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Abstract: Unmanned vehicles represent a significant advancement in automotive technology, with their
development hinging on sophisticated perception, decision-making, and control capabilities. However, existing
path planning methods for driverless cars face challenges in complex road environments due to their susceptibility
to environmental factors. This paper aims to address this issue by first providing an overview of trajectory planning
algorithms for driverless cars. Subsequently, a novel global path planning approach is proposed, leveraging an
improved A* algorithm and a predictive model of travel time. The proposed method enhances path planning
accuracy by integrating the A* algorithm with predictive capabilities regarding travel time. By considering not only
the shortest path but also the anticipated time required to traverse it, the model can account for dynamic factors such
as traffic congestion and road conditions. This predictive aspect adds a layer of adaptability to the path planning
process, enabling intelligent vehicles to make informed decisions in real-time. Simulation results demonstrate the
efficacy of the proposed model in accurately planning trajectories for intelligent vehicles. The research results
indicate that the prediction results of the bidirectional LSTM network are highly consistent with the actual values,
demonstrating good predictive ability. From the perspective of prediction error, the MAE (Mean Absolute Error) of
the bidirectional LSTM model is 7.3165, which is superior to the other three models. Especially compared with
unoptimized BPNN, bidirectional LSTM reduced MAE, MAPE, and RMSE by 32%, 38%, and 3%, respectively, which
fully demonstrates the advantages of bidirectional LSTM in processing time series data. It can accurately predict the
inflow of road segments in real time and calculate the travel time of a future road segment.

Keywords: Autonomous driving; Bidirectional LSTM network; Path planning; Predicting inflow volume; Swarm
intelligence algorithm; Vehicle trajectory

1. Introduction

Data mining is a comprehensive field that integrates multiple disciplines such as business intelligence
(BI), data analysis (DA), big data (BD), and decision support (DS). These fields are all products of the cross
integration of data mining technology with other industries [1]. Data mining has the ability to predict future
trends or overall development directions, which helps us make proactive predictions, reveal hidden
patterns and correlations behind data, and make decisions faster and more accurately. Especially in the field
of transportation, especially in densely populated and complex central cities with intricate road networks,
scientific planning, road construction evaluation, design of sidewalks, overpasses, underground passages,
and layout of subway stations all urgently require data support [2]. Scientific and rational planning and
layout are crucial for achieving the intelligence and convenience of cities. With the continuous growth of
the number of cars, urban traffic congestion is becoming increasingly severe, and traffic accidents occur
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frequently, resulting in a large number of casualties and huge economic losses every year. The frequent
occurrence of traffic accidents, worsening traffic congestion, and severe environmental pollution have
jointly promoted the rapid development of autonomous vehicle technology [3].

Driverless cars contain many advanced technologies, including computers, automatic control, and
artificial intelligence technologies [4]. Because of its good autonomous driving function, driverless cars can
effectively perform driving tasks in complex and dangerous environments and have good application value
in many fields. Path planning is one of the core technologies in the research and development of unmanned
vehicles. Its task is to obtain a safe and collision-free trajectory to ensure that the vehicle can safely reach
the target point from the starting point along the trajectory [5]. In the process of travelling, the unmanned
vehicle needs to avoid dynamic and static obstacles while ensuring the shortest path to achieve energy
optimization. The increasing progress of driverless, smart car technology is not only conducive to
alleviating traffic congestion but also reducing casualties caused by car accidents, realizing the research
value in the automotive industry [6]. As the key to unmanned vehicles, the development of path-planning
technology will definitely promote the qualitative leap of unmanned vehicle technology, which has very
important research significance and application prospects [7].

This article aims to address the challenges faced by autonomous vehicles in path planning in complex
road environments, particularly their sensitivity to environmental factors. Therefore, this article first
outlines the trajectory planning algorithm for autonomous vehicles and proposes a new global path
planning method. This method combines an improved A * algorithm and a travel time prediction model,
taking into account dynamic factors such as traffic congestion and road conditions by predicting the
expected time required for crossing the route. The research objective of this article is to verify the
effectiveness of the proposed model in accurately planning the trajectory of autonomous vehicles and
demonstrate the advantages of bidirectional LSTM networks in predicting road inflow and travel time.

2. Related work

Research In the 1960s, related research on mobile robots was first started, and the first generation of
mobile robots was successfully developed. After that, unmanned driving-related technologies have been
developed rapidly [8]. In 2016, Waymo began live-testing work on driverless vehicles. The Waymo
unmanned vehicle is equipped with a rotary laser rangefinder on the roof. The device can emit 64 laser
beams, with a detection range of 200 meters, and a relatively accurate 3D data map can be obtained [9], [10].
The data processing system will fuse the obtained map data with high-precision maps stored internally to
calculate multiple data models. The system uses a camera installed on the front windshield for close range
detection, which can accurately identify obstacles and pedestrians in the image. And record the
environmental information and traffic signs of the road, which can be further integrated and analyzed in
the future. Meanwhile, sensors installed on the tires can monitor whether the autonomous vehicle is
following a predetermined trajectory. In addition, the system can also achieve safe parking function and
quickly calculate the distance to obstacles behind it during reversing [11].

Swarm intelligence algorithms are inspired by the social behavior of natural biological populations and
aim to optimize algorithm performance. In this algorithm, individual members learn from each other, share
information, and conduct search activities in parallel. Due to the inherent uncertainty of individual and
group behavior, the search space exhibits randomness, making it impossible to guarantee the discovery of
all efficient itemsets [12]. However, each individual can guide the search direction based on their own fitness
value, and they can directly or indirectly interact with other individuals or environments, continuously
learn, and iteratively update themselves. During this process, individuals tend to explore in a positive
direction, focusing on searching smaller subspaces in order to obtain as much useful information as possible
and discover efficient itemsets [13].According to the scope of action, the path planning algorithm is
generally divided into local and global planning. Global path planning has a wide range of maps and is
generally planned in a static environment [14, 15]. Local path planning is mainly path planning in a dynamic
environment, which plays a role in avoiding obstacles. When the vehicle cannot travel according to the
global planned path, the local path planning needs to quickly plan a feasible and safe path according to the
current environmental information to ensure that it can avoid obstacles after avoiding obstacles [16]. In the
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case of the path planning algorithm, when the starting and ending positions are known, global path
planning can play the role of navigation and constraints for the unmanned vehicle.

Compared to global path planning, local path planning is based on it and aims to generate collision
free driving paths in real-time in dynamic driving environments [17-19]. When facing partially or
completely unknown local road conditions, the system needs to rely on the perception layer to capture road
condition information and surrounding environmental data, and update and correct them in a timely
manner according to changes in road conditions. This requires the entire system to have excellent data
processing and analysis capabilities, and to be able to provide feedback and adjust path planning results
based on environmental information. Through the synergistic effect of global and local factors, autonomous
vehicles can find the most suitable driving path [20]. In this process, the A* algorithm is used to calculate
the shortest path, while intelligent biomimetic algorithms and sampling algorithms play an important role
[21].

Although significant progress has been made in the field of autonomous vehicle path planning, there
are still some research gaps. For example, existing methods often have high sensitivity to environmental
factors and face challenges in complex road environments. In addition, how to strike a balance between
real-time performance and accuracy, as well as how to effectively integrate multiple sensor data to improve
the robustness of path planning, are urgent issues that need to be addressed. In response to these research
gaps, this paper proposes a new global path planning method that combines an improved A * algorithm
and a travel time prediction model. By predicting the expected time required to cross the path, this method
takes into account dynamic factors such as traffic congestion and road conditions, adding an layer of
adaptability to the path planning process. The proposed method aims to improve the accuracy of path
planning, enabling intelligent vehicles to make informed decisions in real-time in complex road
environments. Through simulation experiments, the method proposed in this paper has demonstrated
significant advantages in accurately planning the trajectory of autonomous vehicles.

3. Research on Global Path Planning Based on Improved A*
3.1. A* algorithm

Current work often focuses on path planning in static environments or only focuses on path planning
at a certain level (such as global or local). This study emphasizes the importance of real-time performance
and adaptability in dynamic driving environments, especially in local path planning. Real time road
condition information and surrounding environment data are obtained through the perception layer, and
the path planning results are updated and corrected in a timely manner according to changes in road
conditions, ensuring that autonomous vehicles can drive safely and efficiently. The traditional A* algorithm
mainly focuses on finding the shortest path, while the method proposed in this paper achieves dynamic
adjustment of the path planning process by introducing a travel time prediction model. This combination
not only considers the length of the path, but also takes into account dynamic factors such as traffic
congestion and road construction that may be encountered during actual driving, thereby improving the
accuracy and practicality of path planning. To obtain a more practical algorithm, the grid map of the
uniform space decomposition method is used to model the global map information, and then the traditional
A* algorithm is improved in efficiency and feasibility of generating a global path.

3.1.1 Establishment of an environmental model

An environment model suitable for the operation of unmanned vehicles is established to facilitate the
application of the A* algorithm in path planning. The main principle is to facilitate the storage, processing,
use and updating of the driverless car microprocessor. In the environment model, the environment map is
evenly divided into several equal parts and filled. Each square cut out uniformly is defined as an obstacle
grid or a passable grid. Inflation processing is to inflate the obstacles in the environment map, and the effect
is shown in Figure 1.
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Figure 1. Environment model building

3.1.2. Path planning process

In the traditional A* algorithm, the heuristic function K(n) is generally defined using the Euclinde-
distance. Then the expression of the heuristic function is as follows:

K(n)z\/(xt - xn)z + (yt - Yn)z

(1)

Then the cost function, when the driverless car travels to n nodes, is

p)=g(n)+ (xc — x2)? + (e — ¥n)?

1.1)

Figure 2 shows a uniform grid map of the driving environment of a driverless car, with green, red,
blue, and black representing start, endpoints, obstacles, and free-travel space, respectively.

Figure 2. Environment model building

Through the above necessary elements, the shortest path from the starting point to the destination
point is solved in these grids. The traditional A* algorithm path planning program flow is shown in Figure

3.

Start

Initialization parameters

The starting point is added to the open
list,and the child node selects the
candidate node with the minimum F
value, and the starting point is added to
the close list

Adds candidate nodes other than the
closed list or obstacles to the open list

Yes Does the open list have a target

Finish point?

NO

Add this node to the shutdown list and
update the parent node

Yes

NO This node has the smallest F or
has been added to the enable list
and has the smallest G value

Calculate candidate node F,G, and H

Figure 3. Traditional A* algorithm path planning
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3.2. Improved A* algorithm

3.2.1. Optimizing the heuristic function

When using A* to find the most suitable path, the heuristic function is usually defined by geometric
distance, as shown in Formula (1 to 3). From this, it can be known that the planning accuracy and speed of
the traditional A* algorithm are static and unchanged during the whole process of path planning. However,
the practicality of the heuristic function for geometric distance design is not high. Design of this section

A heuristic function closer to the actual cost value H(n) is obtained, namely:

V2d,(n) + dy(n) — dy(n),d, () > dy(n)
V2d,(n) + d,(n) — dyy(n),d,(n) < dy(n)

Although the heuristic function of the traditional A* algorithm has been redesigned above, the speed
of path planning has not been changed. Therefore, a controllable factor needs to be added as follows:

p(n)=g(n)+(2 — g(n)/R)k(n) 2.1)
Among them, R is the distance from the starting point to the target point. The accuracy and speed of
the improved A* algorithm have been improved.

H(n) = )

3.2.2. Sub-node expansion optimization design:

The most primitive A * algorithm is the same when generating its child nodes. Therefore, the
characteristics of its child nodes are the same, and the determination of its child nodes and parent nodes
ultimately depends on the size of the f value. Therefore, the resulting planned path may pose a risk of
friction between autonomous vehicles and obstacle vertices. However, due to the presence of obstacles, their
attributes cannot be the same, so we should assign them equal identities to effectively avoid and reduce the
occurrence of such situations. As shown in Figure 4, it can be seen that there are eight adjacent nodes (M,
N, B, C, Z, Y, E, X) around node Q. Now we will treat them differently and divide (M, N, B, C) into a group
called I, which has the highest level; The remaining nodes (Z, Y, E, X) are divided into another group called
II, with the lowest level. Because I have the highest level, it is the primary level when generating the current
node in a child node. The specific principles are shown in Figure 4:

Z

C|Q

E B

Figure 4. The child node generation strategy of node Q

3.2.3. Floyd algorithm optimization path
The principle of Floyd's algorithm can be represented by a simple mathematical model shown in Figure
5:

Figure 5. Floyd algorithm principle
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L(A,D) is the distance between points M and C. As shown in Figure 5, if there are obstacles in M and
C, then you can set L(M,C)=t+eo, R(M,C)=M ->C. It can be seen from Figure 5 that point N is the planned node
between points M and C like:

M,N)+L(N,C)<LM.C) (3)
But

LM.C)=L(M,N)+L(N,C) (3.1)

RM,C)=M->N->C (3.2)
Insert point B between N and C line segments if:

L(M,B)+L(B,C) <L(M,N)+L(N,C) (3.3)
But

L(M.C)=L(M,B)+L(B,C) (3.4)

R(M,C)=M->B->C (3.5)

Remove point B, then replace the planned path from point M to point C with an optimized arc-shaped
path R(M, C) - the path the car travels on.

4. Prediction model of travel time of road segment
4.1. Road segment travel time estimation model construction

Through the relationship between the numerical value and the travel time, a quantitative travel time
estimation model is constructed to indirectly obtain the time it takes to pass a road segment with known
traffic and known road conditions. The travel time of the road segment is expressed by the travel time of
the non-congested road segment and the queuing delay time at the intersection. It is defined as follows:

Ca(t)=Cf (t)+Cd(t) (4)

Among them, C,(t) represents the travel time (s) of the vehicle entering the road segment a at time
t, C¢(t)Indicates the travel time (s) of the vehicle in the non-congested part of the road section, C,4(t)
Indicates the vehicle's queue delay time (s) at the intersection downstream of road segment a.

According to the relevant theories of traffic engineering, C¢(t) and C4(t) can be expressed as the
incoming flow on road segment a X, (t) (veh). outflow y,(t) (veh) . traffic flow q,(t) (veh) , that is,
formula (4.1) can be expressed as:

Ca(t)=Ca(xa(t),(ya(t),(qa(t)) (4.1)
The incoming flow, outgoing flow and traffic flow of a road segment can be replaced with each other
so that it can be further expressed as a function only related to the incoming flow, namely:

Ca(t)=Ca(xa(1),(xa(2),...,(xa(t)) 4.2)
Suppose the length of vehicles travelling on a non-congested road section is (), and the length of
vehicles queuing at the intersection is L%(t)(km), so the length of road section a is
La(t)=Laf(t)+Lad(t) (4.3)
Assume that the vehicle's driving speed is v, (t)(km/h), and according to the relationship between
distance, speed and time, it can be known that the vehicle's driving time in a non-congested road section is
Lq — Lg (t)
Va(t)

Therefore, in order to obtain the time c¢(t) when the vehicle travels on a non-congested road section,

calt) = (4.4)

it is necessary first to obtain L%(t) the length of the vehicle queuing at the intersection.According to the
traffic fluctuation theory, the wave speed of the stop wave before the intersection w(t)(km/h) and the traffic
density upstream of the intersection k, (veh/km/lane) . the blocking density before the intersection

k}(veh/km/lane) is related to the free-flow velocity v{ (km/h) of the road section as follows:
I
ws()=vg "7 (4.5)

Suppose the length of the red light at the intersection is r(s), then the distance:
lws ()] -7 (4.6)
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t that the parking wave moves upstream is:
NE(©)=lws()| -7 kl=v] kg 7T (4.7)
The Greenshield speed-density model is shown in Equation (4.8), and the relationship between traffic

flow, density and speed is shown in Equation (4.9). According to Equation (4.8) to Equation (4.10), Equation
(4.11) is obtained:

_ fq_ka
Ve () = vg (1 - k—é-) (4.8)
xa(t) = va(8). kg (4.9)
ké Xq(t)
ﬁ_k“—vf =0 (4.10)

(4.11)

Among them, it is required x,(t) < ikiv{ that x,(t) when the value is larger, take the positive sign;
when the x, (t)value is smaller, take the negative sign. Therefore, the number of queued vehicles N4 (t)(veh)
at the intersection downstream of the road segment at the moment is

4, Xa®
k; 7 ) (4.12)

1 .
NE(t) = Ek,flv,{ra + [1-

If the time is discretized, NJ(t) and NZ(t + 1) represent the number of queued vehicles at the
intersection downstreama of the road segment at the start timeAt and endt, t+At of the time interval,
respectively. That is, N4(t) and NZ(t+ 1) are the number of vehicles queuing in continuous time,
N&(t)represents the number of queued vehicles in discrete time sense, then take the average of the number
of queued vehicles in the timeAt interval, namely

NE() = S (NE() + N&(t + 1))=

(4.13)

Since the time interval is too small, x,(t) the incoming flow of road segments in adjacent periods and
upstream traffic density k, approximately equal, so

(4.14)

Let the average vehicle length of vehicles be I.(km), then the L%(t) length of vehicles queuing at the
intersection is

1 i Xq (1)
L§(©) = N{Ole = 5vf.r 1. kGl % [1-4 kj‘ 7) (4.15)

Known, N] = %, Hd is the average head-to-head distance (km), equal to the sum of the average

blocking clearance and the average body length, n is the number of one-way motor vehicle lanes, so the
driving time of vehicles in the non-congested road section is

vg.r.lc.n 1+ (416)

()= a<t> 300 (O

The queuing delay time of vehicles at the intersection downstream of the a road section is determined
by the number of queuing vehicles and the traffic capacity Q,(veh) of the intersection.
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x,(t)Hd

f
vy.r.n(lt [1-
a1 250n. v/ (4.17)

NE (D)
cq(t) = =500
‘ Qa QuHd
Substituting formula (4.16) and formula (4.17) into formula (4.1), the travel time of the vehicle on the
entire road a section can be obtained,

cq(t) =

a

v ()

vg.r.lc.n<1i\/@>
250n.vg
500 "

va(O)Hd ' (4.18)

v,{.r.n(l +

500
QqHd

When a vehicle is driving on a non-congested road, it can be considered that the vehicle is almost in a
free-flow state, and the driving speed is high v, (t) ~ v{. Therefore, in formula (4.18), only the inbound flow
X,(t) is unknown, and the inbound flow difference between road segments is large, and x,(t) needs to be
predicted when studying the travel time of road segments in future periods; other parameters can be
obtained in advance, or the average value can be used instead. To sum up, we will continue to build a road
segment travel time prediction model in the future period and use it to predict the inflow of the road
segment in the future period.

4.2. Prediction model for travel time of road segments in the future

The prediction result of travel time is used as the basis for calculating the right of way for route
planning, so the accuracy of travel time prediction is closely related to the decision of route planning. LSTM
neural network is an algorithm that is widely used in the field of sequence prediction. It can store important
past information in the prediction process and ignore unimportant information.

(1) LSTM Neural Network Theoretical Analysis:

LSTM replaces the hidden layer node of the RNN neural network with a memory unit. The structure

of the LSTM memory unit module is shown in Figure 6, and the calculation formula (4.19-4.23).

Xt
--heq
-. b,

— iy,

l
\
ht.t—L > tanh \‘ pa .‘ -

|\
X¢ N by

Figure 6. Basic architecture of LSTM memory unit
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it = 0(Wyixe + wpihe—1 + w1 + by) (4.19)
0r = 0(WyoXt + Wpohe—1 + WeoCr—1 +0) (4.20)
fe = U(wxfxt + whfht—l t WerCr—q + bf) (4.21)
¢t = ftOct—1 +itOtan h (Wycxe + wrche—1 + be) (4.22)
ht = 0,0 tan h(c;) (4.23)

Among them, x; and y, represent the input sequence and output sequence, respectively;i,. 0;. f;.
c; and h; represent the output of the input gate, output gate, forget gate, memory cell and hidden layer at
the t moment;w and b2 represent the weight coefficient matrix and the bias term, respectively; o(-) and
tanh(-) represent the Sigmoid function and the hyperbolic tangent function respectively, which belong to
the activation function.

Although LSTM is an improvement over RNN, the memory and learning ability of LSTM is limited,
and LSTM cannot encode information from back to front. The traffic volume predicted in this paper has a
certain periodicity and regularity. Combining the forward and backward dependencies can extract more
traffic volume change characteristics and improve prediction accuracy. Therefore, this time, the
bidirectional LSTM neural network is selected for prediction, which is an extension of the traditional LSTM,
and the forward and backward time series are trained at the same time to provide the network with
contextual information so that the network can learn faster and more fully. The structure is shown in Figure
7.

Among them, x;andy,represent the input sequence and output sequence, respectively, and > and «
t t

represent the hidden layer output in forward calculation and backward calculation, respectively. It is
concluded that the two hidden layers of the model are independent and non-interfering with each other.
The state > and t-1 in the forward hidden layer is related to the state at time -1, and the state at time t+1 in

t
the backward hidden layer is related to the state at time t+1. Status related. The final hidden layer output
of the model is formed by linear fusion of the forward hidden layer output sequence and the backward
hidden layer output sequence. The calculation formula is shown in formula (4.24).
Among them, P represents the final output of the hidden layer, > and ” represents the weight

coefficient matrix of forward and backward calculations, respectively, representing the bias term.

Output Layer

9

After to the h1

h2 ht
h; h, h,
Prior to the LSTM e
hidden layer
OO RC

Figure 7. Structure of bidirectional LSTM neural network model
he = wihg + wehe + by (4.24)
(2) A Road Segment Travel Time Prediction Model with Bidirectional LSTM Neural Networks
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For a certain road section of the urban road network, the inflow at the current moment is related to
the traffic data, such as the inflow x;(i<t), speed v;(i<t) and occupancy 6;(i<t) of the road section at the
previous moment, so inputting the historical traffic data X can predict the road section at the next moment
into the flow. Therefore, inputting the historical traffic data X can predict the inflow of the road segment at
the next moment. Considering the impact of the incoming flow, speed and occupancy rate at the previous
moment on the incoming flow x,,,, therefore, X is an Nx3 matrix in the future and the above prediction
problem can be simplified as the formula.
x1 vy 6
Xz V2 6

X= (4.25)

xy Uy Oy
Xn+1 = predictor(X) (4.26)

The LSTM model mainly has parameters such as weight coefficient and bias. The setting can be
obtained by training the input data; other parameters must be set manually. The traffic data at intervals of
5 minutes is used for prediction, the input time series step timesteps are set to 12, and the forecast time
series step size is set to 1. That is, the data of 60 minutes is used to predict the data of 5 minutes in the future.
The input matrix dimension is 12x3, and the output layer dimension is set to 1. Studies have shown that the
neural network's learning ability with more hidden layers is stronger, the neural network is more prone to
overfitting, and the training time will be greatly increased. This paper adopts a four-layer network design,
including an input layer, a bidirectional LSTM layer, a fully connected layer (Dense layer) and an output
layer.

The forward LSTM layer contains 64 hidden units, the backward LSTM layer contains 64 hidden units,
and the Dense layer contains 1 neuron. The Dropout method can randomly deactivate some neurons in the
hidden layer during the training process, reduce the complex dependencies between neurons, improve the
model's generalization ability, and avoid overfitting the model during the training process. The dropout
rate is set to 0.2. The structure of the prediction model constructed in this paper is shown in Figure 8.

Bothway Connection Out put
Input layer —> LSTM —> layer —> la Er
LSTM 1 Dense_1 Y

Figure 8. Structure diagram of two-way LSTM prediction model

The algorithm steps for predicting future incoming flows with a bidirectional LSTM neural network
are as follows:

Step 1: Data preprocessing. Process outliers and missing values in the data, post-normalize the data
and divide the training and test sets.

Step 2: Build a road segment travel time prediction model in the future period, and initialize the model
parameters. Set the number of hidden layers, the number of fully connected layers, the number of neurons
in each layer, the learning step size, the number of iterations, the dropout loss value, the optimization
function and other parameter values of the bidirectional LSTM model, and randomly set the weight
coefficient matrix and bias item.

Step 3: Model training and testing. Input the training data set, train the model, train and iterate
repeatedly until the model's prediction accuracy reaches the preset accuracy, and then denormalize the data
output by the model.

Step 4: Input the historical traffic data of the road network to obtain the dynamic road resistance
function. The process is shown in Figure 9.
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Obtain historical traffic data and
current traffic data

Data preprocessing

Construct a bidirectional LSTM
network model

v
[ Model parameter initialization ]
v
Network training,calculate the
training error
f NO

Dose the error meet the accuracy
requirement?

NO Yes
Dose the number of iterations meet Network test,output test
the requirements? results,calculate error

—

Figure 9. Flow chart of bidirectional LSTM network algorithm

4.3. Empirical Analysis of Travel Time Prediction of Road Sections in Future Periods

In order to evaluate the validity and practicality of the model, the traffic data of the road network is
collected for algorithm testing. The data was collected in a cycle of 30s, from March 1st to April 28th, 2020,
for a total of 59 days. According to previous studies, traffic flow data with an interval of 5 minutes is more
suitable for short-term traffic flow prediction because the proportion of missing data is small. Therefore, the
data is aggregated at 5min intervals. The first 70% of the data is used as the training set, and the last 30% of
the data is used as the test set.

(1) Evaluation indicators

The mean absolute error MAE, the mean absolute percentage error MAPE and the root mean square
error RMSE were selected as evaluation indicators. MAE can well reflect the actual situation of the predicted
value error, MAPE can reflect the model's overall accuracy, and RMSE can evaluate the adaptability of the
data and prediction model. value; xy is the actual value; x;, is the predicted value.

n
1
MAE = EZ |2, — x| (4.27)
k=1
v /
X, — X
MAPE = —z Tk Tk (4.28)
n Xk
k=1
1 n
RMSE = 172("" —x.)? (4.29)
k=1

(2) Analysis of results

The traditional BP neural network (referred to as "BPNN"), the BP neural network optimized by genetic
algorithm (referred to as "GABPNN") and the traditional LSTM neural network are selected for comparative
experiments. The prediction results of the bidirectional LSTM neural network are shown in Figure 10. The
prediction errors of different models are shown in Table 1, and the training time of different models is
shown in Table 2.
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Figure 10. Prediction results of bidirectional LSTM network

Table 1. Prediction errors of different models

Model MAE MAPE RMSE
BNPP 10.7621 0.2644 15.2133
GABPNN 9.4671 0.2561 9.8535
LSTM 7.6692 0.1682 9.9697
two-way LSTM 7.3165 0.1632 9.9162
Table 2. Training time of different models
Model Training time(s)
BNPP 50
GABPNN 399
LSTM 117
two-way LSTM 181

The results show that, compared with the other three models, the bidirectional LSTM model has better
prediction results, the predicted value is closer to the real value, the prediction performance is more stable,
and it has higher adaptability to different traffic flow conditions. Based on the prediction model constructed
above, the road segment inflow in the future period can be predicted in real time and accurately, and the
travel time of the road segment in the future period can be calculated.

Based on the prediction results of the bidirectional LSTM model, autonomous vehicles can accurately
predict the inflow of road segments in real time and calculate the travel time of a future road segment
accordingly. This real-time prediction capability is crucial for the path planning of autonomous vehicles, as
it allows vehicles to dynamically adjust their driving routes based on current and future traffic conditions.
This not only improves the efficiency and accuracy of path planning, but also enhances the ability of
autonomous vehicles to respond to unexpected situations. In addition, the application of bidirectional
LSTM models in predicting road travel time can further promote the development of intelligent
transportation systems. By integrating the predicted results into the intelligent transportation system, more
accurate traffic flow management and control can be achieved. For example, adjusting signal timing and
optimizing traffic diversion plans based on prediction results can effectively alleviate traffic congestion and
improve road capacity. This application not only improves the overall efficiency of urban transportation,
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but also provides a more complete transportation environment for the widespread application of
autonomous vehicles.

5. Conclusion

The improved path planning algorithm proposed in this study significantly overcomes the two main
shortcomings of the original algorithm, achieving a dual improvement in accuracy and speed. By
optimizing the turning strategy, we have verified the effectiveness and rationality of the Floyd algorithm in
reducing turning angles and the number of nodes, and stabilizing the planned path, thereby significantly
shortening the length of the planned path and reducing planning time. In addition, the heuristic function
we designed not only improves the accuracy of path search, but also accelerates the search speed,
significantly reducing the number of nodes traversed, among which the design of sub node expansion
strategy plays a crucial role. More importantly, based on improving the accuracy and simplicity of the
algorithm, this study constructed a road segment travel time estimation model and a prediction model.
Based on these models, we innovatively constructed a segmented dynamic road resistance function that can
predict the travel time of vehicles when they reach each road segment in the future. This feature provides
real-time data reference for autonomous vehicles, enabling them to dynamically plan the optimal path from
their current location to their destination. These improvements not only enhance the performance of path
planning algorithms, but also greatly improve their reliability and practicality in practical applications. By
comprehensively considering multiple factors such as travel time, turning stability, and path length, this
study provides new ideas and methods for intelligent navigation and path planning of autonomous
vehicles.
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