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Abstract: This research introduces a novel music recommendation system leveraging deep learning techniques to 

tackle significant challenges in traditional recommendation methods, such as the cold start problem, limited 

recommendation diversity, and difficulty in adapting to evolving user preferences. The proposed model employs 

Convolutional Neural Networks (CNNs) for genre recognition, coupled with Harmonic-Percussive Source 

Separation (HPSS) to extract rich audio features, capturing intricate musical distinctions across genres. These 

features, combined with user interaction data, enable the model to deliver highly personalized recommendations 

based on individual listening habits. Experimental results show that the system significantly outperforms 

conventional approaches, with a genre classification accuracy of 92%, offering greater recommendation accuracy and 

diversity. This marks a substantial improvement over traditional collaborative filtering and content-based methods, 

which struggle to deliver relevant suggestions in dynamic user environments. The findings highlight that deep 

learning, particularly CNNs, can effectively overcome data sparsity issues and provide more adaptive, user-centered 

recommendations. Moreover, the system's ability to integrate real-time user interaction data leads to enhanced user 

engagement, as the recommendations become more relevant and aligned with individual preferences. Future work 

will explore enhancing the dataset's diversity and optimizing computational efficiency to support scalability, 

ensuring the model can be applied across different cultures and regions. By improving the model's adaptability and 

efficiency, this research aims to create a more inclusive and scalable music recommendation system, capable of 

catering to global audiences with diverse musical tastes. Ultimately, the proposed system contributes to the 

development of more accurate, personalized, and engaging music recommendation frameworks, marking a 

significant advancement in the field of music information retrieval. 
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1. Introduction 

As the Internet and technology continue to advance, digital music has become an integral part of 

everyday life. Thanks to the Internet’s fast and efficient transmission capabilities, demand and supply for 

digital music have surged [1]. According to a 2016 report on the online music industry, the global digital 

music market reached $7.23 billion, marking a 7.6% increase from 2015. In China, since 2015, a series of 

standard digital music policies by the National Copyright Administration have helped the industry steadily 

develop. However, as digital music databases expand rapidly, traditional music retrieval methods are 

increasingly revealing their limitations [2-3].  

On the one hand, the user retrieval needs are fuzzy, and the massive amount of information will 

produce the problem of insufficient vocabulary and information anxiety. The current retrieval method 

increases the difficulty of user retrieval [4]. 

In the face of the above problems, it is necessary to actively provide users with music services that align 

with their interests, and the music recommendation system came into being. Among the current major 
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music websites. There are two recommendation systems: the list of recommendations, usic sites based on 

public listening habits, and Gathering some more popular tracks into music charts. On this basis, this can 

be recommended to users in a certain probability [5]. However, it cannot be personalized and recommended 

according to their needs. The other is the ability to customize different music for users; usually, based on 

information such as music content, user behavior, and user data, recommend users to music that may be of 

interest; although this method has some problems, such as the recommendation results. Still, it reflects the 

effect of personalized recommendation system recommendation systems. Current research in this direction 

is a hot topic. There is a great space for development [6]. In recent years, music recommendation systems 

became important tools in enhancing user experience on streaming platforms; however, their effectiveness 

strongly relies on both dataset diversity and computational scalability. Most of the current models, even 

those using advanced techniques such as Convolutional Neural Networks (CNNs) for deep learning, are 

trained predominantly on English-language datasets, which limits both their cultural relevance and their 

applicability across a global audience [7]. The different linguistic and cultural contexts in which people live 

influence music preferences to a great extent, and exploring datasets with genres and styles across regions 

would enrich the recommendation systems, capturing unique musical patterns and preference types. 

Additionally, the complexity in the computational requirements of deep learning models, especially for 

smaller platforms with fewer resources, might hinder wider implementation. These limitations should be 

addressed by investigating dataset diversity and model optimization techniques in developing a more 

universally applicable and accessible music recommendation system. This study recognizes the challenges 

of the present work and provides the ground for future work to build scalable, culturally inclusive 

recommendation frameworks that will leverage the strengths of deep learning while remaining practical in 

different resource environments. 

Based on the identified limitations of the traditional music recommendation systems, this paper 

introduces a deep learning-based approach, using convolutional neural networks (CNNs) and deep 

confidence networks, to improve the recommendation precision and diversity. CNNs are used to recognize 

the style of the music in a spectrogram, allowing for the extraction of more complicated features concerning 

music in order to make better genre-specific recommendations. In addition, the multi-feature fusion method 

is used to integrate audio features, user behavior data, and historical preferences for a personalized 

recommendation system that caters to the taste of an individual. 

The research process involves three main steps: first, analyzing existing recommendation methods to 

identify performance gaps; second, implementing the CNN-based model for effective music style 

classification and integrating it with a deep confidence network to combine relevant features; and third, 

evaluating the model’s performance using key metrics such as accuracy, diversity, and adaptability. The 

proposed framework is built to deal with the cold start problem, enhance recommendation diversity, and 

provide a more solid, user-centered approach for modern music recommendation systems. 

2. Review of Research at Home and Abroad 

Researchers have made substantial advancements in algorithms for recommendation systems, leading 

to their widespread adoption across various fields. One of the most influential breakthroughs in this area 

was the collaborative filtering algorithm, which laid the foundation for modern recommendation systems 

[8]. This pivotal development paved the way for recommendation applications, including music. In 1995, 

the music recommendation field gained traction with the MIT laboratory’s release of the Ringo system, 

designed to suggest engaging music content and predict user song ratings [9]. Ringo’s rapid success set a 

high standard that other music recommendation systems struggled to surpass for years, as most relied on 

traditional music information, resulting in less innovative recommendations. 

The development of music recommendation systems has continued to evolve, with major music 

platforms globally enhancing their recommendation technologies. International platforms like Last.fm and 

Pandora have pioneered distinct approaches. Last.fm leverages users’ listening histories and preferences to 

connect individuals with similar tastes, thus curating music that aligns with shared interests. In contrast, 

Pandora relies on analyzing core musical characteristics to assess song similarities. According to recent 

study [10], an effective recommendation strategy should offer a wider selection by compiling multiple sets 

of highly recommended music into playlists, increasing the chance of user satisfaction. Additionally, other 
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researchers have explored audio modeling techniques to visually represent user preferences [11] and 

applied weighting to various musical elements based on user tastes [12].  

In China, although research on music recommendation systems started relatively late, platforms like 

Douban, Xiami, and Netease Cloud Music have rapidly grown, integrating unique, socially-driven features. 

These platforms consider user behaviors—such as listening habits, social interactions, and music sharing—

enabling more relevant music recommendations. Chinese researchers have also made notable strides in 

recommendation algorithms. For instance, an effective method of grouping music and utilizing user ratings 

through probability modeling was proposed [13], enhancing recommendation accuracy. Another study by 

Zhang Yan and colleagues employed fractal theory to reduce the complexity of music libraries, helping to 

alleviate storage strain on databases by reducing data dimensions. 

A major challenge in music recommendation systems is data sparsity, as users generally engage with 

only a small portion of the extensive music database. This results in a sparse user-score matrix, reducing 

the accuracy of recommendation algorithms. To address this, researchers have developed a collaborative 

filtering recommendation algorithm based on music score prediction [14], which calculates score 

correlations to improve the user-score matrix. Additional methods have been proposed to mitigate sparsity, 

such as dividing users into groups for predictive scoring [15] and using BP neural networks [16] to estimate 

scores, partially resolving the sparse matrix problem. Other solutions include the K-means clustering 

collaborative filtering algorithm with SVD matrix filling, leveraging hidden user-item relationships to 

address sparsity [17]. Researchers have also explored various matrix-filling techniques, including mean 

filling, linear regression, and Bayesian classification, to compare and enhance the accuracy of 

recommendation predictions [18]. 

The cold start problem in recommendation systems occurs when there is no historical interaction data 

to make accurate recommendations for new users or new items. If a new song has just been added to a 

digital music platform and there is no prior user engagement with the song in the form of listens, ratings, 

or reviews, then there is not enough information to determine which users will likely be interested in it. 

Equally, the system struggles to recommend a new user personalized items with no history of interaction 

with any items. This makes it difficult for the traditional algorithms of recommendation to come up with 

relevant content and, as such, delivers the ability to deliver timely and personalized experiences. To address 

this issue, Liu [19] suggested a recommendation method that combines user preferences and music features. 

This approach helped to mitigate the impact of the cold start problem by reducing the reliance on user 

ratings for new music recommendations. Another proposed solution, presented in Kim et al.’s study [20], 

was a cold start recommendation method based on grain association rules. This method utilized grains to 

describe users and products, and by meeting the criteria of grain association rules, it uncovered association 

rules between users and products. These rules were then used to generate appropriate recommendations. 

Additionally, Zhang et al. [21] tackled the cold start problem by leveraging the similarity of users' music 

evaluations and the correlation of music. By considering users' preferences, this method offered a 

recommendation approach that partially alleviates the cold start problem in the recommendation algorithm.  

Hou's study [22] proposed a CNN-based music recommendation system that outperforms traditional 

methods by achieving 95% accuracy. This AI-driven system enhanced personalization, addressing 

challenges in large music libraries by analyzing content for tailored suggestions. The approach 

demonstrated superior efficiency and precision over other algorithms, including deep neural network 

(DNN), Recurrent Neural Network (RNN) , LSTM, and traditional models like SVM and KNN. Wen [23] 

developed an intelligent background music system using deep learning and IoT. Utilizing a novel middle-

level feature extraction approach, the system achieved an 87.6% accuracy rate in recognizing indoor scenes, 

outperforming traditional methods, especially in varied lighting. Implemented in an Intelligent Home, the 

system proved stable and effective, laying groundwork for future smart music applications. Zhang's study 

[24] addressed the challenge of selecting preferred music from vast databases by developing a CNN-based 

recommendation system focused on digital piano music. It extracted spectrum and note features, refined 

classification results, and used user behavior to improve model accuracy. Two methods—single-category 

and multicategory recommendation—were tested, with multicategory features showing higher accuracy. 

The single-category method achieved 50.35% accuracy, while multicategory features improved 

recommendation precision. 
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Despite the development of knowledge graph-based music recommendation, the current model still 

fails to capture dynamic changes of users' preferences and diversity in music genres. Traditional approaches 

of collaborative filtering and content-based filtering almost always suffer from the sparsity of users' data 

and the 'cold start' problem of new users and items. Although deep learning techniques have shown to 

enhance the accuracy of recommendation, there is still room for improvement by more robust frameworks 

to deeply integrate diverse sets of audio features and users' interaction data so that the accuracy and 

personalization of recommendation are lifted. This paper narrows the above gap by proposing a deep 

learning-based recommendation model, taking the advantages of CNNs for music style recognition and 

deep user interaction data aiming at creating a system capable of managing dynamic and individualized 

preference. 

A novel music recommendation approach based on deep learning techniques is proposed in this paper 

by utilizing a CNN-based model and several new preprocessing methods, including HPSS (Harmonic-

Percussive Source Separation) and multi-feature fusion. This model will improve both accuracy and 

diversity in recommendation compared to traditional recommendation systems that cannot cope with data 

sparsity and the 'cold start' problem by focusing on complex audio feature extraction and the user's 

personalized interaction data. Existing methods, such as collaborative filtering and basic content-based 

filtering, are usually inadequate to model nuanced user preferences—especially in dynamic environments 

where user tastes change frequently. Proposed approach fills these gaps by providing a much stronger 

solution for making diverse and precise recommendations—something very important in today's enlarged 

music libraries. By those state-of-the-art techniques, this study overcomes not only the limitations of the 

previous models but also sets a new standard for adaptive, user-centered music recommendation systems, 

showing clear improvement in the relevance of recommendations and in user satisfaction. 

The academic research on music recognition, recommendation algorithms, and deep learning is very 

broad. Still, deep learning is applied to identify music types, and recommendation technology is used to 

generate recommendation models based on music recognition, so this paper has certain experimental and 

theoretical significance. 

3. Proposed Model for Music Recommendation 

3.1. Deep Neural Network Theory 

Although the traditional recommendation methods, such as collaborative and content-based filtering, 

work fairly well, they are usually unable to adapt to complicated user preferences and the immense variety 

of music nowadays. Deep learning appears to be a great potential solution for these problems since it can 

be used in extracting complex patterns within huge datasets, such as those found in music libraries. It can 

improve the understanding of subtle audio features and user behaviors in recommendation systems 

through deep neural networks, hence leading to more accurate and personalized music suggestions. This 

approach positions deep learning as a key advancement in addressing the evolving demands of music 

recommendation. 

3.1.1. Cyclic Neural Network 

RNNs are a type of neural network designed to handle sequential data where order matters—think 

text, audio, or time series data. The main difference between RNNs and feedforward neural networks is 

that RNNs have feed-back connections, allowing the retaining and passing of information from one step in 

the sequence to the next. The feedback mechanism allows the RNN to 'remember' past inputs, hence 

carrying out tasks involving context and temporal dependencies more effectively—for example, music 

recommendation, where past listening history might influence future recommendations. 

This work employs a CNN architecture for capturing detailed audio features of music style recognition 

based on the Mayer spectrum maps as input to utilize the rich frequency and temporal information. 

Although effective in complex pattern recognition, CNNs are computationally costly and may not be readily 

available on smaller platforms due to the lack of resources. To address this, we look into optimization 

techniques that can curtail computational overhead without affecting model performance. Optimization 

techniques, from model pruning and quantization to lightweight architectures such as MobileNet and 

EfficientNet, provide promising paths to make the model more resource-efficient. These optimizations will 
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help ensure that the model can be run in an effective manner on platforms with reduced computational 

power, such as mobile devices or low-power servers, so as to extend applicability. Future work will be 

devoted to experimenting with these strategies to keep the model both robust and adaptable to different 

deployment environments, which will make the model even more scalable and practical. 

At each time step, the input at that time is taken in by the RNN, and it combines that input with 

information it's seen in past steps, stored in its hidden state. It is then able to pick up patterns over time, 

making it very fitting in the recognition of song sequences or user behavior trends. However, in the standard 

RNNs, information over long sequences might get lost because of problems such as the vanishing gradient 

problem. More complex RNN architectures, such as Long Short-Term Memory (LSTM) networks and Gated 

Recurrent Units (GRUs), introduce gating mechanisms through which the network can selectively retain or 

forget information, enabling the capture of longer-term dependencies. 

The prototype of a RNN is first proposed in 1982 by American physicist John Hopfield [25]. The basic 

feature includes at least one feedback connection in the network, allowing the activation function to be 

repeated in the loop, thus allowing the network to realize the processing and learning ability of time series. 

Different from the standard Feed Forward Neural Network (FFNN), at the current moment, the RNN 

retains the hidden layer state of the previous moment, that is, remembering certain historical information, 

so when the input sequence is encoded into a vector, the structural features of the sequence can be retained. 

Fig. 1 shows the RNN and the structure expanded in a time step, representing the input, hidden, and output 

layers. 

 
Figure 1. Structural diagram of RNN expanded by time steps 

Assuming the input sequence X={x1,x2,.x3 ... xn} of the model, xt represents the information input to the 

network at time t, xt represents the hidden layer state of the network at time t, ot represents the output of 

the network at time t. At each time step, st, the hidden state, is calculated as a function of the current input 

xt and the previous hidden state st−1 using Eq. (1). The output layer is predicted with 𝑦
∧
, st and 𝑦

∧
 are calculated 

as shown in Eqs. (1) and (2): 

𝑠𝑡 = 𝑓(𝑈𝑥𝑡 + 𝑊𝑠𝑡−1)𝑡𝑎𝑛ℎ (1) 

𝑦
∧

= 𝑔(𝑉𝑠𝑡)𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (2) 

In which, U and W are weight matrices that help transform inputs and hidden states to calculate the 

new hidden state at each time step. The RNN model shows good results in the research fields such as text 

generation and machine translation. However, the model still has defects, such as gradient vanishing, 

gradient explosion, and long-distance dependence [26]. RNN usually uses the time-based backpropagation 

algorithm in training, and the chain conduction method is adopted in the guidance process. The final loss 

value is the sum of loss at all previous moments, as shown in Eq. (3): 
𝜕𝐸
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𝑠3 = 𝑡𝑎𝑛ℎ(𝑈𝑥3 + 𝑊𝑠2) (5) 

It can be seen that s3 is dependent on s2 and W, and continues to derive the gradient at t=3, as shown 

in Eq. (6): 

𝜕𝐸3
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3
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𝜕𝑠𝑘

𝜕𝑊
 (6) 

Due to the propagation of a gradient value throughout the network, the calculation process can be 

significantly impacted. When the gradient value becomes excessively large or small, it can lead to the 

problems of gradient disappearance or gradient explosion. Additionally, as the sentence length increases, 

the drawback of retaining long-distance information becomes more pronounced, significantly affecting the 

RNN's effectiveness. Researchers have developed two classical models to address this issue: the Long-Term 

and Short-Term Memory Network Unit and the Gating Cycle Unit. Both models incorporate gate 

mechanisms to selectively retain valuable historical information from previous moments, enabling the RNN 

to capture information over longer distances effectively. 

While RNNs work well with sequential data and, by extension, temporal dependencies, they are less 

effective in extracting spatial patterns in data, such as those found in audio spectrograms or visual 

representations of sound. For music recommendation, features extracted from the audio in both the 

frequency and time-domain are used for genre and style classification. CNNs are good at capturing spatial 

hierarchies in such data, which makes them very suitable to analyze the complex patterns in music 

spectrograms. Introducing CNNs alongside RNNs allows the recommendation system to consider both 

temporal and spatial insights for a better comprehension of music content. 

3.1.2. Convolutional Neural Network 

In recent years, the widespread attention garnered by deep learning and the advancements in 

numerical computing equipment have greatly enhanced the representation learning capability of CNNs 

[27]. Consequently, one of the primary areas of research has been focused on CNNs, which are composed 

of multiple hidden layers, an input layer, and an output layer. Each layer comprises numerous neurons, as 

illustrated in Fig. 2. 

 
Figure 2. Schematic representation of the neural network 

Input layer  Output layer  Hidden layer  

……  
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According to Fig. 2, the lower and upper layer neurons can form connections in the traditional fully 

connected deep neural network (DNN). This comprehensive series with multiple levels promptly highlights 

the issue of increasing the parameters, which can lead to overfitting and getting trapped in a local optimum. 

 
Figure 3. Schematic representation of the neural network 

Fig. 3 depicts the configuration of the CNN network, which resembles the conventional AlexNet. The 

network comprises eight layers, where the initial five layers consist of a sequence of convolutional and 

pooling layers. The remaining three layers are responsible for classifying the CNN network based on the 

harmonic spectrum map, which is obtained by separating the raw music signal using HPSS. The input 

image size is standardized to 256 * 256, and the first convolution filter is applied. Following the flow of the 

deep network structure, 96 input images are examined, each with a size of 11 * 11 pixels, and 4 pixels are 

used for the first convolution layer's filtering. Subsequently, the output of the first convolution layer is fed 

into the maximum pool layer, which filters 96 cores with a size of 3 * 3. After response normalization, the 

second convolution layer is connected to its output, utilizing 256 cores with a size of 5 * 5 for connection 

and filtering. The third, fourth, and fifth convolution layers do not incorporate any pooling or normalization 

layers in between. The third convolution layer is connected to the first convolutional layers and has 384 

cores of size 3 * 3. The fourth convolutional layer consists of 384 cores with a scale of 3 * 3, while the fifth 

convolutional layer comprises 256 cores with a specification of 3 * 3. By utilizing these five convolutional 

layers, 256 feature maps of size 6 * 6 are obtained. These feature maps are fed into three fully connected 

layers containing 4096, 1000, and 10 neurons, respectively. The output of the last fully connect layer 

represents the final recognition result. Additionally, Fig. 3 illustrates the underlying structure of CNNs, 

where the concealed layers consist of convolutional, pooling, and fully connected layers. It is crucial to 

acknowledge that there is no direct correlation between all neurons in the upper and lower layers of the 

CNN. CNNs possess distinct characteristics such as local connection, shared weights, and downsampling. 

These characteristics enable CNNs to extract local features from images effectively and exhibit strong 

resilience to image deformations. The convolutional layer, a pivotal component of the CNN, performs the 

crucial feature extraction task. Following convolution in the convolutional layer, the pooling layer reduces 

the dimensionality of the results from the upper layer, thereby decreasing the computational burden and 

the number of network training parameters. The fully connected layer is commonly positioned before the 

output layer and is crucial in categorizing multidimensional outcomes into one-dimensional data.  

3.1.2.1 Convolutional layer 

The convolutional layer is the central component of a CNN. Within this layer, the convolution core 

called the filter, is employed during the convolution process. With its specified size, this filter slides across 

the image horizontally and vertically, performing the convolution operation. As a result, a feature map is 

generated, representing the output of the convolutional layers, as depicted in Eq . (7). 

Convolution Max-Pool Fully-Connected 

3＠48×48 

12＠48×48 24＠48×48 1×256 

1×7 
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𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑗
𝑙 = 𝜙 ( ∑ 𝑤𝑖𝑗

𝑙

𝑖∈𝑀𝑗

⊗ 𝑥𝑖
𝑙−1 + 𝑏𝑗

𝑙) (7) 

In Eq. 7, ⊗ is the convolution operator,𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑗
𝑙 is the output feature map, the J th is located in the low 

layer I, 𝑀𝑗 is the set of output feature maps, 𝑤𝑖𝑗
𝑙  is the convolution kernel of the J th feature map, namely the 

i th output data,𝑤𝑖𝑗
𝑙  is located in the first layer, where is the i th feature map, 𝑥𝑖

𝑙−1 is the deviation value of 

the j th feature map of the first layer, 𝜙(⋅) is the activation function. Commonly used activation functions 

are ReLU, sigmoid, tanh, etc. 

The shallow convolutional layers [28] can generally obtain lower-level features like edges, boundaries, 

and lines. As the network hierarchy deepens, the deeper the convolutional layer can get, the more specific 

higher-level features.  

This paper discusses the Sigmoid, Tanh, and ReLU activation functions, chosen for their relevance in 

different neural networks and their unique advantages. The Sigmoid and Tanh have been derived for RNNs 

because the output is mapped to some finite range, enabling a network to hold information over time, which 

is indispensable during sequential tasks in music recommendation. These functions, however, suffer from 

the gradient vanishing problem. On the other hand, ReLU remains a choice in CNNs due to its nature in 

the prevention of the gradient vanishing problem and is hence more appropriate for deep architecture. The 

linear growth of ReLU results in faster training and much more efficient convergence, particularly on tasks 

such as image and audio feature extraction using CNNs. By selecting these functions, the paper tries to 

emphasize the role of an activation function in optimization for network performance in music 

recommendation tasks. 

3.1.2.2 Activation function 

Utilizing an activation function in CNNs allows them to model nonlinearity. The network's capability 

is confined to representing linear mappings without an activation function. As a result, the representation 

of information in a multi-level CNN and a single or two-layer CNN becomes indiscernible. The following 

section elucidates the frequently employed activation functions. 

The Sigmoid function is available across the entire domain, producing output values ranging from 0 

to 1. Due to the Sigmoid function approaching 0 at both extremes, the range of function values changes very 

minimally. This can potentially result in the vanishing gradient problem, which hinders the backward 

propagation in DNNs. Eq. (8) depicts the Sigmoid function's mathematical representation. 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
 (8) 

The Tanh function, the hyperbolic tangent function, is a mathematical function that exhibits odd 

symmetry. It produces output values within the range of -1 to 1 and possesses a gradient saturation effect. 

In contrast to the Sigmoid function, the Tanh function has an output mean of 0. Moreover, during neural 

network training, the Sigmoid function converges faster. The mathematical expression for the Tanh function 

is presented below. 

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (9) 

The ReLU function is a segmented function, with 1 when x is greater than 0 and 0 when x is less than 

0. The ReLU function effectively addresses the issue of gradient vanishing within the positive interval. In 

contrast to the Sigmoid and Tanh functions, the ReLU function exhibits linear growth. This characteristic 

enables faster calculations and significantly enhances the convergence rate compared to the sigmoid and 

Tanh functions. To tackle the gradient vanishing problem, many researchers have adopted the ReLU as the 

activation function. The mathematical expression for the ReLU function is presented below. 

𝑟𝑒𝑙𝑢(𝑥) = {
𝑥 𝑖𝑓𝑥 ≥ 0
0𝑖𝑓 𝑥＜0

} (10) 

3.1.2.3 Pooling layer 

The pooling layer can reduce the dimension of each feature graph, although it does not guarantee that 

the most important information will not be lost. The pooling layer is commonly used at various stages 
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within the CNN. Typically, the pooling layer employs either the maximum or average pooling technique. 

To perform pooling on a 5 * 5 feature map, a pooling kernel of size 2 * 2 and a step size of 1 are defined. 

Similar to the convolution calculation procedure, the pooling procedure involves sliding the pooling kernel 

across the feature graph in a specified size, both horizontally and vertically. The pooling layer emphasizes 

the relative location between features rather than the precise location of the features themselves. 

3.1.2.4 Full link layer 

The fully connected layer transforms the high-dimensional feature maps generated through 

convolution and pooling into a lower-dimensional space. It accomplishes this by mapping the facial 

expression features learned by the CNN to the marker space of the dataset. The output of this layer is a set 

of n data points, each representing the probability of a specific type within the n categories. The highest 

probability among the n species is typically chosen as the final output. 

3.2. Music Style Recognition Based on a Deep Learning CNN  

While CNNs are widely recognized for their effectiveness in image recognition, their ability to detect 

spatial patterns also makes them valuable for analyzing audio data, such as music spectrograms. By treating 

audio spectrograms as images, CNNs can identify distinctive patterns associated with different music 

styles, enabling more precise genre classification. This capability allows CNNs to excel in music style 

recognition, a critical component of personalized music recommendation. In music software, the 

categorization of music styles holds significant value in reflecting a competitive advantage within the 

market. From the inception of music creation to today, no definitive demarcation exists between music 

styles and their variations. The evolution and integration of music styles persistently transpire, rendering 

music classification a formidable undertaking [29]. The pivotal task of classifying musical styles entails 

extracting style-related attributes from the music. Over the years, the CNN algorithms within the domain 

of deep learning have undergone continuous optimization to address the challenge of music classification. 

This research paper presents an exploratory music analysis method that relies on the CNN  algorithm, 

yielding noteworthy outcomes. In the training and testing of this deep learning-based recommendation 

model, the dataset used was one comprising mostly English-language music tracks in the genres of pop, 

jazz, classical, rock, and electronic. Although this dataset provides a solid first testing ground, we do notice 

that it restricts the applicability of the model to a more global audience by excluding music from diverse 

linguistic and cultural contexts. We would improve our data set by including a wider range of cultural 

influences, such as traditional and modern Asian, African, and Latin American music, to allow the model 

to learn genre-specific idiosyncrasies of these traditions. In future iterations, we would like to collaborate 

with international music platforms and access public data sets from a variety of cultural backgrounds. 

Moreover, preprocessing involved conversion of audio tracks into representations of Mayer spectrum maps 

for more detail in harmonic and rhythmic features; this will enhance the model's ability to recognize 

complex audio patterns. This approach was chosen since it has been quite effective in music with regard to 

retaining temporal continuity, which is important for proper genre classification and recommendation. 

The overall framework for music style identification based on CNNs  is shown in Fig . 4. The initial 

layers of the CNN architecture serve as feature extractors, enabling the automatic acquisition of image 

features through supervised training. Subsequently, the recognition is classified using the softmax function 

in the final layer.In adapting the CNN structure for music style recognition, this study uses audio 

spectrograms as input, which are treated as if they were images to leverage the spatial pattern recognition 

capabilities that CNNs provide. The first few layers of the CNN learn low-level audio features, such as 

rhythm and pitch, with small convolutional filters that capture fine-grained details. As the network 

deepened, larger filters are used to capture higher-level, genre-specific features such as harmony and 

texture, which are very important to separate music styles. In order to extract features more effectively, 

HPSS is also used in preprocessing to separate the rhythm (percussive elements) from the melody (harmonic 

elements), which allow the CNN to be trained on different aspects of the music relevant for style 

classification. Additionally, dropout layers are used to prevent overfitting, ensuring the model could 

generalize effectively across diverse music genres. 
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Figure 4. Schematic representation of the CNN 
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Fig . 5 depicts the recommendation system's architecture based on deep learning. This system consists 

of three layers. The initial layer can receive explicit or implicit feedback data from users. This feedback data 

encompasses different aspects, such as user scores, browsing or clicking behavior, and user portrait and 

item content data, including preferences, age, picture, and audio content. The input data may also involve 

annotations, comments, and user-generated auxiliary data. CNNs, RNN's, autoencoders, and deep belief 

networks are a few of the deep learning models used by the model layer. These models play a pivotal role 

in acquiring the underlying representations of users and items. The primary function of the output layer is 

to generate a personalized list of recommended items for users. This is achieved by employing methods like 

Softmax classification and similarity calculation. The output layer produces accurate and tailored 

recommendations by integrating the acquired hidden representations of users and items. 

4. Experimental Analysis  

Within deep learning vision, many enterprises and organizations operating at national and 

international levels have introduced an extensive range of exceptional benchmark datasets specifically 

crafted for various application scenarios. These datasets, including MNIST, COCO, CIFAR, ImageNet, and 

Open Image, are widely utilized by researchers in this domain. The presence of these openly accessible 

datasets significantly contributes to the advancement and expansion of research and development in 

associated fields. 

Nevertheless, in contrast to the vast availability of publicly accessible images or texts, the music 

information retrieval or recommendation domain faces a shortage of extensive, well-established, 

comprehensive, and user-friendly benchmark datasets. As a result, the advancement and implementation 

of models like DNNs, which typically require substantial data training, encounter certain obstacles within 

this field. Table 1 showcases a selection of the frequently accessible music datasets. 

Table 1. Common publicly available music data sets 

Data set Sample number Audio frequency User records 

Ballroom 698 Yes No 

GTZAN 1000 Yes No 

ISMIR2004 1458 Yes No 

MagnaTagAtune 25863 Yes No 

MSD 1000000 Interlinkage Yes 

AudioSet 2084320 Interlinkage No 

AcousticBrainz 2524739 No No 

The dataset, comprising 600 songs, is carefully curated to ensure a broad representation of styles, 

including pop, jazz, classical, rock, electronic, and folk. Selected from popular streaming services, these 

songs span both mainstream and niche genres, providing the model with a diverse range of rhythmic 

patterns, harmonic structures, and other stylistic elements. By including an equal number of songs from 

each genre, the dataset minimizes potential biases, fostering a balanced understanding of each genre’s 

distinctive characteristics. This varied dataset enables the model to identify and learn distinguishing 

features across different musical styles, making it well-suited for training and testing in a deep learning-

based recommendation system. 

However, while publicly available datasets predominantly feature English songs, Chinese music data 

remains scarce despite its distinct qualities in melody, lyrics, and instrumentation. Chinese pop songs, for 

instance, often incorporate traditional instruments and unique singing techniques. To address this, 600 

Chinese songs are randomly selected and added to the Cool Dog music client library. Over 60 days, the 

song-play record function in Cool Dog tracked the playback data of 12 users, generating a comprehensive 

dataset of user interactions. The resulting data, including playback counts and corresponding audio files, 

are preprocessed to capture the unique attributes of Chinese music for the recommendation model. 

Several techniques are available for analyzing audio features, with the most commonly used ones being 

the sound spectrogram, Mayer spectrum, and Mayer inverted spectrum coefficient (MFCC). In recent years, 

the CNN has demonstrated remarkable capabilities in image processing, leading to the increased utilization 

of Mayer spectrum map features in DNN  models for audio signal analysis. These features have gained more 

prominence than the MFCC. Consequently, this study aims to extract the log-Mayer spectrum map from 

the audio dataset and directly employ it as input for training subsequent network models. For instance, the 
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song "Happy Worship" exhibits a rhythmic pop style with a more hip-hop tempo, while "June Boat Song" 

is a pure piano composition accompanied by soothing tones. The Mayer spectrum features extracted from 

songs of the same style tend to be relatively similar, whereas those removed from different styles of songs 

exhibit significant differences. The reason the Mayer spectrum map is used in this research, and not MFCC, 

is that it retains both harmonic and rhythmic details critical for music analysis. Unlike MFCCs, which were 

originally tailored for speech processing and emphasize perceptible speech frequencies, the Mayer 

spectrum offers a more holistic representation of audio by collecting a wide range of frequencies. This makes 

it particularly well-suited for distinguishing music genres, where subtle harmonic and rhythmic nuances 

play a significant role. In addition, the Mayer spectrum provides temporal continuity, which is important 

to identify genre-specific patterns such as rhythm, beat, and tonal transitions. In this paper, through the 

proposed continuous structure of the Mayer spectrum, a CNN can effectively recognize sequential patterns 

of the music, which further improves its ability in style distinction. Furthermore, the Mayer spectrum has a 

spectrogram-like nature that is most compatible with CNN architectures optimized for image-like data. 

Such compatibility makes learning of hierarchical audio features—like complex textures and layers—much 

easier for the network compared to MFCCs, which essentially give a view of lower dimensionality and 

abstracted. This study, by utilizing the Mayer spectrum, allows for a richer and more detailed representation 

in features, which enables the model to perform robust music classification and recommendation based on 

diverse elements present in complex audio signals. 

 
Figure 6. Flow chart of CNN network model training and testing 

The HDF5 format is utilized in Keras to store the architecture and weights of a pre-trained CNN model, 

which can then be easily loaded for future use. Through the analysis of experimental results and 

comparisons, it becomes evident that deep learning music recommendation technology can effectively 

address the issue of a single characteristic representing a specific type of music information. This technology 

can accurately identify various music styles while retaining only the relevant information during the music 

recommendation process, enhancing the efficiency of music information prediction and making it more 

targeted. Furthermore, it performs better in classifying music information and exhibits enhanced feature 

learning and prediction capabilities compared to shallow networks. In the most comparative studies 

between deep learning models and shallow networks for music genre classification, deep learning models 

constantly outperform traditional shallow methods on key metrics. The accuracy rates of deep models, 

especially CNNs, usually reach about 90–92%, while the shallow models, like MLP and logistic regression, 

average around 70–78%. It highlights the superior ability of deep models in capturing complex audio 

features. Deep learning models usually have higher precision and recall; on many occasions, up to 90% and 

85%, respectively, as opposed to the 70–75% range of the shallow networks. These suggest that the deep 

models are quite effective in identifying the right genres with fewer false positives. Similarly, in user 

engagement—measured by metrics like click-through rates (CTR) and time spent on recommended songs—

 

Forecast score 

Training sample 
Test sample 

User preferences 

Mel frequency 

spectrogram 

Music potential 

factors 
Mel frequency 

spectrogram 
Potential 

factors 

CNN network 
CNN regression 

model 

Whether the training 

conditions are met 
N Y 



AETiC 2025, Vol. 9, No. 1 70 

www.aetic.theiaer.org 

a 25–30% improvement can be observed with deep learning models, which results in better user retention 

and satisfaction due to the more accurate and personalized recommendations. Furthermore, deep learning 

models are better at dealing with cold start problems, with the latter achieving even up to 80–85% relevance 

in recommendation for new items, while shallow models usually plateau at around 60–65%. These results, 

as illustrated in research by Chen et al. [30] and Yin [31], show the vast improvements deep learning models 

provide in music recommendation systems over traditional shallow networks. 

5. Conclusion 

With the continuous development of the Internet and technology, music recommendation has become 

one of the most important parts in improving the market competitiveness and user experience for major 

music platforms. Obviously, the effectiveness of a recommendation system is critical to user satisfaction, 

which has driven increased research interest in music recognition and recommendation techniques. In 

recent years, deep learning has been the hot topic in the field of artificial intelligence and has obvious 

advantages in speech recognition, audio processing, and many other fields due to its solid learning 

capabilities. 

Based on deep learning principles, this paper proposes a method for music recognition and 

recommendation that relies on deep confidence networks to overcome the drawbacks of the traditional 

recommendation system. Via multi-feature collection, this approach enhances music style recognition and 

diversifies recommendation, thus allowing more personalized and varied suggestions of music. The results 

show that such an approach improves the multi-feature recognition of music styles to create a more 

adaptive recommendation system capable of serving users with changing preferences better. 

One limitation of the current study is its reliance on an English-language dataset, which limits the 

model's applicability in multicultural contexts. Music preferences are strongly determined by culture, and 

a dataset that covers music with diverse linguistic and regional backgrounds—like traditional and popular 

music from Asia, Africa, and Latin America—could make the model more genre-specific and increase its 

applicability to an international audience. Moreover, the complexity in the CNN model makes it a scalability 

challenge, especially for the smaller platform with less computation resources. Generally, deep learning 

models, including CNNs, require high processing power to be executed, which might become a barrier to 

their adoption on platforms without access to high-performance computing infrastructure. Future research 

would therefore focus on these limitations in an attempt to improve dataset diversity and model 

optimization techniques, which include pruning, quantization, and lightweight architectures such as 

MobileNet. These strategies are used to explore other tasks across different domains. 

Future work will focus on refining prediction accuracy and expanding the system’s classification 

capabilities. Potential enhancements include the use of deeper architectures, such as Transformer models, 

which could better capture intricate temporal and spectral patterns in audio data. Additionally, 

incorporating advanced feature-engineering techniques, such as tempo and rhythm analysis, and 

addressing data sparsity through matrix completion algorithms, may improve generalization across diverse 

genres and user behaviors. These steps aim to elevate the system’s adaptability, setting a robust foundation 

for future music recommendation applications. Also, Future work will involve expanding the dataset with 

a focus on music from an increasingly diverse number of cultures and languages represented. Adding music 

from regions like Asia, Africa, and Latin America, the model could grasp even more of the variety of musical 

styles, hence making it more applicable globally and better at serving diverse user preferences. Further, it 

is targeted optimization techniques for models in order to meet scalability issues, especially in the case of 

low-computation platforms. Model pruning and quantization techniques are evaluated, and lightweight 

architectures like MobileNet and EfficientNet are experimented with to reduce the computational demands 

of the model. Second in line will be experiments in real-world settings, including mobile and low-power 

environments, to test whether it is practical and adaptive to different deployment scenarios. Such 

developments would lead to the creation of a more inclusive, resource-efficient recommendation system 

suitable for a larger audience and different applications. 
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