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Abstract: Vision Transformers (ViTs) have demonstrated exceptional accuracy in classifying remote sensing 

images (RSIs). However, existing knowledge distillation (KD) methods for transferring representations from a 

large ViT to a more compact Convolutional Neural Network (CNN) have proven ineffective. This limitation 

significantly hampers the remarkable generalization capability of ViTs during deployment due to their 

substantial size. Contrary to common beliefs, we argue that domain discrepancies along with the RSI inherent 

natures constrain the effectiveness and efficiency of cross-modal knowledge transfer. Consequently, we propose a 

novel Variance Consistency Learning (VCL) strategy to enhance the efficiency of the cross-modal KD process, 

implemented through a plug-and-plug module within a ViTteachingCNN pipeline. We evaluated our student 

model, termed VCL-Net, on three RSI datasets. The results reveal that VCL-Net exhibits superior accuracy and a 

more compact size compared to 33 other state-of-the-art methods published in the past three years. Specifically, 

VCL-Net surpasses other KD-based methods with a maximum improvement in accuracy of 22% across different 

datasets. Furthermore, the visualization analysis of model activations reveals that VCL-Net has learned long-range 

dependencies of features from the ViT teacher. Moreover, the ablation experiments suggest that our method has 

reduced the time costs in the KD process by at least 75%. Therefore, our study offers a more effective and efficient 

approach for cross-modal knowledge transfer when addressing domain discrepancies. 
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1. Introduction 

Remote Sensing Images (RSIs) provide a crucial method for Earth observation, facilitating various 

applications such as environmental monitoring [1], agriculture [2], land management [3], and surveying 

[4]. With advancements in imaging techniques, RSIs have evolved into a form of big data, encompassing 

multiple spatial and temporal dimensions. Consequently, only computer algorithms can effectively 

perform RSI recognition tasks. Classification is a fundamental component of these algorithms for RSI 

understanding, as advancements in classification often drive improvements in subsequent tasks like 

detection and segmentation. A decade ago, shallow machine learning models were central to RSI 

classification, requiring extensive feature mining experiments but often resulting in suboptimal accuracy. 

With the advent of deep learning, Convolutional Neural Networks (CNNs) have dominated RSI 

classification tasks over the past decade due to their superior accuracy and automatic feature extraction 

capabilities [5]. 

Convolutional Neural Networks (CNNs) possess a progressively expanding visual field, which 

enhances their ability to generalize local patterns effectively [6]. However, this expansion can lead to the 

loss of dependencies among local features, a phenomenon that contradicts human cognitive habits. The 
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Vision Transformer (ViT) [7], a novel architecture capable of capturing long-range feature dependencies, 

has emerged as a promising solution in computer vision. While ViTs can compete with CNNs, they often 

require a significantly larger number of parameters to achieve comparable accuracy. This poses a 

challenge for the field of remote sensing, which frequently relies on mobile or embedded devices. 

Consequently, the substantial size of ViTs significantly limits their application and deployment in RSI 

tasks. 

Model compression holds significant potential for addressing the trade-off between accuracy and 

efficiency. Bucilă et al. [8] introduced an innovative method for transferring knowledge from a complex 

model (the teacher) to a more compact one (the student) using prediction logits. This concept was later 

expanded as knowledge distillation (KD). However, the logit-based KD process typically requires a 

substantial number of training epochs, often in the tens of thousands, to mitigate accuracy loss [10–11]. 

Consequently, researchers [12–13] proposed feature alignment, which aligns features of intermediate 

layers. Nevertheless, feature-based approaches necessitate additional function modules for both teacher 

and student models, leading to a higher parameter count than logit-based methods. Therefore, logit-based 

KD methods retain their advantages, provided the efficiency of knowledge transfer is improved.     

Currently, effective logit-based KD methods primarily focus on knowledge transfer between models 

with the same architecture, such as a CNN teacher and a CNN student [14–15]. However, given the 

unique advantages of both CNNs and ViTs [16], the importance of cross-modal KD becomes evident. 

Since 2021, researchers have introduced innovative concepts for cross-modal KD, leading to significant 

advancements [17–19]. Nonetheless, most cross-modal KD methods have exhibited substantial accuracy 

losses [20–22]. Therefore, there remains considerable potential for improvement in current cross-modal 

KD strategies [23].  

Recently, researchers have proposed several KD methods for RSI classification. However, existing 

studies still face significant limitations. Most KD techniques either achieve compactness at the expense of 

competitive accuracy [24–27] or deliver acceptable accuracy with a considerably larger volume [28–30]. In 

other words, the majority of these methods have not successfully balanced accuracy and efficiency. The 

authors believe that this dilemma arises from several underlying factors. 

 
Figure 1. Comparative Analysis of Feature Recognition in Natural Images and Remote Sensing Images 

As illustrated in Figure 1, the two natural images on the left can be easily differentiated using only 

partial visual features of the animals, such as their heads. In contrast, the four RSI samples on the right 

necessitate a comprehensive combination of local features for classification. For example, the round roof 

cannot be used to distinguish between the center and church scenes. Likewise, the rectangular roofs of 

buildings are not unique to commercial or industrial classes. Consequently, the noisy backgrounds and 

greater similarity between categories constitute domain gaps when compared to natural images.   

Currently, researchers typically employ CNNs or ViTs developed on ImageNet-1K, a large-scale 

dataset containing a million natural samples, for RSI classification. However, most of these methods 

simply replicate the training procedures designed for natural images, resulting in suboptimal models due 

to unaddressed domain discrepancies [31]. 

The KD process is a function approximation that employs a student model to approximate the 

teacher function. Intrinsically, various KD techniques exhibit different capabilities for reducing deviations 

between teacher and student predictions. However, no KD algorithm can completely eliminate the 

variance originating from data distribution in training. As depicted in Figure 2, the round spots in black 

represent different data distributions with varying variances, denoted as D(x) , and the teacher and 

student functions are represented as f(x) in red and blue, respectively. In the left sub-chart, smaller 

variances in the training data guide the function curves of the teacher and student to be more consistent. 

In other words, smaller variances facilitate the student’s approximation to the teacher, assuming that the 
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KD algorithm is effective. Conversely, as depicted in the right sub-chart, larger variances result in the 

student having larger margins with the teacher. This is because their function curves are more likely to 

contain larger variances. 

 
Figure 2. Comparative Analysis of Variance Impact on Student-Teacher Approximation in KD Techniques 

At present, logit-based KD algorithms primarily focus on minimizing the deviation between the 

function curves of the teacher and student models [32–33]. To the best of our knowledge, existing studies 

in the literature have entirely overlooked the issue of variance in the KD process. Objectively, the problem 

of variance can be mitigated when there is a sufficient volume of training data, such as a dataset with a 

million samples. However, RSI datasets typically only contain tens of thousands of data points, as RSI 

tasks are often case-specific. Moreover, the visual features of RSIs generally exhibit a larger inter-class 

dissimilarity compared to natural images. Therefore, we argue that these inherent characteristics of RSIs 

need to be adequately addressed when applying KD techniques.   

In response to the aforementioned issues, we propose a novel approach for cross-modal knowledge 

transfer. Contrary to popular belief, we argue that the inefficiency in the logit-based KD process arises 

from disparities in data distribution within RSI datasets. Consequently, we introduce a novel variance 

consistency learning (VCL) strategy aimed at providing efficient and precise KD solutions for RSI 

classification. Specifically, we have incorporated our VCL algorithm into a plug-and-play module that 

facilitates DA and regularization techniques in a manageable manner, resulting in constrained yet 

acceptable variance levels within RSIs. The effectiveness of our method was evaluated on three 

benchmark RSI datasets. Experimental results demonstrate that our VCL-based model, termed VCL-Net, 

outperforms 33 other advanced methods from the past three years, exhibiting significant improvements in 

both accuracy and efficiency. Notably, compared to other KD methods, VCL-Net achieves substantial 

accuracy enhancements of up to 22%. The primary contributions of this research are as follows: 

1) We introduce a cross-modal approach for RSI classification that utilizes a ViT to teach a CNN 

through distillation. Our VCL-Net is more lightweight and exhibits superior accuracy and 

efficiency compared to other state-of-the-art methods in the literature.   

2) VCL-Net exhibits remarkable improvements in accuracy when compared to other KD methods 

reported in the past three years. These results suggest that our VCL strategy is a more effective 

and efficient method for cross-modal distillation.  

3) We initially emphasized the crucial role of variances arising from the inherent nature of RSIs in 

the KD process. As a promising solution, our VCL module, with its plug-and-play attribute, can 

be integrated into any KD process. 

2. Related Works 

Since 2018, researchers have put forward a series of KD methods to create compact yet precise 

classifiers for RSIs. For instance, Chen et al. [26] have shown the effectiveness of logit-based KD in 

classifying RSIs. Xing et al. [27] have introduced a collaborative KD method, which brings in the novel 

concept of mutually supervised learning during training. Hu et al. [28] have designed a functional module 

to boost distillation effectiveness. However, these methods primarily excel in compactness. On the other 

hand, despite the larger size of student models, Li et al. [29] and Zhao et al. [30] have put forward hint-

based KD methods that have shown improvements in accuracy.    
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In the specialized field of cross-modal KD, a limited number of innovative approaches have been 

proposed by researchers. For instance, Xu et al. [24] presented a ViT-teaching-CNN method, employing a 

strategy that allows the ViT to cease instruction partway through the process. In a different approach, 

Wang et al. [25] suggested a self-distillation technique for ViT, utilizing a contrastive learning pipeline. 

Nabi et al. [34] put forward a synchronized training method via a CNN-teaching-ViT framework. Zhao et 

al. [35] developed functional modules that can distill knowledge extracted by a multi-sample contrastive 

network to enhance a CNN or ViT. Despite the creativity of these methods, there still remains significant 

potential for improvement in both the accuracy and compactness of the models.  

RSIs typically have noisier backgrounds compared to natural images. Consequently, a neural 

architecture search (NAS) for CNNs may yield more efficient and compact models than those developed 

on ImageNet-1K. For instance, Ao et al. [36] presented their NAS method, which employs a two-phase 

evolutionary process. Broni-Bediako et al. [37] suggested a NAS method that utilizes a symbolic linear 

generative encoding strategy. Shen et al. [38] put forward a NAS method that incorporates a multistage 

network progressive fusion pipeline. However, despite some of the resulting models being compact, most 

of these methods only achieved below-average accuracy.   

In a similar vein to NAS methods, researchers have proposed other lightweight methods based on 

CNN or ViT, utilizing self-designed architectures. For instance, Chen et al. [39] proposed a multi-branch 

local attention method that employs an enhancement strategy for ResNet with embedded attention 

modules. Huang et al. [40] introduced a stochastic depth method that integrates convolutional blocks with 

their coordinate attention. Shi et al. [41] presented a self-designed CNN that incorporates a unique self-

compensating convolution structure. Xu et al. [42] suggested a CNN structure-based method that utilizes 

Lie group encoding for image decomposition. Bai et al. [43] put forward a multi-scale feature fusion 

approach that employs octave convolution for processing RSI multi-frequency and multi-scale features. 

Zhang et al. [44] proposed a Laplacian-CNN method that leverages Laplacian operators to capture high-

frequency features. Huang et al. [45] suggested a lightweight transformer-based method that uses multi-

level group convolution modules in conjunction with transformer blocks. However, most of these 

methods do not demonstrate competitive performance when evaluated based on accuracy. 

Domain discrepancies in RSIs have hindered the effectiveness of models developed on ImageNet-1K. 

Despite having more parameters than CNNs, most ViT-based methods reported in the literature are not 

highly competitive for RSI classification. For instance, Bazi et al. [46] demonstrated the potential 

effectiveness of ViT for RSI classification. Wang et al. [47] posited that ViT models, such as Swin-ViT, 

could be more effective when pre-trained on large-scale datasets comprising one million RSIs. Lv et al. [48] 

proposed a progressive aggregation strategy for ViTs, aiming to enhance the representation abilities of 

spatial channel features. 

Furthermore, domain gaps often hinder many innovative methods from being competitive, even 

though their pipelines frequently consist of multiple models. For instance, Shen et al. [49] and Xu et al. [50] 

proposed two analogous multi-CNN methods that cascade two CNNs in parallel to capture global and 

local features. Similarly, Tang et al. [51] and Wang et al. [52] proposed two CNN cooperative methods that 

utilize unique loss functions as supervision indicators for two parallel CNNs. In contrast, researchers have 

also proposed other multi-model concepts based on ViTs. For example, Zhang et al. [53] proposed a ViT-

based method that uses the features from a CNN’s final pooling layer as patch embeddings. Wang et al. 

[54] proposed another ViT-based method that employs the features extracted by CNNs as additional 

embedded tokens for another ViT. Deng et al. [55] and Zhao et al. [56] proposed two similar methods that 

utilize a CNN and a ViT in parallel as cooperative components. Ma et al. [57] proposed an intriguing 

concept that uses a dual-branch module to mine homogeneous and heterogeneous patches for two 

parallel ViTs. Cheng and Lei [58] proposed an ensemble method that employs multiple lightweight CNNs 

cascaded before Hidden Markov Models as individual classifiers. However, few of these multi-model 

methods have achieved a competitive balance between accuracy and model size. 
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3. Methodologies 

3.1. Variance Consistency Learning 

 
Figure 3. Framework and Structure of the VCL Strategy and Module 

Figure 3 illustrates the framework of our VCL strategy and the structure of the VCL module. Within 

our learning framework, the VCL module processes original RSI samples as inputs and outputs 

transformed samples for model training. Specifically, we have designed seven gated activation operators 

(GAOs) within the VCL module, each comprising three crucial components: a stochastic probability 

generator, a DA or regularization function, and a conditional branch. During operation, the generator 

samples a stochastic probability along with the input samples. Within the branch, if the sampled 

probability does not exceed a predetermined threshold, the function transforms the input samples. 

Otherwise, the input and output samples remain identical. The seven GAOs, sequentially arranged within 

the VCL module, include color jitter, horizontal or vertical flip, rotation, random erasing, random resize 

crop, and CutMix. 

3.2. Proposed KD Method’s Framework 

 
Figure 4. Framework of the proposed KD method 

Figure 4 illustrates the framework of the proposed KD approach. Initially, the original RSI samples 

are processed using the VCL module. Subsequently, the transformed samples are input into the ViT 

teacher and CNN student for forward computation. As shown at the top of Figure 4, the ViT teacher 
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consists of multiple transformer blocks, each containing two essential components: multi-head attention 

and multi-layer perceptron (MLP) layers. After forward computation, the KD loss function processes the 

prediction logits from both the teacher and student models to produce a joint KD loss. The parameters of 

the student model are then updated via backpropagation based on this joint KD loss.  

The training pipeline spans a total of 600 epochs, with only the student CNN being trainable. A 

learning rate (LR) of 0.0002 is employed throughout the training process across all RSI datasets. Notably, 

the probability settings vary only for a fine-grained RSI dataset due to its differences in object granularity. 

3.3. Model Structures 

Our study used the Next-ViT-Small (N-ViT-S) as the teacher model, with reference [59] providing a 

detailed description of its architecture. Unlike the traditional ViT [7], N-ViT-S introduces a hybrid-

attention structure that integrates cascaded convolution operations with self-attention mechanisms. Table 

1 demonstrates that N-ViT-S, despite using fewer parameters, achieves higher accuracy than the 

conventional ViT-base model. In this table, ‘FLOPs’ measures floating-point operations in billions (G), and 

the ‘Top-1’ column indicates the accuracy of these models on the ImageNet-1K dataset. 

In assessing the efficacy of our proposed method, we employed the EfficientNet-B0 as the student 

model, with its comprehensive architecture detailed in reference [60]. This model, unlike other CNNs such 

as ResNets, incorporates built-in channel attention structures. Table 1 illustrates that EfficientNet-B0, 

despite its compact size, achieves satisfactory accuracy. 

Table 1. Comparative Analysis of Model Performances on the ImageNet-1K Dataset 

Model Param (M) FLOPs (G) Top-1 (%) 

ViT-Base 86.6 17.6 81.1 

N-ViT-S 31.7 5.8 82.5 

EfficientNet-B0 5.3 0.4 77.7 

3.4. KD Loss 

Let’s consider an RSI dataset, symbolized as 𝑆 = {𝑥𝑖 , 𝑦𝑖}, where 𝑥𝑖 and 𝑦𝑖 denote each RSI sample and 

its corresponding label within the set 𝑆, respectively. During forward computation, a classifier, when 

given 𝑥𝑖 as input, will generate a prediction logit not only for the intended category but also for non-target 

classes. In the context of modern deep learning models, each input 𝑥𝑖 is typically normalized to a tensor 

with values within the range of 0 to 1. Consequently, a classifier can fundamentally be perceived as a 

function, symbolized as 𝑓, which takes tensors as input and yields logit vectors as output. The function 𝑓 

can be characterized as follows: 

𝑦𝑖 = 𝑓(𝑥𝑖)                                                                                                                                                          (1) 

Assume that 𝑐 represents the category number within 𝑆. Consequently, each 𝑦𝑖 in Equation (1) is a 

vector encompassing 𝑐 prediction logits, which can be represented as 𝑦𝑖 ∈ ℝ1×𝑐. 

At present, deep learning models often possess an enormous number of parameters, sometimes even 

reaching into the trillions. This reality makes deployment in remote sensing particularly challenging, 

especially in cases like the ViT-Base model, which has close to 90 million parameters. Bucila et al. [8] 

pioneered the concept of model compression, a process that employs a smaller (student) model to mimic a 

larger, more robust (teacher) model. Expanding on this foundation, Hinton et al. [9] refined this technique 

of knowledge transfer, giving it the name KD.  

Utilizing the logits defined in Equation (1), 𝑦𝑖  undergoes a transformation into probabilities that 

correspond to each category, symbolized as 𝑝𝑖, via a softmax function. This transformation process can be 

articulated as follows: 

𝑝𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦𝑖) =
exp(𝑦𝑖)

∑ exp(𝑦𝑖)𝑐
𝑖=1

                                                                                                        (2) 

Commonly, logit-based KD methods utilize the objective function of Kullback-Leibler (KL) 

divergence for the loss computation. Throughout the distillation process, this function accepts 

probabilities from both the teacher and student models as inputs. The loss, symbolized as ℒ𝐾𝐷, can be 

articulated as follows: 

ℒ𝐾𝐷 = 𝐾𝐿(𝑃𝑡 ∥ 𝑃𝑠) =  ∑ (𝑃𝑡,𝑖 ×  𝑙𝑜𝑔
𝑃𝑡,𝑖

𝑃𝑠,𝑖

𝑐
𝑖=1 )                                                                                       (3) 
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In this context, 𝑃𝑡,𝑖 and 𝑃𝑠,𝑖 represent the probabilities derived from the teacher and student models, 

respectively.  

In a robust model, the prediction probability for the intended categories often escalates to nearly 98%, 

while it could plummet to as low as 0.1% or even lower for the non-intended classes. As a result, the logits 

computed by equation (2) associated with the intended categories will overshadow those of the non-

intended ones, particularly when the teacher model demonstrates high precision. To mitigate this concern, 

we commonly introduced a hyperparameter, denoted as 𝓉, to modulate the model’s prediction logits. 

They integrated 𝓉 into equation (2), thereby modifying the data distribution of the logits. The softening 

process can be delineated as follows: 

𝑝𝑖
𝓉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑦𝑖

𝓉
)                                                                                                                            (4)  

Given these conditions, the softened loss, symbolized as ℒKD
𝓉 , can be reformulated as follows: 

ℒKD
𝓉 = ∑ (𝓉2 × 𝑃𝑡

𝓉  𝑙𝑜𝑔
𝑃𝑡

𝓉

𝑃𝑠
𝓉

𝑐
𝑖=1 )                                                                                                             (5) 

The distillation process, when solely reliant on ℒKD
𝓉 , can be quite time-consuming in reducing the 

accuracy gaps. To accelerate the KD process, the training loss, which is exclusively computed based on the 

student model’s predictions, like cross-entropy loss, is often combined with ℒKD
𝓉 . Consequently, a 

conventional KD training loss, represented as ℒKD−training, usually consists of two elements, which can be 

articulated as follows: 

ℒKD−training = − ∑ (𝑦𝑖
c
i=1 log 𝑃𝑠) + ∑ (𝓉2 × 𝑃𝑡

𝓉  𝑙𝑜𝑔
𝑃𝑡

𝓉

𝑃𝑠
𝓉

𝑐
𝑖=1 )                                                               (6) 

Nonetheless, the loss in Equation (6) necessitates an extensive process, potentially spanning tens of 

thousands of training epochs, before a student model attains stratified accuracy [10–11]. This can be 

attributed to the reduced information entropy resulting from the exclusive use of the KL divergence.  

Huang et al. [61] proposed an alternative loss function, termed DIST, as a potentially more efficient 

solution. Specifically, the DIST loss utilizes the Pearson distance to modify the loss computation defined 

in Equation (5). Let us denote the Pearson correlation coefficient and the Pearson distance as 𝜌 and 𝐷𝑃, 

respectively. Then, 𝐷𝑃 can be expressed as follows: 

𝐷𝑃 = 1 − 𝜌(𝑉𝑡 , 𝑉𝑠) = 1 −
∑ (𝑉𝑡−𝑉�̅�

c
i=1 )(𝑉𝑠−𝑉�̅�)

√∑ (𝑉𝑡−𝑉�̅�)2c
i=1 ∑ (𝑉𝑠−𝑉�̅�)2c

i=1

                                                                             (7) 

In Equation (7), it uses 𝑉𝑡 and 𝑉𝑠 to denote the probability vectors of the teacher and student models, 

respectively. 

DIST, utilizing the Pearson distance, initially presents its inter-class loss, symbolized as ℒ𝑖𝑛𝑡𝑒𝑟. This 

loss is computed via equation (7), taking 𝑉𝑡  and 𝑉𝑠  as inputs. Given that the training batch size is 

represented as 𝑁, ℒ𝑖𝑛𝑡𝑒𝑟 can be articulated as follows: 

ℒ𝑖𝑛𝑡𝑒𝑟 =
1

𝑁
∑ 𝐷𝑃(𝑉𝑡 , 𝑉𝑠)𝑁

𝑖=1                                                                                                                   (8) 

In addition, DIST presents an intra-class loss, symbolized as ℒ𝑖𝑛𝑡𝑟𝑎 . This loss is calculated using 

equation (7), with the transposes of 𝑉𝑡 and 𝑉𝑠 at the 𝑁 and 𝑐 dimensions serving as inputs. In this context, 𝑐 

signifies the count of categories within a dataset. Consequently, ℒ𝑖𝑛𝑡𝑟𝑎 can be articulated as follows: 

ℒ𝑖𝑛𝑡𝑟𝑎 =
1

𝑐
∑ 𝐷𝑃(𝑉𝑡

𝑇 , 𝑉𝑠
𝑇)𝑐

𝑗=1                                                                                                               (9) 

In this study, we initially utilize DIST to substitute the softened loss, as defined in Equation (5). 

Following this, we retain the cross-entropy loss of the student, as outlined in Equation (6), without any 

changes. Additionally, we establish the temperature hyperparameter at a value of 2 when calculating 

probabilities. Consequently, the KD loss in our knowledge transfer process should be redefined as 

follows: 

ℒKD−training = − ∑ (𝑦𝑖
c
i=1 logPs) + ℒ𝑖𝑛𝑡𝑒𝑟 + ℒ𝑖𝑛𝑡𝑟𝑎                                                                         (10) 

The CutMix method employs a hyperparameter, denoted as α, to determine the modified label 

subsequent to the cutting and mixing of samples. This hyperparameter is characterized as the proportion 

of the patch area associated with Class B to the total area of a specific sample from Class A. We can 

represent the CutMix labels as 𝐿𝑎𝑏𝑒𝑙𝐶𝑀, the Class A labels as 𝐿𝑎𝑏𝑒𝑙𝐴, and the Class B labels as 𝐿𝑎𝑏𝑒𝑙𝐵. The 

formulation of the CutMix labels can be expressed as follows: 
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𝐿𝑎𝑏𝑒𝑙𝐶𝑀 = (1 − 𝛼) × 𝐿𝑎𝑏𝑒𝑙𝐴 + 𝛼 × 𝐿𝑎𝑏𝑒𝑙𝐵                                                                                                   (11) 

3.5. Distillation Algorithm 

Algorithm 1. Distillation procedure using pseudo-code 

Definitions: The training and testing RSI subsets are denoted as 𝑆𝑡𝑟𝑎𝑖𝑛 = {(𝑥𝑖 , 𝑦𝑖)} and 𝑆𝑡𝑒𝑠𝑡 = {(𝑥𝑖 , 𝑦𝑖)}, respectively. 

The teacher and student models and the CutMix algorithm are symbolized by 𝑓𝑇, 𝑓𝑆, and 𝑓𝐶𝑀, respectively. The 

transformations in DA are represented by 𝐷𝐴𝑇𝑟. The notation 𝑓𝐶𝐸 is used to denote the cross-entropy loss function. 

The notations 𝑃𝑇 and 𝑃𝑆 are used to denote the predicted probabilities of teacher and student models, respectively. 

Input: Images and labels from the training or testing subsets. 

Output: the accuracy (𝐴𝑐𝑐) results of the student classifier. 

1 For Epoch = 1, 2, . . . , 600 Do 

2  For iteration = 1 to (
𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑡𝑟𝑎𝑖𝑛)

64
+ 1)Do 

3   Sample a batch of samples from 𝑆𝑡𝑟𝑎𝑖𝑛, and input them to the functions of 𝑓𝑇 and 𝑓𝑆. 

4   Predict probabilities using the equation: 𝑃𝑇 = 𝑓𝑇( 𝑓𝐶𝑀(𝐷𝐴𝑇𝑟(𝑥𝑖)) ) 

5   Predict probabilities using the equation: 𝑃𝑆 = 𝑓𝑆( 𝑓𝐶𝑀(𝐷𝐴𝑇𝑟(𝑥𝑖)) ). 

6   Calculate the loss using the equation: 𝐿𝑜𝑠𝑠 = 𝑓𝐶𝐸(𝑃𝑆, 𝑓𝐶𝑀(𝑦𝑖)) +  ℒ𝑖𝑛𝑡𝑒𝑟(𝑃𝑇 , 𝑃𝑆) + ℒ𝑖𝑛𝑡𝑟𝑎(𝑃𝑇 , 𝑃𝑆). 

7   Update parameters through back propagation. 

8  End For 

9  
Calculate the student classifier's accuracy using the equation: 

𝐴𝑐𝑐 = (𝑓𝑆(𝑥𝑖) == 𝑦𝑖), where 𝑥𝑖 , 𝑦𝑖 ∈ 𝑆𝑡𝑒𝑠𝑡, and save the 𝐴𝑐𝑐 result. 

10 End For 

11 Return the 𝐴𝑐𝑐 results 

Algorithm 1 provides a detailed outline of the distillation procedures for the proposed method. The 

entire process spans 600 training epochs, as stated in line 1. For each epoch, lines 2 and 3 illustrate that a 

batch of 64 images and their corresponding labels are fed into the teacher and student models after 

undergoing DA techniques. The prediction probabilities for the samples are then calculated and used in 

the distillation loss function, as shown in lines 4, 5, and 6. Gradients are subsequently computed to 

facilitate the update of the student model’s parameters. As depicted in lines 8, 9, 10, and 11, the accuracy 

of the student classifier is assessed at the conclusion of each epoch, and a record of the accuracy is 

maintained.  

Regarding the additional hyperparameter configurations, the initial LR is established at 2×10−4 and is 

governed by the cosine decay algorithm, with a lower limit for the LR set at 2×10−5. The Adam-W 

optimizer is utilized with a weight decay parameter of 1×10−6. For the weights in the batch normalization 

layer, the decay parameter is assigned a value of zero. Moreover, a consistent resolution of 2562 is 

preserved throughout both the training and testing phases across all datasets. 

During the training phase of the N-ViT-S teacher model, we utilized an algorithm specifically 

designed for inherent RSI characteristics. Detailed information can be found in reference [23]. We made a 

significant adjustment to the algorithm: we used a smaller initial LR of 5×10−5 and extended the training 

duration to 600 epochs. 

3.6. Dataset and Division 

We use two widely recognized benchmarks [63], the Aerial Image Dataset 30 (AID30) and the North 

Western Polytechnic University 45 (NWPU45), for effectiveness evaluation. The AID30 includes 30 

separate categories, with a total of 10,000 images, each uniformly presenting a resolution of 6002. By 

comparison, the NWPU45 contains 45 distinct categories with a total of 31,500 images, each consistently 

exhibiting a resolution of 2562. 

In order to evaluate the effectiveness of the method on low-resolution RSIs, we also utilized the 

Aircraft Fine Grain Recognition 50 (AFGR50) dataset [54] as a benchmark. The AFGR50 dataset 

encompasses 50 distinct categories, collectively containing 12,500 images, each uniformly presenting a 

resolution of 1282.  

Both the NWPU45 and AFGR50 maintain a consistent number of samples across categories, with 700 

and 250 samples per category, respectively. In contrast, the AID30 is imbalanced, with the number of 

samples per class varying between 220 and 420. Randomly selected samples from each category across 

these three datasets are displayed in Figures 5, 6, and 7.  
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Figure 5. Representative Samples per Category of the AID30 Dataset 

 
Figure 6. Representative Samples per Category of the NWPU45 Dataset 

 
Figure 7. Representative Samples per Category of the AFGR50 Dataset 

To ensure an equitable comparison, we adhered to the training ratio (TR) delineated in the extant 

literature: AID30 at 20% and 50%; NWPU45 at 10% and 20%; and AFGR50 at 10%, 20%, and 30%. For each 

TR, we randomly selected samples from the whole dataset to form the training subsets, while the 

remaining samples were designated as testing subsets. 

3.7. Performance Evaluation Metrics 

We employed the overall accuracy (OA) and the confusion matrix as evaluation metrics, consistent 

with existing literature. The symbol N_c denotes the total count of samples correctly classified, while N_t 

signifies the total count of classified samples. Hence, OA can be expressed as follows: 
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𝑂𝐴 =
𝑁𝑐

𝑁𝑡
                                                                                                                                               (12) 

The confusion matrix exhibits the classification outcomes for all categories within a dataset. This 

figure is an organized tabular representation that offers comprehensive details about the number of 

samples that have been correctly and incorrectly classified per category. 

4. Experimental Results 

4.1. OA Results 

We conducted a comparative analysis of effectiveness using OA as the criterion. The results of this analysis are 

displayed in Tables 2, 3, and 4. This comparison encompasses 32 advanced methods published within the last three 

years. The tables sequentially present the results for AID30, NWPU45, and AFGR50. In these tables, the column titled 

‘Algorithm Uniqueness’ offers an overview of the unique pipelines used by various methods. The ‘Params’ column 

contains either the original data as mentioned in the relevant literature or evaluations based on the foundational 

structures of the corresponding models. The use of ‘None’ in the tables signifies the absence of comprehensive details 

in the related literature. 

4.1.1. OA results for AID30 

Table 2. OA (%) Comparison among Different Methods Using the AID30 Dataset 

Methods Algorithm Uniqueness 
Params 

(M) 

AID30 (%) 

TR-20% TR-50% 

RE-EfficientNet [23] Single EfficientNet-B3 12.0 97.11 ± 0.06 98.15 ± 0.10 

ET-GS-Net [24] ViT-teaching-CNN 11.7 95.58 ± 0.18 96.88 ± 0.19 

LaST-Net [25] ViT self-distillation > 28.0 83.23 87.34 

TST-Net [26] 
CNN-teaching-CNN 

1.0 85.50 None 

CKD-Net [27] None None None 

VSDNet [28] 

Hint-based KD 

>8.0 96.73 ± 0.15 97.95 ± 0.10 

DKD-Net [29] 4.4 95.09 96.94 

ESD-MBENet [30] 23.9 96.39 ± 0.21 98.40 ± 0.23 

CT-ViT [34] 
CNN-teaching-ViT 

86.9 96.74 ± 0.13 None 

EMSC-Net [35] >88.6 96.02 ± 0.18 97.35 ± 0.17 

TPENAS-Net [36] 

NAS 

1.7 None None 

SLGE-Net [37] 5.1 96.10 ± 0.18 (TR-60%) 

DARTS-Net [38] 3.8 95.65 (TR-60%) 

MBLA-Net [39] 
Attention CNN 

>25.6 95.60 ± 0.17 97.14 ± 0.03 

LRSCM-Net [40] 7.6 95.41 97.28 

SCCNN [41] 

Self-designed CNN 

0.5 93.15 ± 0.25 97.31 ± 0.10 

LGRIN [42] 4.6 94.74 ± 0.23 97.65 ± 0.25 

MF2C-Net [43] 33.2 95.54 ± 0.17 97.02 ± 0.28 

LH-Net [44] >46.8 93.30 ± 0.10 97.81 ± 0.13 

LT-Net [45] 

Single Transformer 

8.2 94.98 ± 0.08 None 

ViT-Base [46] 88.6 94.97 ± 0.01 None 

Swin-ViT-Tiny [47] 28.3 96.55 ± 0.03 98.10 ± 0.06 

SCViT [48] >88.6 95.56±0.17 96.98±0.16 

ACGL-Net [49] 

Dual-CNNs 

33.6 94.44 ± 0.09 96.10 ± 0.10 

GLDBS-Net [50] >23.4 95.45 ± 0.19 97.01 ± 0.22 

AC-Net [51] >276.6 93.33 ± 0.29 95.38 ± 0.29 

T-CNN [52] 15.9 94.55 ± 0.27 96.72 ± 0.23 

TRS-Net [53] 

CNN-and-ViT 

46.3 95.54 ± 0.18 98.48 ± 0.06 

P2FEViT [54] >94.9 94.72 ± 0.04 95.85 ± 0.15 

CT-Net [55] >107.8 96.25 ± 0.10 97.70 ± 0.11 

L2RCF-Net [56] 46.7 97.00 ± 0.17 97.80 ± 0.22 

HHTL-Net [57] Dual-ViTs >177.2 96.52 ± 0.13 96.88 ± 0.21 

CNN–HMM Ensemble [58] Four-CNN ensemble 19 93.93 ± 0.15 97.81 ± 0.04 

ViT Teacher (This work) Single N-ViT-S 28.4 97.65 ± 0.07 98.56 ± 0.13 

VCL-Net (This work) Single Efficient-B0 5.3 97.10 ± 0.09 98.22 ± 0.02 

As demonstrated in Table 2, our teacher model exhibits superior OA values in comparison to other 

methods. We posit that the extensive attention operators in the N-ViT-S architecture render it more 

sensitive than CNNs. Consequently, our training strategy, which is based on the inherent characteristics of 

RSIs, evidently outperforms other Vision ViT methods. The OA of our student model indicates that our 



AETiC2024, Vol. 8, No. 4 66 

www.aetic.theiaer.org 

cross-modal method can effectively transfer knowledge from the ViT teacher. Moreover, the OA margin at 

the 20% TR is slightly larger than that at the 50% TR. It is reasonable to assume that a smaller training 

subset may contain larger variances in data distribution. Therefore, we contend that the results of the OA 

margins are justifiable. 

In comparison to other methods, we observed that only RE-EfficientNet [23] exhibits a competitive 

OA value at the 20% TR, despite having 2.3 times the parameters of VCL-Net. However, for the 50% TR, 

ESD-MBENet [30] and TRS-Net [53] show OA improvements of approximately 0.2% when using VCL-Net 

as a baseline. We attribute these improvements to three factors as follows: 

Firstly, AID30 is an imbalanced dataset, with the number of samples in the most confusing categories 

significantly below the average. For instance, the ‘church’ class only has 240 samples, while the average 

number is 333. Consequently, we posit that the OA improvements may include accuracy fluctuations 

resulting from the random division of training subsets. 

Secondly, ESD-MBENet and TRS-Net possess significantly more parameters than our VCL-Net. In 

deep learning, a larger model volume typically correlates with better generalization capability, albeit at 

the expense of model efficiency. 

Lastly, and more importantly, CNNs excel at local feature extraction, while ViTs are superior at 

handling long-range dependencies of features. Therefore, our VCL-Net may not be able to transfer all the 

‘dark knowledge’ from the ViT teacher due to structural differences. 

In comparison to other KD methods, we observed that VCL-Net demonstrates significant 

improvements in OA, ranging from 1.0% to 10.0% at the 20% TR. For the 50% TR, the advantages of VCL-

Net are largely consistent, with the exception of ESD-MBENet. These results suggest that VCL-Net is more 

effective than other KD methods when benchmarked against AID30.  

When compared to other multi-model approaches, we found that the vast majority have not achieved 

competitive accuracy, despite their extensive parameters serving as expectation indicators. This 

comparison further underscores that VCL-Net is a more efficient classifier than its counterparts. 

4.1.2. OA results for NWPU45 

Table 3. OA (%) Comparison among Different Methods Using the NWPU45 Dataset 

Methods Algorithm Uniqueness 
Params 

(M) 

NWPU45 (%) 

TR-10% TR-20% 

RE-EfficientNet [23] Single EfficientNet-B3 12.0 94.60 ± 0.05 96.15 ± 0.03 

ET-GS-Net [24] ViT-teaching-CNN 11.7 92.72 ± 0.28 94.50 ± 0.18 

LaST-Net [25] ViT self-distillation > 28.0 72.58 73.67 

TST-Net [26] 
CNN-teaching-CNN 

1.0 80.00(TR-50%) 

CKD-Net [27] None 91.6 (TR is not clear) 

VSD-Net [28] 

Hint-based KD 

>8.0 93.24 ± 0.11 95.67 ± 0.11 

DKD-Net [29] 4.4 93.72 95.76 

ESD-MBENet [30] 23.9 93.05 ± 0.18 95.36 ± 0.14 

CT-ViT [34] 
CNN-teaching-ViT 

86.9 93.88 ± 0.07 

EMSC-Net [35] >88.6 93.58 ± 0.22 95.37 ± 0.07 

TPENAS-Net [36] 

NAS 

1.7 None 90.38  

SLGE-Net [37] 5.1 96.56 ± 0.13 (TR-80%)) 

DARTS-Net [38] 3.8 95.32 (TR-60%) 

MBLA-Net [39] 
Attention CNN 

>25.6 92.32 ± 0.15 94.66 ± 0.11 

LRSCM-Net [40] 7.6 92.18 94.74 

SCCNN [41] 

Self-designed CNN 

0.5 92.02 ± 0.50 94.39 ± 0.16 

LGRIN [42] 4.6 91.95 ± 0.15 94.43 ± 0.16 

MF2C-Net [43] 33.2 92.07 ± 0.22 93.85 ± 0.27 

LH-Net [44] >46.8 89.89 ± 0.15 92.53 ± 0.13 

LT-Net [45] 

Single Transformer 

8.2 92.21 ± 0.11 None 

ViT-Base [46] 88.6 92.60 ± 0.10 None 

Swin-ViT-Tiny [47] 28.3 93.02 ± 0.12 94.51 ± 0.05 

SCViT [48] >88.6 92.72±0.04 94.66±0.10 

ACGL-Net [49] 

Dual-CNNs 

33.6 None None 

GLDBS-Net [50] >23.4 92.24 ± 0.21 94.46 ± 0.15 

AC-Net [51] >276.6 91.09 ± 0.13 92.42 ± 0.16 

T-CNN [52] 15.9 90.25 ± 0.14 93.05 ± 0.12 

TRS-Net [53] CNN-and-ViT 46.3 93.06 ± 0.11 95.56 ± 0.20 
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P2FEViT [54] >94.9 94.97 ± 0.13 95.74 ± 0.19 

CT-Net [55] >107.8 92.24 ± 0.21 94.46 ± 0.15 

L2RCF-Net [56] 46.7 94.58 ± 0.16 95.60 ± 0.12 

HHTL-Net [57] Dual-ViTs >177.2 92.07 ± 0.44 94.21 ± 0.09 

CNN–HMM Ensemble [58] Four-CNN ensemble 19 93.43 ± 0.25 95.51 ± 0.21 

ViT Teacher (This work) Single N-ViT-S 28.4 94.84 ± 0.12 96.30 ±0.13 

VCL-Net (This work) Single Efficient-B0 5.3 94.55 ± 0.01 96.23 ± 0.09 

As depicted in Table 3, our ViT teacher model achieves superior OA values on the NWPU45 dataset, 

except that P2FEViT [54] has a 0.1% improved OA value at the 10% TR. It is reasonable to note that 

P2FEViT has at least 3.4 times the parameters of our teacher model. VCL-Net exhibits approximately a 0.3% 

OA margin with the teacher at the 10% TR, but this OA gap narrows to 0.1% at the 20% TR. These results 

align with the OA improvements on AID30 when the training samples become sufficient. 

In comparison to 33 other advanced approaches, we observed that only RE-EfficientNet presents 

competitive OA values with VCL-Net at both the 10% and 20% TRs. Given that RE-EfficientNet and 

P2FEViT clearly possess more parameters, the results demonstrate that VCL-Net maintains a more 

balanced approach in terms of efficiency and effectiveness. 

When juxtaposed with other KD techniques, it is evident that VCL-Net exhibits substantial 

enhancements in OA, with a range of 2.0% to 22.0% at the 10% TR. The benefits of VCL-Net remain steady 

at the 20% TR. These findings further underscore the superior efficacy of VCL-Net over other KD 

strategies when evaluated using the NWPU45 benchmark. 

Our evaluation of various multi-model methodologies revealed that most did not reach satisfactory 

accuracy levels. Furthermore, when tested against the complex NWPU45 dataset, both ESD-MBENet and 

TRS-Net failed to demonstrate competitive OA values. This comparative analysis further accentuates the 

superior efficiency and robustness of VCL-Net as a classifier over its counterparts. 

4.1.3. OA results for AFGR50 
Table 4. OA (%) Comparison among Different Methods Using the AFGR50 Dataset 

Methods Algorithm Uniqueness Params (M) 
AFGR50 (%) 

TR-10% TR-20% TR-30% 

P2FEViT [54] CNN and ViT >94.9 89.24 ± 0.10 95.22 ± 0.13 97.27 ± 0.15 

ViT Teacher (This work) Single N-ViT-S 28.4 91.10 ± 0.51 96.50 ± 0.22 97.25 ± 0.07 

VCL-Net (This work) Single Efficient-B0 5.3 90.68 ± 0.18 96.11 ± 0.09 97.16 ± 0.13 

In RSIs, the task of fine-grained object recognition is widely performed. As a result, we evaluated the 

generalization capability of VCL-Net using the AFGR50 dataset. The OA outcomes of three methods 

applied to the AFGR50 dataset are presented in Table 4. Currently, the utilization of this dataset as a 

performance benchmark in public studies is minimal, given its recent release in March 2023. 

Table 4 reveals that our teacher-student model surpasses P2FEViT in terms of OA on the 10% and 

20% TRs. However, when evaluated using a TR of 30%, P2FEViT manages to reduce the OA gap. Given 

that the AFGR50 dataset comprises 12,500 samples, it is logical to assume that an increase in training 

samples can boost model performance. Hence, these findings suggest that VCL-Net exhibits greater 

effectiveness and resilience when dealing with subsets comprising varying volumes. 

Furthermore, the OA values derived from the NWPU45 and AFGR50 datasets further substantiate 

the superior efficiency and robustness of VCL-Net across diverse RSI datasets, despite P2FEViT 

possessing 17.9 times more parameters than VCL-Net. 

4.1.4. Overview of OA Comparisons 
The consistent enhancement in the OA values of VCL-Net across various RSI datasets underscores 

the efficacy of our cross-modal method for knowledge transfer. When evaluated on the basis of accuracy, 

VCL-Net outperforms other KD-based approaches significantly. In comparison to other multi-model 

methods, VCL-Net not only offers superior accuracy but also maintains a lightweight architecture. 

Furthermore, VCL-Net exhibits commendable robustness across diverse RSI datasets. 
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4.2 Confusion Matrixes 

Figures 8, 9, and 10 display confusion matrices that examine the distribution of errors across different 

categories. An accuracy of 100% is denoted by 1.0. Categories marked in red are particularly challenging, 

while those in blue are susceptible to misclassification. For clarity, the categories with an OA exceeding 

98% are excluded. 

4.2.1. Confusion Results for AID30. 

 
Figure 8. Confusion Matrix for AID30 at the 20% TR 

Figure 8 demonstrates that within the AID30 dataset, five categories, namely center, park, resort, 

school, and square, pose significant challenges in terms of differentiation. These categories display OAs 

falling below 93%. Delving deeper, three categories—park, resort, and square—exhibit a misclassification 

ratio exceeding 0.3% with another class. Notably, the results reveal a high degree of similarity between the 

square category and both the center and park categories, leading to confusion. 

The AID30 dataset exhibits an uneven distribution of sample numbers across categories, with an 

average count of 333. Notably, the categories that pose greater challenges within AID30 typically have 

fewer samples than this average. For example, the sample counts for the center, resort, and school 

categories are 260, 290, and 300, respectively. Consequently, this imbalance in AID30 could result in a 

significant bias in OA due to random divisions of training subsets.  

 
Figure 9. Confusion Matrix for NWPU45 at the 20% TR 

4.2.2. Confusion Results for NWPU45 
Figure 9 reveals that within the NWPU45 dataset, six categories display OAs of less than 93.0%. 

Among these, the categories of church and palace prove especially difficult to differentiate, with their OAs 
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dipping below 90%. Moreover, these two categories, church and palace, exhibit a high degree of confusion 

with each other, resulting in elevated misclassification ratios of 12% and 10%, respectively. Conversely, 

the remaining categories demonstrate a more distributed confusion pattern with relatively smaller ratio 

values. 

4.2.3. Confusion Results for AFGR50 
Figure 10 reveals that within the AFGR50 dataset, nine categories display OAs of less than 93.0%. 

Among these, the categories of A24, A25, A39 and A46 prove especially difficult to differentiate, with their 

OAs dipping below 90%. Moreover, these two categories, A24 and A44, exhibit elevated misclassification 

ratios of up 6% to 10%, respectively. These observations highlight that fine-grained RSIs have very 

different features compared building scenes. 

 
Figure 10. Confusion Matrix for AFGR50 at the 20% TR 

Upon juxtaposing the outcomes of various methodologies, it is observed that the categories causing 

the most confusion essentially remain unchanged. Additionally, both TRS-Net and ESD-MBENet, despite 

demonstrating marginally superior OAs on AID30, consistently exhibit lower OAs across categories on 

NWPU45. Importantly, each category in NWPU45 possesses an identical sample size of 700, rendering 

NWPU45 a more appropriate benchmark for performance assessment compared to AID30. These findings 

suggest that certain multi-model methods excel only in specific training subsets. In contrast, the 

perplexing outcomes on both AID30 and NWPU45 further attest to the efficacy and robustness of VCL-

Net. 

4.4. Visualization and Analysis   

To shed light on the model’s activation mappings and validate the effectiveness of its features, we 

employ two separate techniques. The first approach involves the use of Gradient-Weighted Class 

Activation Mapping (Grad-CAM) [64], which provides visual explanations for the model’s predictions. 

Following this, we leverage t-Distributed Stochastic Neighbor Embedding [65], commonly known as t-

SNE, to examine the strength of the model’s features. 

4.4.1. Grad-CAM results 

Figure 11 demonstrates the CAM results, which include seven samples from the ambiguous 

categories of AID30 and NWPU45. Specifically, the samples of the center, park, resort, school, and square 

are part of AID30, while the remaining two are from NWPU45. In the figure, the original images are 

displayed in the first row, and their corresponding CAMs are presented in rows two to four. Among all 

the CAMs, the first row is associated with EfficientNet-B0, which employs the training strategy mentioned 
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in reference [23]. The second and final rows are attributed to our N-ViT-S teacher and VCL-Net, 

respectively. 

 
Figure 11. Analysis of Representative RSI Samples Using Grad-CAM 

Rows 2, 3, and 4 highlight the brighter areas in the CAMs, signifying the main activation regions in 

the original images. These highlighted zones are intimately associated with earthbound objects that act as 

key visual elements, contributing to the semantic labels of the categories. For instance, the center’s circular 

roof and the school’s functional structure serve as such features. 

As shown in rows 2 and 3, the varying bright regions indicate that N-ViT-S possesses distinct feature 

representations compared to the pure CNN. Specifically, the ViT teacher’s activation focuses more on the 

long-range dependencies of features. This is particularly evident in the CAMs of the palace, resort, and 

school categories, which include multiple building objects in the scenes. 

In contrast, the CAMs of VCL-Net exhibit a balance between the activation patterns of the ViT and 

pure CNN. Specifically, the activations of VCL-Net demonstrate more feature dependencies compared to 

pure CNN. Conversely, the bright regions of VCL-Net are more concentrated compared to the teacher. 

These CAMs validate that VCL-Net has effectively identified crucial local features in RSIs and has learned 

more feature dependencies through the process of distillation. 

4.4.2. t-SNE Results 

 

Figure 12. t-SNE Visualization on the AID30, NWPU45, and AFGR50 Datasets 

Figure 12 presents the t-SNE results for the AID30, NWPU45, and AFGR50 datasets, using a two-

dimensional projection to represent the high-dimensional data distribution across different categories. 
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This approach allows for the distinction of spatial distances among samples and provides a 

straightforward method for assessing a model’s feature effectiveness by distinguishing between 

categories. 

Figure 12 demonstrates that all categories within the three datasets are clearly differentiated, with the 

exception of several pairs of categories that show slight overlap. This observation aligns with those 

identified in the confusion matrix diagrams. For instance, in the AID30 dataset, the overlapping pairs 

include the categories of center with church and resort with school. Similarly, in the NWPU45 dataset, the 

overlapping pairs are railway with railway station, lake with wetland, and church with palace. Despite 

these overlaps, the extent of separation among categories is sufficient for differentiating various classes. 

In summary, these t-SNE results indicate that the deep features derived by VCL-Net are effective. 

4.5. Computational Efficiency Analysis 

In this section, we evaluate the inference speeds of various models using a dataset of 25,200 RSI 

samples. The testing resolution follows Algorithm 1. 

As indicated in Table 5, VCL-Net, which employs an Efficient-B0 backbone, exhibits the fastest 

inference speed among all methods. By comparison, VCL-Net requires only about 28.8% of the inferring 

times and 16.7% of the parameters of the ViT teacher. Similarly, VCL-Net is also a more lightweight 

classifier with superior accuracy when compared to RE-EfficientNet. 

Table 5. Comparison of Inferring Speeds for Various Models 

Model Params(M) FLOPs(G) Inferring time(second) 

ResNet-50  11.7 1.8 63.5 ± 0.17 

RE-EfficientNet [32] 12.0 1.8 59.9 ± 0.24 

N-ViT-S Teacher 31.7 5.8 105 ± 0.03 

VCL-Net 5.3 0.4 30.2 ± 0.20 

4.6. Ablation Experiments 

In this segment of the study, we conduct a range of ablation tests to confirm the effectiveness and 

necessity of the methods we propose. During these tests, all hyperparameters used in training comply 

with Algorithm 1, barring the parameter subjected to ablation. 

In the initial set of experiments, we implement a training procedure devoid of KD. To begin with, we 

examine the effect of DA methods on accuracy when the training approach is simply replicated in the 

domain of natural images, termed “duplication”. In other words, we assign a value of 1.0 to the 

probabilities within all GAOs. Following this, we assess the influence of our proposed DA strategy on 

accuracy. As depicted in Table 6, the findings suggest that both DA combinations yield noticeably lower 

OA values in the absence of the ViT teacher. 

Table 6. Evaluating the OA (%) of VCL-Net with Different DA Approaches. 

Model KD 
DA Strategy AID30 NWPU45 

Duplication  Ours TR20% TR10% 

VCL-Net 

 ✓  95.34 ± 0.12 91.80 ± 0.29 

  ✓ 94.60 ± 0.04 90.75 ± 0.10 

✓  ✓ 97.10 ± 0.09 94.55 ± 0.01 

Additionally, we assess the impact of our DA configurations within the KD procedure. Specifically, 

we first substitute the settings in Table 1 with the duplication, followed by conducting the KD process as 

outlined in Algorithm 1. As indicated in Table 7, VCL-Net fails to attain satisfactory OA outcomes despite 

undergoing training for six times more epochs, ranging from 600 to 2400. 

Hence, the results of the ablation study underscore the critical role of our strategy. It enables VCL-

Net to attain exceptional accuracy during the cross-modal knowledge transfer process while reducing the 

time costs by at least a factor of six. 

Table 7. Assessing the OA (%) of VCL-Net under Different Training Methods. 

Model DA Strategy 
Training Epochs AID30 NWPU45 

600 2400 TR10% TR20% 

VCL-Net 
Duplication  ✓ 96.61 ± 0.06 94.40 ± 0.06 

Ours ✓  97.10 ± 0.09 94.55 ± 0.01 
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5. Conclusions 

In this study, we introduce an innovative cross-modal knowledge transfer method designed to create 

efficient and precise classifiers for RSI classification. This method utilizes a ViT-teaching-CNN pipeline 

and adeptly mitigates the domain differences between RSIs and natural images. It incorporates novel yet 

simple principles to better adapt to the intrinsic properties of RSIs, thereby markedly improving efficiency 

and resilience during the distillation stage. 

The advantages of our approach stem mainly from two factors. Firstly, we contend that the 

discrepancies in data distribution within RSI datasets have significantly hindered the efficacy and 

efficiency of the logit-based KD process. Secondly, we devise a more potent algorithm that incorporates a 

blend of manageable DA and regularizations to tackle the intrinsic attributes of RSIs. Specifically, the 

discrepancies come from cluttered backgrounds and substantial resemblances across categories. 

Our distillation model, referred to as VCL-Net, was evaluated on three standard RSI datasets. The 

findings revealed that VCL-Net demonstrated superior precision and resilience in comparison to 33 other 

cutting-edge techniques published in the last three years. Specifically, VCL-Net achieved a maximum 

accuracy improvement of 22% across various RSI datasets when contrasted with other KD techniques 

documented in the literature. Additionally, the Grad-CAM outcomes suggest that VCL-Net has acquired 

long-range dependencies from the ViT instructor through distillation. Furthermore, the ablation studies 

confirm that our approach has significantly cut down the time costs of knowledge transfer by at least 75% 

compared to simply replicating strategies in the natural image domain. Hence, we illustrate that cross-

modal knowledge transfer can be more effective and efficient when domain differences are appropriately 

managed. 

Our research, while promising, is in its nascent stages and acknowledges certain limitations that 

necessitate future enhancements. Initially, we have not conducted an exhaustive grid search across all 

hyperparameters, indicating potential avenues for refining our methodology. Additionally, we have yet to 

fully leverage the unique attributes of RSIs in crafting bespoke and more effective distillation techniques. 

We aspire to address these issues in our forthcoming endeavors. 
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