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Abstract: For safe and efficient navigation, self-driving cars rely on determining their position through a system 

called Autonomous Vehicle Localization (AVL). Traditional self-driving cars face challenges related to security 

and speed in finding their location. To address these problems, this article presents a more secure way, called the 

Secured Localization (SL), to locate the vehicle, even when signals are weak. First, vehicles are registered and 

logged in. If Global Positioning System (GPS) signals are available, they are processed securely utilizing Gini-

Montgomery Curve Cryptography (GMCC); If GPS signals are not available, then the car uses nearby signal 

points to find its location. SL data and sensed data from the sensors, including Light Detection and Ranging 

(LIDAR), Radio Detection and Ranging (RADAR), and Camera are given to On Board Unit (OBU).  Then, the 

vehicle’s position is matched with a pre-stored map for accurate navigation. Finally, various methods such as 

Fisher Score Chi-Hell Square based K Means Clustering (FSCH-KMC), Cosine Gramian-Kalman Filter (CG-KF), 

and Hadoop Distributed File System (HDFS) are applied to prioritize and refine the vehicle’s location for better 

navigation. The proposed framework is simulated and the results show an accuracy of 98%, precision of 98%, and 

recall of 99%, with improvements in security and faster location finding compared to previous systems. 

Keywords: Cosine Gramian-Kalman Filter (CG-KF); Fisher Score Chi-Hell Square based K Means Clustering 

(FSCH-KMC); Gini-Montgomery Curve Cryptography (GMCC); Global Positioning System (GPS); Secured 

Localization (SL) 
 

1. Introduction 

Secured Localization (SL) is essential for ensuring safe and optimal navigation in the rapidly 

advancing field of Autonomous Vehicles (AVs). Precise real-time location is critical for AVL, typically 

obtained via Global Positioning System (GPS) [1]. While GPS is the standard method for determining the 

position of AVs [2], its signals are often disrupted by obstacles such as buildings, electric clouds, and 

tunnels, posing significant challenges to autonomous driving [3]. Therefore, ensuring AVL in the absence 

of GPS signals remains a crucial challenge [4]. 

To address this, Simultaneous Localization and Mapping (SLAM) techniques have gained 

prominence in AVL [5]. Moreover, sensor fusion methods, such as RADAR, are employed to detect 

obstacles in GPS-denied environments [6-7]. While Deep Neural Networks (DNNs) assist with object 

detection, they are susceptible to noise intrusion [8]. Kalman Filters (KF), including Adaptive KF, are 
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commonly used to predict AV positions and movements [9-10]. However, traditional methods face 

limitations concerning security, accuracy, emergency response speed, and the handling of large-scale data 

storage and analysis. 

To overcome these limitations and ensure safe AV navigation, this research proposes using a Cosine 

Gramian-Kalman Filter (CG-KF) and Gini-Montgomery Curve Cryptography (GMCC) algorithms for 

secured localization (SL). 

1.1. Problem Statement 

Conventional localization techniques in AVL face several challenges, including: 

• Managing diverse sensor data, which can lead to data storage and processing errors. 

• Lack of security, which creates vulnerabilities in the AV ecosystem. 

• Delays in responding to unexpected obstacles, often causing hesitation or abrupt swerving. 

The primary objectives of the proposed work are as follows: 

• To address big data challenges, the Hadoop Distributed File System (HDFS) is implemented 

for efficient sensor data storage 

• For securing the vehicle's location, a secret key with encryption is deployed using the Gini-

Montgomery Curve Cryptography (GMCC) algorithm 

• Advanced algorithms such as the Pareto Distribution-based Hidden Markov Model (PD-

HMM), Fisher Score Chi-Hell Square-based K-Means Clustering (FSCH-KMC), and Cosine 

Gramian-Kalman Filter (CG-KF) are employed to enhance precise navigation 

The remaining paper has been systematized as: section 2 discusses the related works and their limits, 

the proposed AVL methodology is displayed in Section 3, outcomes and discussion are exemplified in 

Section 4, and finally, the paper is wrapped up in Section 5. 

2. Literature Survey 

Kasmi et al. [11] presented an end-to-end Ego-Localization (EL) for ensuring AV safety navigation. 

For ego-lane determination, OpenStreetMap (OSM) datasets, Bayesian, and Hidden Markov Model 

(HMM) were utilized by the model. The You Only Look Once (YOLO) detector’s purpose outperformed 

lane-level localization. The overall EL of the system was tackled by the outcomes. Yet, EL accounted for 

RT road changes, thus limiting its utility.  

Steinke et al. [12] introduced Geometric Fingerprinting (GF) for precise AVL and mapping utilizing 

an optional Inertial Measurement Unit. For feature tracking, it utilized LIDAR, and for pole detection, it 

utilized the Pole Feature Detection Scan Line algorithm. GF was adaptable to several sensors, thus 

ensuring higher localization accuracy. However, it lacked robustness in bad weather, which affected the 

accuracy and quality of LIDAR data. 

Nguyen et al. [13] propounded a Wireless Sensor Network (WSN) for AVL in GPS-denied areas, 

combining K Nearest Neighbour (KNN) and Support Vector Machine (SVM) methods with Wi-Fi 

ensemble neural networks and grid-based Markov localization. A stable decrement in global localization 

error was shown by the result. However, reliance on Wi-Fi could limit reliability in Wi-Fi-deprived GPS-

denied areas.  

Bersani et al. [14] employed an integrated algorithm for efficient Ego-Vehicle (EV) and barrier state 

estimation in autonomous driving. The KF and Probability Density Function (PDF) were utilized by the 

algorithm for SL filtering. Obstacles were found and tracked by sensor fusion from the RADAR and 

LIDAR. The relative position and localization of EVs in AVs were shown by the outcomes. Sensor 

reliance, which could lead to failures or inaccuracies, was an important drawback. 

Lin et al. [15] deployed a Planar Primitive group-based Point Cloud Registration Structure for AVL in 

underground parking lots. For LIDAR 3D data evaluation, the system applied the Iterative Closest Point 

(ICP), Normal Distribution Transform (NDT) algorithm, and SLAM. The approach determined the 

parallel efficiency of four datasets to serve RT applications. The model attained decimetre-level 

localization perfection; however, it has limited applicability in non-planar environments. 

The literature review explores various approaches to Autonomous Vehicle Localization (AVL) and 

their associated challenges. Still, these systems had the following limitations: 
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• Difficulty to adapt with real-time road changes 

• Lacked robustness in poor weather conditions which in turn affects the LIDAR accuracy 

• Dependence on Wi-Fi networks and sensors posed potential failure risks 

• Accuracy issues in non-planar environments 

3. Proposed Methodology for Secured AVL and Navigation 

The proposed work employs secured AVL utilizing GMECC and CG-KF-based navigation 

framework. Figure 1 exemplifies the proposed architecture. 

 
Figure 1. Block diagram of the proposed model 

The block diagram in Figure 1 outlines the process of secure localization and navigation in 

autonomous vehicles (AVs), integrating various technologies and algorithms for accurate vehicle 

positioning. The workflow begins with the Autonomous Vehicle which registers and logs in through a 

secure system. The vehicle's sensors—Radar, Camera, and LIDAR—collect data related to the vehicle's 

surroundings. 

Once the vehicle is registered, a decision is made based on GPS availability. If GPS is available, a 

secure location is determined using the Gini-Montgomery Curve Cryptography (GMCC) algorithm to 

ensure safe communication and location privacy. In cases where GPS is unavailable, Beacon Node (BN) 

Clustering is performed using the Fisher Score Chi-Hell Square K-Means Clustering (FSCH-KMC) 

algorithm for localization without GPS. 

The sensor data is processed by the On-Board Unit (OBU), which then sends the data for Map 

Matching using the Pareto Distribution-based Hidden Markov Model (PD-HMM). If the map matching 

process identifies discrepancies (i.e., if the data does not match the map), an alert is generated to notify the 

vehicle of potential issues or inaccuracies. 

If the map matching is successful, the system proceeds with Prioritization and Localization. For 

prioritization, the FSCH-KMC algorithm is employed again to manage and prioritize navigation tasks. For 

localization, the Cosine Gramian-Kalman Filter (CG-KF) is used to ensure real-time and precise 

localization. Hadoop Distributed File System (HDFS) is also integrated for managing large sensor 

datasets, optimizing the navigation process, and ensuring efficient storage of the data. 

This integrated system ensures secure, reliable, and precise navigation for autonomous vehicles in 

various conditions, including GPS-denied environments. 
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3.1. AV Registration & Login 

Primarily, for accessing the vehicle location, vehicle details, namely Identity Document (ID), Source 

and Destination (SD) messages, GPS ID, and On-Board Unit (OBU) numbers are to be registered and 

logged in. After that, the GPS availability is checked for routing the AV. If GPS is available, then the 

number of sensed GPS signals   can be articulated as, 

𝛿𝑘 = 𝛿1, 𝛿2, … … 𝛿𝑛    (𝑘 = 1,2, … … 𝑛)                                                                                                       (1) 

3.2. GPS Location Security 

Here, 𝛿𝑘 from GPS is encrypted using GMCC for secure navigation. Elliptic Curve Cryptography 

(ECC) offers faster encryption and decryption as well as enhanced security. However, it faces challenges 

in generating private keys using random values. The Montgomery curve along with Gini coefficients is 

employed to address the issue. It provides resistance to quantum attacks and concentrates on point 

addition and doubling for secure cryptographic calculations. The GMCC algorithm comprises the 

following steps. 

3.2.1. Curve Selection 

Firstly, the Gini-based Montgomery curve is selected, and the curve parameters (𝒔𝟏, 𝒔𝟐) including 

curve equation, coefficients, and base point are described as, 

𝑠2𝑦2 = 1 − ∑ 𝑥(𝑥2 + 𝑠𝑖𝑥 + 1)𝑛
𝑠𝑖=1

                                                                                                                       (2) 

Here, 𝑥 𝑎𝑛𝑑 𝑦 signify the coordinates of curve. 

3.2.2. Private and Public Key Computation 

Thereafter, from the above curve equation, the private key (𝑑) and base point (𝑏) are generated 

randomly; then, the public key (𝑸′) is computed through scalar multiplication utilizing adding and 

doubling methods. Now, two points 𝑃 and 𝑄 are initiated from equation 2. If bit = 1, then two points 

addition with point (𝑅) takes place. 

𝑃 ⊕ 𝑄 = 𝑅                                                                                                                                                            (3) 

Afterward, the slope 𝜇 of the curve is computed by assigning 𝑃 = (𝑥𝑃, 𝑦𝑃), 𝑄 = (𝑥𝑄, 𝑦𝑄) and 𝑅 =

(𝑥𝑅, 𝑦𝑅) as,  

𝜇 = (
𝑦𝑄−𝑦𝑃

𝑥𝑄−𝑥𝑃
)                                                                                                                                                          (4) 

𝑥𝑅 = 𝑠2 ∗ 𝜇2 − 𝑠1 − 𝑥𝑃 − 𝑥𝑄                                                                                                                              (5) 

If bit=0, then two points doubling is performed as per the following equations, 

2𝑃 = 𝑅                                                                                                                                                                  (6) 

𝜇 =
3𝑥𝑃2+2𝑠1𝑥𝑃+1

2𝑠2𝑦𝑃
                                                                                                                                                   (7) 

𝑥𝑅 = 𝑠2 ∗ 𝜇2 − 𝑠1 − 2 ∗ 𝑥𝑃                                                                                                                                  (8) 

𝑦𝑅 = (2𝑥𝑃 + 𝑥𝑄 + 𝑠1) ∗ 𝜇 − 𝑠2 ∗ 𝜇3 − 𝑦𝑃                                                                                                         (9) 

3.2.3. Encryption 

Now, the signal (𝛿𝑘) is encrypted by utilizing a random integer (𝑣) and (𝑸′, 𝒃), which is expressed as, 

𝛹1 = (𝑣 ∗ 𝑏) + 𝑆𝑠                                                                                                                                               (10) 

𝛹2 = 𝛭 + (𝑣 ∗ 𝑄′) + 𝑆𝑠                                                                                                                                     (11) 

Here, 𝛹1, 𝛹2 exemplify the cipher texts created for the input GPS signals. 

3.2.2. Decryption 

Thereafter, the encrypted data is imported into OBU; it is then decrypted by employing (𝑑). The 

decrypted signal (𝑀) is formulated as, 

𝛭 = ((𝛹2 − 𝑑) ∗ 𝛹1) − 𝑏                                                                                                                                  (12) 

3.3. BN Clustering 

By utilizing the FSCH-KMC technique, the vehicles undergo clustering with pre-initialized BN in 

GPS-denied areas. FSCH-KMC clustering is chosen as it is more flexible and better at handling non-linear 
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relationships compared to other clustering methods. FSCH-KMC can handle larger datasets more 

efficiently and provides better handling of overlapping clusters, while hierarchical methods might be 

more computationally intensive. Also, FSCH-KMC provides more control over cluster membership and 

can handle cases where clusters are not of uniform density. 

 KMC has a high convergence ability; yet, the performance is affected by the random centroid 

initialization. Hence, fisher score-based Chi-hell squared distance is implemented for centroid calculation, 

which results in efficient clustering outcomes. The steps in FSCH-KMC are described further. 

3.3.1. Initialization 

Primarily, BN (𝑏𝑛) is initiated as data points with 𝐾 −clusters; then, by adopting the Fisher score 

technique, the centroid is calculated as follows: 

𝑏𝑛 = {𝑏1, 𝑏2, … … , 𝑏𝑁}               (13) 

𝜍𝑖 → 𝐹𝑠 =
∑ 𝜌𝑦(𝛽𝑦−𝛽)𝑛

𝑦=1
2

∑ 𝜌𝑦 𝜎𝑦
2𝑛

𝑦=1
               (1) 

Here, 𝜍𝑖 implies centroid, 𝐹𝑠 elucidates the selected 𝜍𝑖, 𝛽𝑦 signifies data points belonging to a class𝑦, 𝜎𝑦 

exemplifies standard deviation, and 𝜌𝑦is the fraction of 𝛽𝑦 and 𝛽 is the global means of data.  

3.3.2. Assignment 

Chi-hell squared distance (𝐷ƛ2) distances between 𝑏𝑛 and 𝐹𝑠 is calculated for BN as, 

 𝐷ƛ2 (𝑏𝑛𝑖
, 𝐹𝑠𝑗

) =  
1

√2
√∑  

(𝑏𝑛𝑖
−𝐹𝑠𝑗)

2

𝑏𝑛𝑖
+𝐹𝑠𝑗

𝑁
𝑖=1                (2) 

3.3.3. Updation of Centroid 

After 𝐷ƛ2 calculation, 𝐹𝑠 for iteration 𝜏 + 1, (𝐹𝑠
𝜏+1) is updated by, 

𝐹𝑠
𝜏+1 = (

1

𝑁𝐾
) ∗ ∑

(𝑏𝑛𝑖
−𝐹𝑠𝑗

𝜏) 2

𝑏𝑛𝑖
+𝐹𝑠𝑗

𝜏                (3) 

Here, 𝜏 implies the iteration number and 𝑁𝐾 notates the number of 𝑏𝑛 on cluster 𝐾. 

3.3.4. Convergence Check 

Now, the change in 𝐹𝑠 (𝛥𝐹𝑠
𝐾) for all 𝐾 between the current (𝐹𝑠

𝜏+1) and previous (𝐹𝑠
𝜏) iteration is 

assessed as,  

𝛥𝐹𝑠
𝐾 = ‖𝐹𝑠

𝜏+1 − 𝐹𝑠
𝜏‖               (4) 

3.3.5. Termination 

The above step continues until a maximum number of iterations (𝜏𝑚𝑎𝑥) is reached. The 𝑌 number of 

clustered BN (𝑈𝑘) is determined as, 

𝑈𝑘 → 𝑢1, 𝑢2, … … 𝑢𝑌               (5) 

The pseudocode of the proposed FSCH-K Means Clustering is given in Algorithm 1. 

Algorithm 1. Pseudocode of the proposed FSCH-K Means Clustering 

Input: Beacon nodes (𝑏𝑛) 

Output: Clustered BN 𝑈𝑘 

Begin 

 Initialize beacon nodes 

 While 𝜏 < 𝜏𝑚𝑎𝑥 

  Select fisher score centroid 𝐹𝑠 

  for 1 < 𝑏𝑛 → 𝑖 < 𝑁 

   
Compute 𝐷ƛ𝜒2 (𝑏𝑛𝑖

, 𝐹𝑠𝑗) 

   Evaluate centroid updation 𝐹𝑠
𝜏+1

 

   Calculate 𝛥𝐹𝑠
𝐾 = ‖𝐹𝑠

𝜏+1 − 𝐹𝑠
𝜏‖ 

  End for 

 End While 

 Obtain 𝑈𝑘 → 𝑢1, 𝑢2, … … 𝑢𝑛 

End 

This pseudo-code outlines a clustering algorithm for beacon nodes using Fisher Score-based centroid 

selection and Chi-square distance. Initially, the beacon nodes are initialized, and the algorithm iterates 
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until a maximum time limit is reached. In each iteration, a centroid is selected based on the Fisher Score, 

and for each beacon node, the Chi-square distance to the centroid is computed. The centroid is then 

updated iteratively, and the change in centroid position is calculated. The process continues until 

convergence or the maximum iterations are met, resulting in clustered beacon nodes as the output. 

Thereafter, the clustered BN provides a location for AV. Hence, the location is secured utilizing the 

GMCC algorithm that is defined above in section 3.2. 

3.4. On Board Unit (OBU) 

The information on secured location and sensed data from RADAR, LiDAR, and camera are given in 

OBU. Then, for accurate matching and navigation of AVs, the map obtained from BN clustering and the 

offline map developed during vehicle initialization are compared utilizing the PD-HMM algorithm. 

3.4.1. Map Matching 

In this phase, map matching utilizing the PD-HMM algorithm is executed. When contrasted with 

complicated models, HMM makes better predictions. However, the process of HMM was complicated 

owing to the large number of states and interactions between them. Hence, the Pareto Distribution is 

deployed to reduce the interaction between the states. The steps involved in PD-HMM are as follows. 

 
Figure 2. Structural design of PD-HMM 

In the beginning, transition 𝑇, observation 𝐸, probabilities 𝜌 , and initial probability array 𝜋 are 

initialized, and HMM (𝜆)is described as, 

𝜆 = 𝑇, 𝐸, 𝜋               (6) 

𝑇 = [𝑡𝑚𝑛], 𝑡𝑚𝑛 = 𝜌 (
𝑓𝜀=𝑗𝑛

𝑓𝜀−1=𝑗𝑚
)               (7) 

𝐸 = [𝑒𝑚(𝐿)], 𝑒𝑚(𝐿) = 𝜌 (
𝑔𝜀=𝜗𝐿

𝑓𝜀=𝑗𝑚
)               (8) 

𝜋 = [𝜋𝑚], 𝜋𝑚 = 𝜌(𝑓1 = 𝑗𝑚)                (9) 

Here, 𝑡𝑚𝑛epitomizes transition matrix, 𝑓𝜀 = 𝑓1, 𝑓2 … … 𝑓𝑛 𝑎𝑛𝑑 𝑔𝜀 = 𝑔1, 𝑔2, … … 𝑔𝑛 specify the fixed 

states and observation sequence, 𝑗𝑚, 𝑗𝑛 exemplify the storing 𝜌 of state 𝑛 following state 𝑚, and 𝜗𝐿implies 

storing 𝜌 of 𝐸(𝐿) being produced from 𝑛.  

Thereafter, the Pareto Distribution function (℘) → 𝜌(𝐺|𝜆) for minimizing the interactions with 

positive real numbers (𝛼)is evaluated by, 

𝜌(𝐺|𝜆) = 1 − ∑ 𝛼𝜀
𝑚𝑁

𝑚=1                 (10) 

Now, equation (22) undergoes optimal backtracking with probability (𝜌 ∗) which is represented as, 

𝜌 ∗= 𝑚𝑎𝑥
1≤𝑚≤𝑁

[𝛿𝜀(𝑚)]                (11) 

Afterward, (𝜌 ∗) undergoes illustrative training to match offline and online maps of AV and gives 

information to navigate. 

3.5. On Board Unit (OBU) 

Prioritization and Localization are done in navigation through FSCH-KMC and CG-KF. The big data 

has dropouts in data storage and consistency. Therefore, HDFS is utilized that ensure data reliability and 

parallel processing by dividing large files into blocks and distributing them across a cluster to provide 

structured data for efficient clustering. 
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3.5.1. Prioritization 

The FSCH-KMC algorithm is utilized for prioritizing the minimum distance signal in cases where 

unexpected objects suddenly appear in front of the vehicle. The algorithm mentioned in section 3.3 

clusters nearby signals (𝛾𝑠) to curb speed in situations of the sudden appearance of objects in AVs. 

3.5.2. Localization 

Hence, by utilizing the CG-KF algorithm, the prioritized signals (𝛾𝑠) are localized. Conventional KF 

can handle nonlinear and non-Gaussian data, but it assumes the data as linear observation models, which 

is not realistic in real-world scenarios. Hence, to mitigate such an assumption, Cosine Gramian-KF is 

utilized. The CG-KF steps are as follows. 

Initialization: Primarily, the state vector (ℵ
→

0) and state covariance matrix (𝛷0) are initiated as, 

ℵ
→

𝑐|𝑐−1 = 𝑢𝑠ℎℵ
→

𝑐 + 𝑣𝑠ℎƛ𝑐               (12) 

Where, ℵ
→

𝑐|𝑐−1signifies state estimate vector, ℵ
→

𝑐symbolizes state transition vector,  𝑢𝑠ℎ and 𝑣𝑠ℎ specify 

the state transition and control input matrix, and ƛ𝑐epitomizes control input. 

Prediction: After initialization, ℵ
→

𝑐|𝑐−1 and 𝛷 are predicted utilizing a Cosine Gramian matrix (𝑄𝑐) with 

a𝑍time step. It is given by, 

ℜ𝑐|𝑐−1 = 𝑢𝑠ℎℜ𝑐−1𝑢𝑠ℎ
𝑍 + [

𝑄𝑐.𝑄𝑐
𝑇

𝑄𝑐.𝑄𝑐
𝑇]               (13) 

Gramian Updation: Now, Gramian matrix (𝕴𝒔𝒉) of 𝑢𝑠ℎ and 𝛷𝑠ℎ utilizing 𝕴𝒔𝒉is updated by, 

ℑ𝑠ℎ = 𝑢𝑠ℎ𝑢𝑠ℎ
𝑍  & ℜ𝑐|𝑐−1 = ℑ𝑠ℎℜ𝑐|𝑐−1ℑ𝑠ℎ

𝑍                (14) 

Gain Estimation: From the above predictions, K gain using ℜ𝑐|𝑐−1and measurement covariance𝛷𝑀is 

estimated as, 

𝜅𝑐 = ℜ𝑐|𝑐−1𝑀𝑠ℎ
𝑍 (𝑀𝑠ℎℜ𝑐|𝑐−1𝑀𝑠ℎ

𝑍 + 𝛷𝑀)               (15) 

ℜ𝑐 = (𝛪 − 𝜅𝑐𝑀𝑠ℎ)ℜ𝑐|𝑐−1               (16) 

Where, 𝜅𝑐 symbolizes Kalman Gain and 𝑀𝑠ℎ epitomizes the measurement matrix for Z, which is 

required for time-to-time updation of AVL to navigate in the correct path. Hence, the proposed system 

provides SL and efficient navigation for AVs. 

4. Results and Discussion 

To validate the proposed model’s performance and consistency, the entire research was conducted 

and tested on the Python platform, which provides a versatile and effective environment for coding, 

testing, and deploying a wide range of applications and tools. 

4.1. Performance Analysis of AVL in SL 

To show the effectiveness of the work, the proposed techniques’ performance is included in this 

section. A performance comparison between the proposed GMCC and other prevailing techniques, 

namely ECC, Rivest-Shamir-Adleman (RSA), Digital Signature Algorithm (DSA), and ElGamal is given in 

Table 1. The conventional ECCs’ security level is improved by the inclusion of the Montgomery curve 

together with the Gini coefficient. When compared to other models, the proposed model obtains a better 

security level of 98% and a lower attack rate of 3%. Moreover, GMCCs’ shorter encryption and decryption 

times and lower memory storage requirements confirm better performance compared to others. 

Table 1. Validation of GMCC 

Methods Proposed GMCC ECC RSA DSA ElGamal 

Security Level (%) 98.63 96.57 94.24 92.15 89.25 

Attack Level (%) 3.89 7.52 12.35 15.84 19.57 

Encryption Time (ms) 1058 1365 1565 1765 1986 

Decryption Time (ms) 1035 1325 1524 1741 1898 

Memory Usage on Encryption (kb) 31924960 33117824 35697864 37332600 39774856 

Memory Usage on Decryption (kb) 31396048 33890144 35531856 37643536 39852152 

The proposed BN clustering performance is depicted by contrasting it with prevailing methods in 

Figure 3. Chi-Hell Square distance measurement tailored for centroid and distance calculation is 



AETiC 2024, Vol. 8, No. 3 71 

www.aetic.theiaer.org 

employed in this work. This approach remarkably obtains 13247 milliseconds (ms) CT, outperforming 

KMC, Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH), Partition Around Medoids 

(PAM), and Fuzzy C-Means (FCM) that have longer CT of 17523 ms, 22354 ms, 26847 ms, and 29685 ms, 

correspondingly. Therefore, the proposed FSCH-KMC performed better than existing clustering 

methodologies. 

 
Figure 3. Clustering Time (CT) Analysis 

   
(a)       (b) 

Figure 4. Comparative analysis of PD-HMM 

The proposed PD-HMM algorithms’ comparative analysis is exemplified in Figure 4(a). From this 

figure, it is evident that PD-HMM obtains impressive precision of 98%, recall of 99%, accuracy of 98%, and 

similarity rates of 98%, correspondingly. This superior performance can be attributed to the PD’s 

implementation within the HMM framework. Contrarily, lower percentages in the aforementioned 

metrics are yielded by prevailing algorithms, namely Estimation Theory (ET), Andrey Markov Model 

(AMM), Hidden Bernoulli Model (HBM), and HMM. Likewise, from Figure 4 (b), considerably less time of 

4578 ms is required by the proposed work for matching maps, while other methods consume more time. 

Thus, the proposed PD-HMM performs superior compared to other techniques, thus delivering better 

outcomes. 

The efficiency of the proposed FSCH-KMC method that considerably reduces response and 

prioritization times during validation when contrasted with conventional techniques is highlighted in 

Figure 5. This speed enhancement is credited for the utilization of Chi-Hell Square distance measurement, 

thus facilitating quicker minimum distance signal selection. However, in AV applications, algorithms, 

such as K-Means, BIRCH, PAM, and FCM experience delays and challenges. Hence, the proposed method 

obtains a response time of 2145 ms and a prioritization time of 3587 ms, correspondingly, clearly 

illustrating its better performance over alternatives. 

The performance of the proposed CG-KF’s Processing Time (PT) and error rate meeting with 

prevailing methods, namely KF, Alpha Beta Filter (ABF), Kernel Adaptive Filter (KAF), and Covariance 
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Intersection (CI) is displayed by the graphs in Figures 6 (a) and (b). It uses Cosine-based G-KF that excels 

in handling real-life nonlinear and non-Gaussian systems. Particularly, the CG-KF obtains a low error rate 

of 0.08475% and a rapid PT of 3896 ms, thus outperforming other methods that exhibit higher error rates 

and slower processing times. 

 
Figure 5. Response and Prioritization Time Investigation 

  

(a) (b) 

Figure 6. (a) Processing Time (PT); (b) Error Rate Scrutiny 

Table 2. Comparative analysis with existing works 

Techniques Methods used Precision 

(%) 

CT 

(ms) 

PT 

(ms) 

Error 

(%) 

Accuracy 

(%) 

Proposed work GMCC, FSCH-KMC, PD-HMM, and CG-KF  98% 13247 3896 0.08475 98% 

(Chu et al., 2021) [16] VL via Cooperative Mapping - - - 0.6 80% 

(Luo & Ko, 2022) [17] USBL SLAM-based UKF - 15423 - 0.15 - 

(Wang et al., 2021) [18] Box particle filtering of AVL with OSM 53% - 6470 0.7 77% 

(Vivacqua et al., 2018) [19] BLMR-based Map Matching for SL - - 7660 0.401 97% 

(Farag, 2021) [20] RT-MCL based UKF - - 4745 0.3 - 

In Table 2, the proposed work uses GMCC, FSCH-KMC, PD-HMM, and CG-KF for SL in AVL 

systems, obtaining an impressive precision and accuracy of 98%. It also illustrates an effective clustering 

time of 13247 milliseconds and a processing time of 3896 milliseconds, correspondingly, with a low error 

rate of 0.08475. Contrarily, differing levels of performance are exhibited by several alternative methods 

with some higher processing time and error rates of 0.6, 0.4, 0.3, 0.15, and 0.6 together with lower accuracy 

and precision, highlighting the clear superiority of the proposed approach. Therefore, the effectiveness of 

the proposed work of SL in AVs is confirmed by the experimental analysis. 

5. Conclusion  

This research proposed a robust and effective framework for ensuring faster and more secure 

Autonomous Vehicle Localization (AVL) in both GPS-available and GPS-denied environments. By 
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integrating advanced algorithms, this framework offers substantial improvements over existing methods. 

For secure AVL, the Gini-Montgomery Curve Cryptography (GMCC) and Fisher Score Chi-Hell Square-

based K-Means Clustering (FSCH-KMC) algorithms were utilized. The GMCC algorithm provided a 

significant security advantage, achieving a high security level of 99% and reducing the attack rate to only 

3%. This demonstrates its effectiveness in safeguarding AVs from potential threats during localization. 

Additionally, the FSCH-KMC algorithm played a critical role in optimizing navigation decision-

making. It delivered the fastest localization time of 3587 ms, efficiently clustering signals based on 

minimal distances. This reduced the latency in signal processing, enabling AVs to make decisions swiftly 

and reliably. For navigating AVs, the Cosine Gramian-Kalman Filter (CG-KF) further enhanced the 

framework by ensuring rapid processing times of 3896 ms, with a low error rate of 0.084, demonstrating 

its accuracy and speed in real-time navigation tasks. 

Collectively, these results show that the proposed framework outperforms existing AVL systems in 

terms of both security and processing speed, offering a comprehensive solution for fast, secure, and 

precise AV localization. 

6. Future scope of work  

Despite the promising results, certain challenges remain, particularly when localizing AVs under 

adverse weather conditions. Although the framework delivers faster and more secure AVL in optimal 

conditions, signal prioritization and localization can become increasingly difficult in varying weather 

scenarios. In the future, further research will focus on enhancing the localization process under harsh 

weather conditions by integrating more advanced sensor technologies and algorithms. This will enable 

the system to maintain its high performance in even the most challenging environmental conditions, 

ensuring continuous and reliable AV navigation. 
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