
.𝑟.𝑙𝑐.𝑛(1±√1−

𝑥𝑎(𝑡)𝐻𝑑

250𝑛.𝑣𝑎
𝑓)

𝑣𝑎(𝑡)𝐻𝑑
+ 

500

𝑣𝑎
𝑓
. 𝑟. 𝑛(1 ± √1 −

𝑥𝑎(𝑡)𝐻𝑑

250𝑛. 𝑣𝑎
𝑓)

𝑄𝑎𝐻𝑑
 

(4.18) 

When a vehicle is driving on a non-congested road, it can be considered that the vehicle is almost in a 

free-flow state, and the driving speed is high va(t) ≈ va
f . Therefore, in formula (4.18), only the inbound flow 

xa(t) is unknown, and the inbound flow difference between road segments is large, and xa(t) needs to be 

predicted when studying the travel time of road segments in future periods; other parameters can be 

obtained in advance, or the average value can be used instead. To sum up, we will continue to build a road 

segment travel time prediction model in the future period and use it to predict the inflow of the road 

segment in the future period. 

4.2. Prediction model for travel time of road segments in the future 

The prediction result of travel time is used as the basis for calculating the right of way for route 

planning, so the accuracy of travel time prediction is closely related to the decision of route planning. LSTM 

neural network is an algorithm that is widely used in the field of sequence prediction. It can store important 

past information in the prediction process and ignore unimportant information. 

（1）LSTM Neural Network Theoretical Analysis: 

LSTM replaces the hidden layer node of the RNN neural network with a memory unit. The structure 

of the LSTM memory unit module is shown in Figure 6, and the calculation formula (4.19-4.23). 

 
Figure 6. Basic architecture of LSTM memory unit 
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𝑖𝑡 = 𝜎(𝜔𝑥𝑖𝑥𝑡 + 𝜔ℎ𝑖ℎ𝑡−1 + 𝜔𝑐𝑖𝑐𝑡−1 + 𝑏𝑖) (4.19) 

𝑜𝑡 = 𝜎(𝜔𝑥𝑜𝑥𝑡 +𝜔ℎ𝑜ℎ𝑡−1 + 𝜔𝑐𝑜𝑐𝑡−1 + 𝑜) (4.20) 

𝑓𝑡 = 𝜎(𝜔𝑥𝑓𝑥𝑡 + 𝜔ℎ𝑓ℎ𝑡−1 +𝜔𝑐𝑓𝑐𝑡−1 + 𝑏𝑓) (4.21) 

𝑐𝑡 = 𝑓𝑡ʘ𝑐𝑡−1 + 𝑖𝑡ʘ𝑡𝑎𝑛 ℎ (𝜔𝑥𝑐𝑥𝑡 +𝜔𝑘𝑐ℎ𝑡−1 + 𝑏𝑐) (4.22) 

ℎ𝑡 = 𝑜𝑡ʘ𝑡𝑎𝑛 ℎ(𝑐𝑡) (4.23) 

Among them, 𝑥𝑡 and 𝑦𝑡 represent the input sequence and output sequence, respectively;𝑖𝑡、𝑜𝑡、𝑓𝑡、

𝑐𝑡 and ℎ𝑡 represent the output of the input gate, output gate, forget gate, memory cell and hidden layer at 

the 𝑡 moment;𝜔 and 𝑏2 represent the weight coefficient matrix and the bias term, respectively; σ(∙) and 

tanh(∙) represent the Sigmoid function and the hyperbolic tangent function respectively, which belong to 

the activation function. 

Although LSTM is an improvement over RNN, the memory and learning ability of LSTM is limited, 

and LSTM cannot encode information from back to front. The traffic volume predicted in this paper has a 

certain periodicity and regularity. Combining the forward and backward dependencies can extract more 

traffic volume change characteristics and improve prediction accuracy. Therefore, this time, the 

bidirectional LSTM neural network is selected for prediction, which is an extension of the traditional LSTM, 

and the forward and backward time series are trained at the same time to provide the network with 

contextual information so that the network can learn faster and more fully. The structure is shown in Figure 

7. 

Among them, 𝑥𝑡and𝑦𝑡represent the input sequence and output sequence, respectively, and 
ℎ𝑡
→ and 

ℎ𝑡
← 

represent the hidden layer output in forward calculation and backward calculation, respectively. It is 

concluded that the two hidden layers of the model are independent and non-interfering with each other. 

The state 
ℎ𝑡
→ and 𝑡-1 in the forward hidden layer is related to the state at time -1, and the state at time 𝑡+1 in 

the backward hidden layer is related to the state at time 𝑡+1. Status related. The final hidden layer output 

of the model is formed by linear fusion of the forward hidden layer output sequence and the backward 

hidden layer output sequence. The calculation formula is shown in formula (4.24). 

Among them, 
ℎ𝑡
↔  represents the final output of the hidden layer, 

𝜔𝑡
→  and  

𝜔𝑡
←  represents the weight 

coefficient matrix of forward and backward calculations, respectively, representing the bias term.  

 
Figure 7. Structure of bidirectional LSTM neural network model 

ℎ𝑡 ⃡  = 𝜔𝑡     ℎ𝑡    + 𝜔𝑡 ⃡   ℎ𝑡 ⃡  + 𝑏𝑡 ⃡   (4.24) 

(2) A Road Segment Travel Time Prediction Model with Bidirectional LSTM Neural Networks 
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 For a certain road section of the urban road network, the inflow at the current moment is related to 

the traffic data, such as the inflow xi(i＜t), speed vi(i＜t) and occupancy θi(i＜t) of the road section at the 

previous moment, so inputting the historical traffic data X can predict the road section at the next moment 

into the flow. Therefore, inputting the historical traffic data X can predict the inflow of the road segment at 

the next moment. Considering the impact of the incoming flow, speed and occupancy rate at the previous 

moment on the incoming flow 𝑥𝑛+1 therefore, X is an N×3 matrix in the future and the above prediction 

problem can be simplified as the formula. 

X=[

𝑥1 𝑣1 𝜃1
𝑥2 𝑣2 𝜃2
⋮ ⋮ ⋮
𝑥𝑁 𝑣𝑁 𝜃𝑁

] (4.25) 

𝑥𝑁+1 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟(𝑋) (4.26) 

The LSTM model mainly has parameters such as weight coefficient and bias. The setting can be 

obtained by training the input data; other parameters must be set manually. The traffic data at intervals of 

5 minutes is used for prediction, the input time series step timesteps are set to 12, and the forecast time 

series step size is set to 1. That is, the data of 60 minutes is used to predict the data of 5 minutes in the future. 

The input matrix dimension is 12x3, and the output layer dimension is set to 1. Studies have shown that the 

neural network's learning ability with more hidden layers is stronger, the neural network is more prone to 

overfitting, and the training time will be greatly increased. This paper adopts a four-layer network design, 

including an input layer, a bidirectional LSTM layer, a fully connected layer (Dense layer) and an output 

layer. 

The forward LSTM layer contains 64 hidden units, the backward LSTM layer contains 64 hidden units, 

and the Dense layer contains 1 neuron. The Dropout method can randomly deactivate some neurons in the 

hidden layer during the training process, reduce the complex dependencies between neurons, improve the 

model's generalization ability, and avoid overfitting the model during the training process. The dropout 

rate is set to 0.2. The structure of the prediction model constructed in this paper is shown in Figure 8. 

 
Figure 8. Structure diagram of two-way LSTM prediction model 

The algorithm steps for predicting future incoming flows with a bidirectional LSTM neural network 

are as follows: 

Step 1: Data preprocessing. Process outliers and missing values in the data, post-normalize the data 

and divide the training and test sets. 

Step 2: Build a road segment travel time prediction model in the future period, and initialize the model 

parameters. Set the number of hidden layers, the number of fully connected layers, the number of neurons 

in each layer, the learning step size, the number of iterations, the dropout loss value, the optimization 

function and other parameter values of the bidirectional LSTM model, and randomly set the weight 

coefficient matrix and bias item. 

Step 3: Model training and testing. Input the training data set, train the model, train and iterate 

repeatedly until the model's prediction accuracy reaches the preset accuracy, and then denormalize the data 

output by the model. 

Step 4: Input the historical traffic data of the road network to obtain the dynamic road resistance 

function. The process is shown in Figure 9. 
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Figure 9. Flow chart of bidirectional LSTM network algorithm 

4.3. Empirical Analysis of Travel Time Prediction of Road Sections in Future Periods 

In order to evaluate the validity and practicality of the model, the traffic data of the road network is 

collected for algorithm testing. The data was collected in a cycle of 30s, from March 1st to April 28th, 2020, 

for a total of 59 days. According to previous studies, traffic flow data with an interval of 5 minutes is more 

suitable for short-term traffic flow prediction because the proportion of missing data is small. Therefore, the 

data is aggregated at 5min intervals. The first 70% of the data is used as the training set, and the last 30% of 

the data is used as the test set. 

(1) Evaluation indicators 

The mean absolute error MAE, the mean absolute percentage error MAPE and the root mean square 

error RMSE were selected as evaluation indicators. MAE can well reflect the actual situation of the predicted 

value error, MAPE can reflect the model's overall accuracy, and RMSE can evaluate the adaptability of the 

data and prediction model. value; xk is the actual value; 𝑥𝑘
′  is the predicted value. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑥𝑘 − 𝑥𝑘

′ |

𝑛

𝑘=1

 (4.27) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑥𝑘 − 𝑥𝑘
′

𝑥𝑘
|

𝑛

𝑘=1

 (4.28) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑥𝑘 − 𝑥𝑘

′ )2
𝑛

𝑘=1

 (4.29) 

(2) Analysis of results 

The traditional BP neural network (referred to as "BPNN"), the BP neural network optimized by genetic 

algorithm (referred to as "GABPNN") and the traditional LSTM neural network are selected for comparative 

experiments. The prediction results of the bidirectional LSTM neural network are shown in Figure 10. The 

prediction errors of different models are shown in Table 1, and the training time of different models is 

shown in Table 2. 
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Figure 10. Prediction results of bidirectional LSTM network 

Table 1. Prediction errors of different models 
Model MAE MAPE RMSE 

BNPP 10.7621 0.2644 15.2133 

GABPNN 9.4671 0.2561 9.8535 

LSTM 7.6692 0.1682 9.9697 

two-way LSTM 7.3165 0.1632 9.9162 

Table 2. Training time of different models 
Model Training time(s) 

BNPP 50 

GABPNN 399 

LSTM 117 

two-way LSTM 181 

The results show that, compared with the other three models, the bidirectional LSTM model has better 

prediction results, the predicted value is closer to the real value, the prediction performance is more stable, 

and it has higher adaptability to different traffic flow conditions. Based on the prediction model constructed 

above, the road segment inflow in the future period can be predicted in real time and accurately, and the 

travel time of the road segment in the future period can be calculated. 

Based on the prediction results of the bidirectional LSTM model, autonomous vehicles can accurately 

predict the inflow of road segments in real time and calculate the travel time of a future road segment 

accordingly. This real-time prediction capability is crucial for the path planning of autonomous vehicles, as 

it allows vehicles to dynamically adjust their driving routes based on current and future traffic conditions. 

This not only improves the efficiency and accuracy of path planning, but also enhances the ability of 

autonomous vehicles to respond to unexpected situations. In addition, the application of bidirectional 

LSTM models in predicting road travel time can further promote the development of intelligent 

transportation systems. By integrating the predicted results into the intelligent transportation system, more 

accurate traffic flow management and control can be achieved. For example, adjusting signal timing and 

optimizing traffic diversion plans based on prediction results can effectively alleviate traffic congestion and 

improve road capacity. This application not only improves the overall efficiency of urban transportation, 
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but also provides a more complete transportation environment for the widespread application of 

autonomous vehicles. 

5. Conclusion 

The improved path planning algorithm proposed in this study significantly overcomes the two main 

shortcomings of the original algorithm, achieving a dual improvement in accuracy and speed. By 

optimizing the turning strategy, we have verified the effectiveness and rationality of the Floyd algorithm in 

reducing turning angles and the number of nodes, and stabilizing the planned path, thereby significantly 

shortening the length of the planned path and reducing planning time. In addition, the heuristic function 

we designed not only improves the accuracy of path search, but also accelerates the search speed, 

significantly reducing the number of nodes traversed, among which the design of sub node expansion 

strategy plays a crucial role. More importantly, based on improving the accuracy and simplicity of the 

algorithm, this study constructed a road segment travel time estimation model and a prediction model. 

Based on these models, we innovatively constructed a segmented dynamic road resistance function that can 

predict the travel time of vehicles when they reach each road segment in the future. This feature provides 

real-time data reference for autonomous vehicles, enabling them to dynamically plan the optimal path from 

their current location to their destination. These improvements not only enhance the performance of path 

planning algorithms, but also greatly improve their reliability and practicality in practical applications. By 

comprehensively considering multiple factors such as travel time, turning stability, and path length, this 

study provides new ideas and methods for intelligent navigation and path planning of autonomous 

vehicles. 
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