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Abstract: Trajectory optimal control for a robotic arm with a high degree of freedom (DOF) is challenging. The design 

space for that problem is complex and the search for an optimal solution is demanding. The design of a robotic arm's 

trajectory is based on solving the inverse kinematics problem, considering additional refinements influenced by 

factors like total rotating angle, reachability time, minimum execution time, obstacle avoidance, and energy 

consumption minimization. Due to the complexity of the design space, in this paper, genetic algorithm (GA) 

optimization and whale optimization algorithm (WOA) have been used to achieve robotic arm trajectory control while 

maintaining a minimum reachability time. To validate the suggested techniques, a case study was conducted on a 6 

DOF KUKA KR 4 R600 robot arm to control subject to its constraints. Sets of consecutive points forming four different 

paths were inputted to the algorithms. The goal was to reach all these points, in order, with a minimum total 

reachability time. As a result of this paper, we shown that the whale optimization algorithm provides better 

performance than the genetic algorithm with a factor of more than 2.5 while satisfying the reachability constraints. 

Keywords: Genetic Algorithm;  Kinematics Analysis;  Trajectory Optimization;  Whale Optimization Algorithm; 6 DOF 

Robotic Arm 

 

1. Introduction 

Robotic arms are commonly used specially in cutting-edge robotics. The use of robot fingers is increasing 

in various industries as they can be used to automate jobs which are risky, repetitive, or require excessive 

precision. Robotic hands can be used to carry out a wide range of tasks, along with welding, painting, and 

assembly, increasing performance and lowering labor costs. Robotic arms are used in clinical surgeries to 

increase precision and accuracy and reduce human errors [1]. They are used to assist people with disabilities, 

permitting them to perform tasks that had been formerly not possible. The robotic arm may be attached to a 

wheelchair to help the operator in gaining access to objects on high shelves or performing tasks that require 

arm mobility. Robotic arms can also be used in agriculture to automate the process of planting and harvesting 

crops, thereby lowering the need for manual labor. Robotic arms are deployed for tasks along with repairing 

satellites or building extraterrestrial habitats [2]. 

Trajectory optimization is the cornerstone for the overall effectiveness and efficiency of robotic arm 

systems [2]. It contributes to the overall effectiveness and efficiency of robotic arm systems by ensuring that a 

robotic arm will move along predetermined paths quickly and efficiently. By carefully designing the form of 

a robotic arm [3], engineers can optimize various parameters such as arrival time, energy consumption, and 

adherence to the physical limitations of the robot's joints [4]. Through trajectory optimization, robotic arms 

can perform tasks with accuracy, agility, and efficiency. This makes trajectory optimization an important 
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aspect of robotic management and automation systems. In this regard, this research explores the problem area 

presented by trajectory optimization for robotic gloves, and proposes strategies for improving robotic 

technology, discussing the challenges and implications for advancing the field [5], [6]. 

In this study, the proposed Whale-based trajectory Optimization Algorithm (WOA) is compared to the 

Genetic-based trajectory optimization Algorithm (GA). WOA demonstrates strong potential for addressing 

complex optimization challenges in nonlinear and multimodal problems. GA has a wide recognition and 

frequent application in optimization tasks, particularly in robotic trajectory planning. As a reliable, traditional 

baseline, GA's performance in trajectory optimization is extremely high which makes it a perfect baseline 

method in comparison with the proposed algorithm [6].  

1.1. Related Work 

Offline robot paths save work cycle time in automated automotive production lines. This allows for 

enhanced online robot controller set enhanced points [7]. Heim and Von Stryk (2000) provide methods for 

directly transcribing restricted trajectory optimization using complete dynamic robot models. Optimization 

methodologies are effectively compatible with CAR tools and current robot controllers. Simulation and 

experimental results illustrate this using an ABB IRB 6400 industrial robot [7]. 

Trajectory optimization for robotic grasping with occlusions seems promising. Kahn et al. (2015) use 

trajectory optimization to actively investigate the environment and find the robot's optimal grabbing places, 

even with obstacles. By considering the robot's kinematics, dynamics, and sensory system uncertainties, 

trajectory optimization algorithms can create optimal pathways for obstacle adaptation and object 

manipulation. This method works when things are partially blocked or the robot has little prior knowledge. 

Exploring the environment helps the robot learn about items and gripping places, improving grabbing success. 

Optimizing trajectory algorithms in active exploration can improve robotic manipulation systems' autonomy 

and efficiency while grabbing items with occlusions [8]. 

Mei et al. [9] proposed a novel 6-degrees-of-freedom high-speed parallel robot to address the limitations 

of existing parallel robots in meeting the operational demands of non-planar industrial production lines. 

Kinematic and dynamic analyses are conducted to evaluate the performance of the proposed robot. A 

trajectory optimization method is introduced to improve the smoothness of robot end-effector motion, 

targeting the average cumulative effect of joint jerk. To address deformation issues in the horizontal motion 

stage of the trajectory, a mapping model is established, along with a trajectory deformation evaluation index 

constructed to optimize trajectory smoothness and minimize deformation. Comparative analysis 

demonstrates significant reductions in maximum robot joint jerk and torque, highlighting the efficacy of the 

proposed trajectory optimization approach in improving robot performance [9]. 

In 2020, Benotsmane and colleagues [10] developed a "whip-lashing" technique for robotic arm 

movement. This method optimizes the robot arm's trajectory to increase part velocity, decrease motion cycle 

times, and maximize joint torque. Researchers used SolidWorks and MATLAB to examine trajectory planning 

for a five-degree-of-freedom RV-2AJ manipulator arm and validated the use of whip-lashing for trajectory 

optimization. Two trajectories were built for the robot: the original path and one to test motion produced by 

whip-lashing. The method decreased the cycle time of the RV-2AJ robot arm by 33%. The study's main 

achievement was the creation and implementation of the "whip-lashing" technique, which decreased torque 

usage and the time taken for manipulator arm movements, thereby improving productivity [10]. 

Choubey et al. [11] developed an optimal trajectory generation (OTG) technique for smooth, accurate, and 

rapidly converging continuous path motion. Their OTG technique utilized the Grey Wolf Optimization 

(GWO) method to find the trajectory path that minimizes tracking error while considering combined speed, 

joint jerk (avoiding abrupt changes in speed), and smooth motion along the path without errors [11]. 

Wang et al. [12] proposed a time-domain model for the energy consumption of a fluidic soft robotic arm. 

Using forward kinematic analysis, the researchers optimized the trajectory of a soft robotic arm to save energy 
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while considering motion limitations using an interior point technique. Experiments were conducted to assess 

the proposed model and refined trajectory. The time-based model described the dynamic energy 

characteristics of fluidic soft actuators during different movements. Trajectory optimization minimized energy 

consumption in soft robotic arms. This study provided evidence for the optimization of energy-based soft 

robots [12]. 

Mousa et al. [13] conducted a study on trajectory optimization for a robotic arm, emphasizing the 

reduction of reachability time. Conventional techniques have demonstrated restricted progress, leading to the 

investigation of novel ways. This research presents two techniques: rule-based optimization and a genetic 

algorithm, utilizing the robot's kinematics to save operating time. The study, employing the KUKA KR 4 R600 

robot, showed that the genetic algorithm is better at obtaining the shortest trip time. Genetic algorithm 

solutions are around three times quicker than rule-based solutions for identical pathways. This demonstrates 

how advanced optimization approaches improve the control of robotic arm trajectories [13]. Table 1. Conclude 

the literature review about robotic arm trajectory optimization. 

Table 1. Literature summery 
Author, year Study focus Optimization Technique Robotic System 

Heim and Von 

Stryk [7] 

Trajectory optimization using complete 

dynamic robot models, tested on ABB IRB 

6400. 

Dynamic models compatible with 

CAR tools and robot controllers. 

ABB IRB 6400 industrial 

robot. 

Kahn et al. [8] 

Trajectory optimization for robotic grasping 

with occlusions and environment 

exploration. 

Considering kinematics, dynamics, 

and sensor uncertainties. 

Robotic systems with 

grasping and occlusions. 

Mei et al. [9] 

Optimization for a 6-DOF high-speed 

parallel robot focusing on joint jerk and 

deformation. 

Mapping model and deformation 

evaluation to improve trajectory 

smoothness. 

6-DOF high-speed 

parallel robot for non-

planar industrial lines. 

Benotsmane et 

al. [10] 

Whip-lashing technique for reducing cycle 

times and improving robot arm 

productivity. 

Whip-lashing method to optimize joint 

torque and cycle times. 

RV-2AJ manipulator 

arm (5-DOF). 

Choubey et al. 

[11] 

Optimal Trajectory Generation (OTG) using 

Grey Wolf Optimization for smooth 

continuous motion. 

Grey Wolf Optimization minimizing 

tracking errors and joint jerk. 

Continuous path motion 

for general robotic arms. 

Wang et al. 

[12] 

Time-domain model for optimizing soft 

robotic arm energy consumption. 

Interior point technique to minimize 

energy consumption. 
Fluidic soft robotic arm. 

Mousa et al. 

[13] 

Genetic Algorithm for reducing robotic arm 

reachability time, tested on KUKA KR 4 

R600. 

Genetic Algorithm compared to rule-

based optimization for shortest trip 

time. 

KUKA KR 4 R600 

robotic arm. 

This research paper investigates the use of Whale Optimization Algorithm for optimizing robotic arm 

trajectories, prioritizing minimal total reachability time. As a reference, a genetic-based trajectory optimization 

approach has been deployed as well to compare its findings to the results from the proposed whale-based 

trajectory optimization algorithm. The main aim is to leverage inverse kinematics to minimize operating time 

during the entire cycle. The effectiveness of each method is evaluated by simulating the computational 

complexity of the robotic arm's movements. The techniques mentioned before were validated and compared 

using a six-degree-of-freedom (DOF) KUKA KR 4 R600 robot for trajectory optimization. The findings of the 

application show that optimizing the robot's operating time based on Whale-based algorithm is faster than the 

Genetic-based approach. 

2. Kinematic Analysis and Trajectory Optimization 

2.1. Getting Equations for Reachability Time Problem 

Kinematic analysis involves two main parts: forward kinematics and inverse kinematics. The detailed 

analysis for a 6 DOF robotic arm is shown in our previous research paper in Mousa et al. [13]. This involves 
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deducing the Denavit-Hartenberg (DH) parameters and substituting them into the homogeneous matrix to 

describe the end-effector's kinematics and also the decoupling approach steps for the inverse kinematics. These 

steps allow us to describe the position of each joint as a function of the desired final position for arm body 

joints, and orientation for spherical wrist joints. 

To commence, an equation was deduced to calculate the Reachability time (𝑅. 𝑇𝑖) of each joint to rotate 

one unit with maximum velocity (𝜔𝑛) as shown in Equation 1. The total reachability time from point to another 

(𝑅. 𝑇𝑃2𝑃) as shown in Equation 2 by finding the sum of the angles of rotation (𝑞𝑖) of each joint to get from one 

point (a) to another point (b) multiplied by single rotating unit operating time for each joint 𝑅. 𝑇𝑖. The total 

operating time over a complete path (𝑅. 𝑇𝑃𝑎𝑡ℎ) is shown in Equation 3, all of which is dependent on the number 

of arm joints (n) and the total number of points on a path (k) [14]. 

𝑅. 𝑇𝑖 =  
1 𝑟𝑎𝑑

𝜔𝑛
  (1) 

𝑅. 𝑇𝑃2𝑃 =  ∑ (|(𝑞𝑏𝑖 − 𝑞𝑎𝑖)|𝑛
𝑖=1 ) ∗ 𝑅. 𝑇𝑖 (2) 

𝑅. 𝑇𝑃𝑎𝑡ℎ =  ∑ ∑ (|(𝑞𝑏𝑖𝑗 − 𝑞𝑎𝑖𝑗)|𝑛
𝑖=1 ) ∗ 𝑅. 𝑇𝑖

𝑘
𝑗=1  (3) 

2.2. Trajectory Optimization 

 
Figure 1. Optimization techniques [15]. 

Optimization techniques, as mentioned in Figure 1., are indispensable for enhancing the performance and 

efficiency of robotic systems. By categorizing these techniques into mathematical, artificial intelligence (AI), 

and metaheuristic approaches, we gain access to a diverse toolkit for addressing a wide range of challenges in 

robotics. From gradient-based optimization methods to reinforcement learning and nature-inspired 

algorithms like genetic algorithms (GA), particle swarm optimization (PSO), and whale optimization 

algorithm (WOA) each category offers unique capabilities for optimizing objectives, solving complex 

problems, and enabling autonomous decision-making in robotic systems. By harnessing the power of these 

optimization techniques, researchers and engineers can design more efficient, adaptive, and intelligent robotic 

systems capable of navigating diverse environments, performing complex tasks, and ultimately advancing the 

field of robotics towards new frontiers of exploration and innovation.[15]. 

2.3. Genetic Algorithm 

Genetic algorithms (GAs) represent a powerful class of optimization algorithms inspired by the process 

of natural selection and genetics as shown in Figure 2. Developed to tackle complex optimization problems, 

genetic algorithms have found widespread applicability across various domains, including engineering, 
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finance, and artificial intelligence. This academic discourse endeavors to elucidate the main conceptual 

framework, general procedural steps, common applications, and specific utilization within the realm of 

robotics, with a focus on optimizing the trajectory of robot arms [13], [16]. 

 
Figure 2. Genetic algorithm vs biological system [13]. 

The main concept underlying genetic algorithms is rooted in the principles of evolution. Drawing 

inspiration from the Darwinian theory of natural selection, GAs simulate the process of evolution through 

iterative improvement. Solutions to optimization problems are treated as individual "chromosomes," 

represented as strings of parameters. These chromosomes undergo evolution through a series of genetic 

operators, such as crossover, mutation, and selection, emulating the biological processes of reproduction, 

genetic recombination, and survival of the fittest [17]. 

In its procedural essence, a genetic algorithm unfolds through a sequence of steps that collectively strive 

to iteratively enhance potential solutions. The algorithm initiates with the creation of an initial population of 

candidate solutions. Through successive generations, individuals with higher fitness—quantifying their 

suitability to the optimization objective—are more likely to contribute to the subsequent population. The 

genetic operators then intervene to produce offspring, introducing diversity and facilitating exploration of the 

solution space. This cyclic process of selection, recombination, and mutation continues until a satisfactory 

solution is achieved or a predetermined convergence criterion is met [3], [18]. 

The general applicability of genetic algorithms spans a multitude of optimization challenges, owing to 

their ability to navigate complex, nonlinear solution spaces. Common usage scenarios encompass function 

optimization, parameter tuning, scheduling, and pattern recognition. In engineering disciplines, genetic 

algorithms have proven valuable for optimizing intricate systems where traditional methods may struggle 

[19]. 

Despite the strengths of genetic algorithms, there also are drawbacks to be considered of their application. 

One of those drawbacks is the computational complexity associated with GAs, mainly for massive problems. 

The iterative nature of the set of rules and the evaluation of a couple of candidate answers make contributions 

to the excessive computational price. Parameter sensitivity is another problem for GAs. The algorithm includes 

tuning numerous parameters which include population length, crossover, and mutation rate. Choosing 

suitable parameter values is a challenging task and can require tremendous experimentation. Premature 

convergence is a risk of GAs, where the population converges to a suboptimal answer before the solution area 

is thoroughly explored. Balancing research and its implementation are critical challenges in designing effective 

GAs [20]. 

The concept for solving the robot’s trajectory optimization problem using GA is to specify an objective 

function constrained by some parameters’ constraints. Set of rules, which are implemented in the GA approach 

are used to minimize the objective function. The technique begins with initial populations and their fitness are 

evaluated which determines how "good" a solution is for our problem while the higher fitness score is better. 

Then, a set of iterative processes are used with the help of the selection, crossover, and mutation concepts to 

new possible better solutions with lower total trip time for a certain path. The GA keeps attempting to generate 



AETiC 2024, Vol. 8, No. 4      

104 
 

www.aetic.theiaer.org 

 

possible new solutions until convergence, in which the optimization goal is stable, and it meets the predefined 

criteria [17]. 

Upon convergence, the trajectory with the minimum reachability time is extracted as the optimized 

solution. This trajectory efficiently navigates the 6 DOF robot arm through the designated five points, 

minimizing reachability time. The algorithm strikes a balance between speed and accuracy, making it well-

suited for time-sensitive applications where efficient trajectory planning is critical [13], [16]. 

The flexibility of GAs allows them to adapt and evolve solutions without explicit rule formulations, 

making them particularly well suited for problems with intricate and changing conditions. This inherent 

adaptability positions Genetic Algorithms as a superior choice when faced with optimization challenges that 

demand flexibility, scalability, and the ability to navigate dynamic environments [13], [21]. On the other hand, 

genetic algorithm, as we show in the following sections, may provide local optimum solutions for the 

optimization problems, which in our case study provides longer reachability time than the minimum. 

2.4. Whale Optimization Algorithm 

Whale Optimization Algorithm (WOA) represents a nature-inspired optimization algorithm rooted in the 

social behavior of humpback whales as display in Figure 3. Developed as a population-based metaheuristic 

algorithm, WOA draws inspiration from the collaborative hunting behavior of whales to iteratively refine 

potential solutions to optimization problems. The main conceptual framework of WOA centers on the 

emulation of the social hierarchy and coordinated movement exhibited by whale pods during hunting [3]. 

 
Figure 3. The behavior of humpback whales [3]. 

In its operational essence, drawing from the social hierarchy and coordinated motion of whale pods, 

WOA iteratively refines capacity answers to optimization issues [22], [23].  The algorithm commences with the 

initialization of a population of potential solutions, symbolizing the positions of individual whales in the 

search space. As the algorithm progresses, individuals within the population engage in exploration and 

exploitation phases, mirroring the collective movement patterns of whales in nature. These phases are 

orchestrated by a set of mathematical equations that guide the movement of individuals towards promising 

regions of the solution space [24]. 

The general steps of WOA seamlessly blend exploration and exploitation strategies. Whales, representing 

potential solutions, adjust their positions iteratively based on the best-known solutions within the population. 

The algorithm incorporates a dynamic balance between exploration, achieved through the repositioning of 

individuals, and exploitation, facilitated by the convergence toward promising regions identified during the 

search process [25], [26]. 
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3. Case Study 

 
Figure 4. Robotic arm configuration [26]. 

KUKA model KR 4 R600 robotic arm, with dimensions as shown in Figure 4, was used in our case study. 

Forward Kinematics were applied together with the inferred DH parameters to configure the robot’s joint in 

the XYZ axes. The KR 4 R600 is a 6-axis (6 Degree of Freedom) industrial robot from KUKA Robotics with a 

payload of 3 kg. It was built primarily for laboratory businesses that utilize flexible robot-based automation. 

The robot has an open structure that lends itself to various applications, and it can communicate extensively 

with other systems [13]. Table 2. conclude the specifications of studied robotic arm. 

Table 2. KUKA KR 4 R600 robotic arm specifications 
Joints Motors 
specification 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 

Rotation range (rad) 2.96 to - 2.96 0.69 to - 3.4 2.62 to - 2 3.23 to - 3.23 2.09 to - 2.09 6.1 to - 6.1 

Rotation Speed (rad/sec) 4.364 4.364 4.364 5.586 5.586 7.331 

Table 3 displays four different paths to study the quality of the algorithms under study, where each path 

consists of five points representing a different task required to be executed by the robotic arm. The tracks are 

designed to test every detail of the robotic arm's workspace. These paths are used to test the genetic algorithm 

and the whale optimization algorithm in parallel to arrive at a conclusion about the advantage of achieving a 

minimal reachability time between the two algorithms. 

Table 3. Path cases points 

Point 
Coordinate (x, y, z) (m) 

Case 1 Case 2 Case 3 Case 4 

P0 (0.31, 0, -0.055) (0.20, 0.40, 0.10) (0.10, 0.30, 0.20) (0.23, -0.14, 0.10) 

P1 (0.48, 0.19, 0.21) (0.32, -0.15, 0.05) (0.17, 0.21, -0.18) (0.16, 0.19, -0.26) 

P2 (0.17, 0.50, 0.20) (-0.13, 0.24, 0.13) (-0.20, -0.13, 0.30) (-0.36, 0.21, 0.14) 

P3 (0.10, 0.34, 0) (-0.09, 0.30, -0.21) (0.31, 0.22, 0.15) (-0.15, 0.18, -0.20) 

P4 (-0.33, 0.21, 0) (0.17, -0.19, 0.20) (0.40, -0.25, 0.10) (0.27, -0.29, 0.11) 

MATLAB software was used as a platform for modeling the robotic arm and implementing the proposed 

and the baseline algorithms. RoboDK software was used for verifying the reachability outcomes from the two 

mentioned algorithms by providing simulations for KUKA robotic arm using the algorithms’ outcomes along 

the specified paths. 
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3.1. Optimization Approaches, Simulation and Results 

The optimization algorithms proposed in the following sub-sections solve the reachability problem for a 

defined path while maintaining the minimum operating time.  MATLAB Ver. 2020a, was deployed on a laptop 

with an Intel Core i7 CPU, Intel(R) HD Graphics 400 GPU, and 16 gigabytes of RAM, to test the suggested 

optimization approaches. Here is the general approach we used for solving the specified optimization problem 

using genetic algorithm and whale optimization algorithm. 

Algorithm 1. GA/WOA Optimizer 
Input:  Robot’s Parameters for six joints (ak, αk, dk, and θk) where k∈ {𝟏, … , 𝟔} 

and desired locations {(𝑷𝟔𝒙,𝟏, 𝑷𝟔𝒚,𝟏, 𝑷𝟔𝒛,𝟏), … , (𝑷𝟔𝒙,𝒘, 𝑷𝟔𝒚,𝒘, 𝑷𝟔𝒛,𝒘)}  

where w is number of points in a specific path. 

 

Output: The optimal trajectory RT*. 

1. Calculate the forward kinematic homogenous matrix.  

𝑯𝟔
𝟎 = [𝑹𝟔

𝟎 𝑷𝟔
𝟎

𝟎 𝟏
]= 𝚷𝒌∈{𝟏,…,𝟔)𝑨𝒊

𝒊−𝟏 

Where  

𝑨𝒊
𝒊−𝟏 = [

𝐂𝐨𝐬 [𝜽𝒊] −𝐒𝐢𝐧 [𝜽𝒊] ∗ 𝐂𝐨𝐬 [𝜶𝒊] 𝐒𝐢𝐧(𝜽𝒊) ∗ 𝐒𝐢𝐧 [𝜶𝒊] 𝒂𝒊 ∗ 𝐂𝐨𝐬 [𝜽𝒊]
𝐒𝐢𝐧 [𝜽𝒊] 𝐂𝐨𝐬 [𝜽𝒊] ∗ 𝐂𝐨𝐬 [𝜶𝒊] −𝐂𝐨𝐬 [𝜽𝒊] ∗ 𝐒𝐢𝐧 [𝜶𝒊] 𝒂𝒊 ∗ 𝐒𝐢𝐧[𝜽𝒊]

𝟎 𝐒𝐢𝐧 [𝜶𝒊] 𝐂𝐨𝐬 [𝜶𝒊] 𝒅𝒊
𝟎 𝟎 𝟎 𝟏

] 

2. Calculate 𝚷𝒌∈{𝟏,…,𝟔)𝑨𝒊
𝒊−𝟏 × [

𝟎
𝟎
𝟎
𝟏

] = [𝑷𝟔
𝟎

𝟏
] where 𝑷𝟔

𝟎 has a dimension of 𝟑 × 𝟏 

3. Find 𝑷𝟔
𝟎 = [𝑷𝟔,𝒙

𝟎 𝑷𝟔,𝒚
𝟎 𝑷𝟔,𝒛

𝟎 ]
𝑻
 where 𝑷𝟔,𝒙

𝟎 , 𝑷𝟔,𝒚
𝟎 , 𝑷𝟔,𝒛

𝟎  =𝓕(𝜽𝒌) and 𝒌 ∈ {𝟏, … , 𝟔} 

4. Run GA/WOA algorithm for the following and find 𝐨𝐭∗ given that: 

𝑭𝒊𝒕𝒏𝒆𝒔𝒔 𝑽𝒂𝒍𝒖𝒆 (𝑭𝑽) =  ∑ √(𝑷𝟔,𝒙
𝟎 −  𝑷𝟔𝒙,𝒋)

𝟐
+ (𝑷𝟔,𝒚

𝟎 −  𝑷𝟔𝒚,𝒋)
𝟐

+ (𝑷𝟔,𝒛
𝟎 −  𝑷𝟔𝒛,𝒋)

𝟐
𝒘

𝒋=𝟏

 

𝑶𝒃𝒋𝒆𝒗𝒕𝒊𝒗𝒆 𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏 = 𝑭𝑽 + 𝑹𝑻∗ 

Where  

𝑹𝑻∗ =  ∑ 𝑹𝑻𝒛

𝒘

𝒛=𝟏
 

And 

𝑹𝑻𝒛 = 𝐦𝐢𝐧|𝑷𝒋,𝑽𝒂𝒍𝒊𝒅𝑨𝒏𝒈𝒍𝒆𝒔|( ∑ (|(𝜽𝒂𝒛,𝒊 − 𝜽𝒂𝒛−𝟏,𝒊)|𝒌
𝒊=𝟏 ) ∗

𝟏 𝒓𝒂𝒅

𝝎𝒏
; 𝒛 ∈ {𝟏, … 𝒘}  

Constrained by 
−𝟐. 𝟗𝟔 ≤ 𝜽𝟏 ≤ 𝟐. 𝟗𝟔 
−𝟑. 𝟒 ≤ 𝜽𝟐 ≤ 𝟎. 𝟔𝟗 

−𝟐 ≤ 𝜽𝟑 ≤ 𝟐. 𝟔𝟐 
−𝟑. 𝟐𝟑 ≤ 𝜽𝟒 ≤ 𝟑. 𝟐𝟑 
−𝟐. 𝟎𝟗 ≤ 𝜽𝟓 ≤ 𝟐. 𝟎𝟗 

−𝟔. 𝟏 ≤ 𝜽𝟔 ≤ 𝟔. 𝟏 
 

 

3.1.1. Genetic Algorithm Technique  

For solving the trajectory optimization problem for a 6 DOF robotic arm using genetic algorithms, we 

encoded the trajectory as a sequence of joint angles. The objective function for our problem was introduced in 

Algorithm 1 to optimize the total trip time subject to the constraints set mentioned in Table 1. Algorithm 1 

illustrated how GA is used to perform the required trajectory optimization. We started with generating a 

random initial population that contains a number of 30 genes as described in Equation 4.  Steps 1 is used to 

calculate the forward kinematics for the 6 DOF KUKA robotic arm which is applied in steps 2 and 3 to calculate 

the position equation as a function of the different joint angles which is used in the objective function. Step 4 

shows the GA objective function and its constraints. 

𝑄 = {𝑞𝑘𝑛} where 𝑘 ∈ ℤ, 𝑛 ∈ ℤ, 1 ≤ 𝑘 ≤ 6 and 0 ≤ 𝑛 ≤ 4 (4) 

As outcome to running Algorithm 1 on the four different paths shown in Table 3, the following results 

were obtained and recorded in Table 4, which describes the optimized values for the different joints to reach 
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the points along every path. The graphical representation for Table 6 is shown in Figure 5(a). Table 5 presents 

the minimal time to reach every point in each path and its graphical representation is shown in Figure 5(b).  

Table 4. GA angles according to grantee the minimum operating time 

Path 1 steps x (rad) y (rad) z (rad) a (rad) b (rad) c (rad) 

P0 0.0876 -0.6624 1.2177 -2.1979 0.7800 3.3754 

P1 0.3695 0.2504 0.7349 -2.1943 1.1482 3.5605 

P2 -1.5826 -1.6747 -0.0961 -1.4998 0.6231 3.6259 

P3 -1.7021 -1.0709 -0.2520 -1.3893 0.5292 3.8212 

P4 -0.3696 -1.5147 -0.0671 -1.4202 0.5338 4.5462 

Path 2 steps x (rad) y (rad) z (rad) a (rad) b (rad) c (rad) 

P0 0.9923 -0.1615 0.5833 -1.5507 -1.8552 6.0953 

P1 2.1036 -0.9921 -0.7044 -1.8431 -1.2178 4.3274 

P2 -1.2228 -1.6369 0.2430 -0.3263 -0.7474 4.3688 

P3 -1.3096 -1.0447 -0.1621 0.2196 0.4014 4.1153 

P4 -0.8102 0.4562 -0.7252 -0.2068 0.6279 4.0942 

Path 3 steps x (rad) y (rad) z (rad) a (rad) b (rad) c (rad) 

P0 -1.6075 -0.3321 -1.4191 0.1469 1.0653 -1.6157 

P1 -1.6514 -0.2967 -1.0595 0.1219 1.5184 -2.7975 

P2 -2.1963 -0.0537 -1.0088 0.6320 1.9462 -2.8601 

P3 -2.5553 -1.2233 -1.1020 0.3755 1.5216 -2.8127 

P4 -2.7266 -1.1687 -1.1433 -0.2727 1.7210 -2.9969 

Path 4 steps x (rad) y (rad) z (rad) a (rad) b (rad) c (rad) 

P0 2.3384 -1.2875 -0.8275 -2.7927 -1.3378 1.7597 

P1 0.9479 -1.5316 1.9395 -2.3807 -1.3630 1.9059 

P2 -0.5444 -1.6745 0.1058 -2.8072 -1.8635 0.7377 

P3 -0.6834 -1.3032 -0.1542 -2.3836 -1.5265 1.0409 

P4 -0.5854 0.5228 -0.3777 -2.6106 -1.1946 0.3353 

Table 5. Operating time for each path step based on GA 

Operating time initial to P0 P0 to P1 P1 to P2 P2 to P3 P3 to P4 Total 

Path 1 (seconds) 1.44202 0.475873 1.305381 0.264485 0.554069 4.04251 

Path 2 (seconds) 1.836413 1.146447 1.487699 0.586086 0.706757 5.763402 

Path 3 (seconds) 1.205861 0.346813 0.368437 0.499756 0.23796 2.658827 

Path 4 (seconds) 1.998507 1.106108 1.119186 0.353781 0.687782 5.265366 

To verify the reachability solution obtained from the proposed GA approach in Algorithm 1, a simulation 

was done using RoboDK software. RoboDK software is a powerful which provides a comprehensive solution 

for robot programming, simulation, and cell design, and is compatible with a wide range of robots and other 

equipment. We used it to simulate the movement of the KUKA robotic arm based on the findings of the 

suggested technique. As a depiction of a function performed by the arm in its working environment, the 

movement was represented as a closed route beginning at the starting position and finishing at the same 

location. Figure 6 shows a snapshot from the RoboDK software during trajectory simulation. From the 

simulation, it is possible to know the shape of the movement path for the end effector when observing the 

connecting lines between the main points of the path. During the arm movement, the program records the six 

joints position at each moment and saves them in the definition of each joint. It is also possible, through the 

simulation program, to determine the movement restrictions on each joint, where the speed is determined, 
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and through it, the time of executing the path is known. This ensures that the results generated from the 

suggested algorithm satisfy the reachability constraints for the different paths. 

  

  
(a) Joints angles during the path 

 
(b) operating time scenarios  

Figure 5. GA characteristics during the paths for minimum operating time 
 

    

Path 1 Path 2 Path 3 Path 4 

Figure 6. RoboDK GA paths results simulation 

3.1.2. Whale Optimization Technique  

The algorithm integrates a unique whale encircling mechanism, where each whale, excluding the leaders 

(whom embodying trajectories with most efficient traits, guide the populace's movement [25]), adjusts its 

position towards them, emulating nature's coordinated movement. This mechanism balances exploration and 
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exploitation, allowing the population to converge towards trajectories that minimize reachability time while 

maintaining diversity. 

The trajectory optimization process using WOA for a 6 Degree of Freedom (DOF) robot arm navigating 

through five specified points involves a series of coherent steps as shown in Algorithm 1. The algorithm begins 

by initializing a population of potential trajectories, akin to the positions of individual whales in a search space. 

it was started by initializing a number of 100 whales where each one contains 6 different suggested joints’ 

values to reach 5 different positions as in Equation 4. Each trajectory, which acts as a favored solution, affects 

the movement of the robotic arm around unique locations.  

Fitness is examined, the usage of a task designed to reduce get right of entry to time. It was combined the 

forward kinematics with the Whale algorithm to solve the objective function [26], passing through updating 

the algorithm's factors, and ending with a deduction of the angles that guarantee the best path that preserves 

the shortest reachability time [27]. The principal issues are the smoothness of the trails, the compliance with 

motion restrictions, and the potential to transport quick to precise regions, leading whales are identified on 

the idea of their power, that is the pathways with the best characteristics of the movement of the population 

as a whole [28]. 

Following the whale encircling mechanism, trajectory positions are updated, and fitness is re-evaluated 

to account for the adjustments. Convergence is monitored to assess stabilization of optimization objectives. 

Upon convergence, the trajectory with the minimum reachability time is extracted from the population, 

representing the optimized solution achieved through the collaborative and adaptive exploration facilitated 

by WOA [24].  

The same set of measurements were performed to show the results of the Whale algorithm-based 

optimizer shown in Algorithm 1. Table 6 and Figure 7(a) show the angles of rotation that should be used for 

each joint at each point to guarantee the minimal operating time while Table 7 and Figure 7(b) show the overall 

amount of time required for the entire voyage. 

Figure 8 shows a snapshot from the RoboDK software during trajectory simulation for the results 

generated from the WOA algorithm while the same simulation settings, as described before in section 4.1.1, 

were set. The paths drawn in this figure by the simulation software supports the algorithm’s findings to solve 

the reachability problem. 

Table 6. WOA angles according to grantee the minimum operating time 

Path 1 steps x (rad) y (rad) z (rad) a (rad) b (rad) c (rad) 

P0 0.5578 -0.2227 -0.0316 -0.0468 0.5775 -0.0661 

P1 0.4377 0.1567 -0.0443 -0.1190 -0.0176 -0.1108 

P2 0.4147 0.0803 -0.0305 -0.6724 0.2825 -0.1117 

P3 0.1013 -0.5084 -0.0358 -0.6038 0.2694 -0.0727 

P4 0.1285 -0.9045 -0.0284 -0.0322 0.0575 0.3063 

Path 2 steps x (rad) y (rad) z (rad) a (rad) b (rad) c (rad) 

P0 -0.4065 -0.3994 -0.3474 -0.4601 -0.3711 -0.5076 

P1 -0.4208 -0.1382 -0.3406 -0.3936 -0.2947 -0.5854 

P2 -0.4066 -0.5862 -0.3538 -0.4158 -0.2435 -0.9933 

P3 -0.4526 -0.5776 -0.2909 -0.4157 -0.2497 -0.9986 

P4 -0.4241 -0.2157 -0.2506 -0.2742 -0.1505 -0.9991 

Path 3 steps x (rad) y (rad) z (rad) a (rad) b (rad) c (rad) 

P0 0.2710 -0.0374 -0.0293 -0.0776 0.0082 0.0865 

P1 0.1604 -0.0454 -0.4014 -0.2132 0.0417 0.1296 

P2 -0.0599 -0.2516 -0.7517 -0.0781 -0.1770 0.0921 

P3 -0.0491 -0.0092 -0.0432 -0.0876 -0.0353 0.1320 
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P4 -0.2298 0.2566 0.1930 -0.7025 -0.1227 0.1688 

Path 4 steps x (rad) y (rad) z (rad) a (rad) b (rad) c (rad) 

P0 -0.2395 -0.0697 -0.0996 -0.6657 -0.4308 -0.9335 

P1 -0.1431 -0.3093 -0.0419 -0.3735 -0.2150 -0.7325 

P2 -0.1927 -1.2408 -0.1210 -0.3796 -0.0691 -1.1410 

P3 -0.2343 -0.7459 -0.3455 -0.4386 -0.0835 -1.1410 

P4 -0.1160 -0.1201 -0.2387 -0.3154 -0.3283 -0.3811 

Table 7. Operating time for each path step based on WOA 

Operating time initial to P0 P0 to P1 P1 to P2 P2 to P3 P3 to P4 Total 

Path 1 (seconds) 0.30671 0.24282 0.178822 
 

0.227723 
 

0.290421 
 

1.246495 

Path 2 (seconds) 0.481924 0.100807 
 

0.17748 
 

0.028756 
 

0.141784 
 

0.93075 

Path 3 (seconds) 0.104456 0.148501 
 

0.246317 
 

0.252721 
 

0.287055 
 

1.039049 

Path 4 (seconds) 0.416845 0.208425 
 

0.32555 
 

0.187408 
 

0.364075 
 

1.502302 

  

  
(a) Joints angles during the path 

 
(b) operating time scenarios  

Figure 7. WOA characteristics during the paths for minimum operating time 
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Path 1 Path 2 Path 3 Path 4 

Figure 8. RoboDK WOA paths results simulation 

4. Discussion  

Table 8 presents the outcomes obtained from the two methods introduced in this study, which are GA 

and WOA algorithms. Each row in the table reflects the total time taken for executing paths using the 

respective approach outlined in the first column during the investigated scenarios.   

An in-depth analysis of the results from the whale optimization algorithm reveals a substantial leap in 

improvement. This remarkable enhancement can be attributed to the search methodology employed in the 

whale optimization algorithm. Unlike limiting itself to the exploration of proposed solutions, this algorithm 

processes solutions during the search, deriving more suitable alternatives and thereby achieving a superior 

improvement value. This iterative process of dynamic refinement and collaborative exploration within the 

solution space showcases the efficacy of WOA in minimizing reachability time for a 6 DOF robot arm 

navigating through a predetermined set of points.  

In contrast to Genetic Algorithms (GAs), the Whale Optimization Algorithm (WOA) emerges as a sturdy 

and versatile optimization tool. Unlike GAs, that could face challenges in untimely convergence, WOA's 

dynamic balance between exploration and exploitation lets it to navigate answer spaces with better efficacy. 

The social conduct-inspired mechanism of WOA permits it to conform dynamically to evolving hassle 

landscapes, a feature that complements its global optimization capabilities as compared to GAs. WOA's ability 

to deal with a various variety of optimization challenges with fewer algorithmic parameters and its 

adaptability to complex, non-linear problem role it as a favorable preference, especially when confronted with 

complicated and dynamic optimization situations. This evaluation considers various factors influencing the 

algorithms, encompassing the number of proposed solutions and search attempts.  

In general, we noticed that the whale optimization algorithm solves the specified reachability problem 

with a total trip time lower than the solutions generated by genetic optimization algorithm with a factor of at 

least 2.5 as shown in Table 8. The WOA algorithm's adaptability and nature-inspired collaborative behavior 

position it as a promising tool for achieving efficient trajectory optimization in complex robotic scenarios.  

Table 8. Summary of the optimization techniques results. 

NO. Techniques 
Average Path 1 
time (seconds) 

Average Path 2 
time (seconds) 

Average Path 3 
time (seconds) 

Average Path 4 
time (seconds) 

1 GA 4.04251 5.763402 2.658827 5.265366 

2 WOA 1.246495 0.93075 1.039049 1.502302 

5. Conclusion and Future Works 

This research focuses on trajectory control for a high-degree-of-freedom robotic arm, specifically applied 

to the KUKA KR 4 R600 robot. The primary objective was to investigate the reachability time problem across 
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sets of points while minimizing the overall trip time through four different paths. Two distinct approaches 

(GA and WOA) have been employed to achieve the desired behavior. 

The genetic optimization algorithm is designed to search for optimum solutions. This involves utilizing 

a population of candidate solutions and iteratively improving them through selection, crossover, and mutation 

operations. Furthermore, the whale optimization algorithm, provides more accurate and smooth exploration 

of global solutions. This approach facilitates the identification of the best path, ensuring the shortest time to 

execute a complete trajectory for the robotic arm. 

The case study, encompassing four different paths, demonstrates that the total trip time for the robotic 

arm to reach all points using the whale optimization algorithm is less than that calculated by the genetic 

algorithm by a factor of at least 2.5. These findings highlight the efficacy of the whale optimization algorithm 

in producing outstanding outcomes, fostering a significant improvement in reachability time and reducing 

wear and strain on the equipment's motors. 

Moving forward, our future work will extend beyond the reachability problem, incorporating 

considerations of power consumption and obstacle avoidance during the robotic arm’s trajectory control. Also, 

we intend to investigate more optimization algorithms applied to various robotic arm control problems. 
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