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Abstract: For safe and efficient navigation, self-driving cars rely on determining their position through a system
called Autonomous Vehicle Localization (AVL). Traditional self-driving cars face challenges related to security
and speed in finding their location. To address these problems, this article presents a more secure way, called the
Secured Localization (SL), to locate the vehicle, even when signals are weak. First, vehicles are registered and
logged in. If Global Positioning System (GPS) signals are available, they are processed securely utilizing Gini-
Montgomery Curve Cryptography (GMCC); If GPS signals are not available, then the car uses nearby signal
points to find its location. SL data and sensed data from the sensors, including Light Detection and Ranging
(LIDAR), Radio Detection and Ranging (RADAR), and Camera are given to On Board Unit (OBU). Then, the
vehicle’s position is matched with a pre-stored map for accurate navigation. Finally, various methods such as
Fisher Score Chi-Hell Square based K Means Clustering (FSCH-KMC), Cosine Gramian-Kalman Filter (CG-KF),
and Hadoop Distributed File System (HDEFS) are applied to prioritize and refine the vehicle’s location for better
navigation. The proposed framework is simulated and the results show an accuracy of 98%, precision of 98%, and
recall of 99%, with improvements in security and faster location finding compared to previous systems.

Keywords: Cosine Gramian-Kalman Filter (CG-KF); Fisher Score Chi-Hell Square based K Means Clustering
(FSCH-KMC); Gini-Montgomery Curve Cryptography (GMCC); Global Positioning System (GPS); Secured
Localization (SL)

1. Introduction

Secured Localization (SL) is essential for ensuring safe and optimal navigation in the rapidly
advancing field of Autonomous Vehicles (AVs). Precise real-time location is critical for AVL, typically
obtained via Global Positioning System (GPS) [1]. While GPS is the standard method for determining the
position of AVs [2], its signals are often disrupted by obstacles such as buildings, electric clouds, and
tunnels, posing significant challenges to autonomous driving [3]. Therefore, ensuring AVL in the absence
of GPS signals remains a crucial challenge [4].

To address this, Simultaneous Localization and Mapping (SLAM) techniques have gained
prominence in AVL [5]. Moreover, sensor fusion methods, such as RADAR, are employed to detect
obstacles in GPS-denied environments [6-7]. While Deep Neural Networks (DNNs) assist with object
detection, they are susceptible to noise intrusion [8]. Kalman Filters (KF), including Adaptive KF, are
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commonly used to predict AV positions and movements [9-10]. However, traditional methods face
limitations concerning security, accuracy, emergency response speed, and the handling of large-scale data
storage and analysis.

To overcome these limitations and ensure safe AV navigation, this research proposes using a Cosine
Gramian-Kalman Filter (CG-KF) and Gini-Montgomery Curve Cryptography (GMCC) algorithms for
secured localization (SL).

1.1. Problem Statement

Conventional localization techniques in AVL face several challenges, including:
e Managing diverse sensor data, which can lead to data storage and processing errors.
e Lack of security, which creates vulnerabilities in the AV ecosystem.
e Delays in responding to unexpected obstacles, often causing hesitation or abrupt swerving.

The primary objectives of the proposed work are as follows:

e To address big data challenges, the Hadoop Distributed File System (HDEFS) is implemented
for efficient sensor data storage

e For securing the vehicle's location, a secret key with encryption is deployed using the Gini-
Montgomery Curve Cryptography (GMCC) algorithm

e Advanced algorithms such as the Pareto Distribution-based Hidden Markov Model (PD-
HMM), Fisher Score Chi-Hell Square-based K-Means Clustering (FSCH-KMC), and Cosine
Gramian-Kalman Filter (CG-KF) are employed to enhance precise navigation

The remaining paper has been systematized as: section 2 discusses the related works and their limits,
the proposed AVL methodology is displayed in Section 3, outcomes and discussion are exemplified in
Section 4, and finally, the paper is wrapped up in Section 5.

2. Literature Survey

Kasmi et al. [11] presented an end-to-end Ego-Localization (EL) for ensuring AV safety navigation.
For ego-lane determination, OpenStreetMap (OSM) datasets, Bayesian, and Hidden Markov Model
(HMM) were utilized by the model. The You Only Look Once (YOLO) detector’s purpose outperformed
lane-level localization. The overall EL of the system was tackled by the outcomes. Yet, EL accounted for
RT road changes, thus limiting its utility.

Steinke et al. [12] introduced Geometric Fingerprinting (GF) for precise AVL and mapping utilizing
an optional Inertial Measurement Unit. For feature tracking, it utilized LIDAR, and for pole detection, it
utilized the Pole Feature Detection Scan Line algorithm. GF was adaptable to several sensors, thus
ensuring higher localization accuracy. However, it lacked robustness in bad weather, which affected the
accuracy and quality of LIDAR data.

Nguyen et al. [13] propounded a Wireless Sensor Network (WSN) for AVL in GPS-denied areas,
combining K Nearest Neighbour (KNN) and Support Vector Machine (SVM) methods with Wi-Fi
ensemble neural networks and grid-based Markov localization. A stable decrement in global localization
error was shown by the result. However, reliance on Wi-Fi could limit reliability in Wi-Fi-deprived GPS-
denied areas.

Bersani et al. [14] employed an integrated algorithm for efficient Ego-Vehicle (EV) and barrier state
estimation in autonomous driving. The KF and Probability Density Function (PDF) were utilized by the
algorithm for SL filtering. Obstacles were found and tracked by sensor fusion from the RADAR and
LIDAR. The relative position and localization of EVs in AVs were shown by the outcomes. Sensor
reliance, which could lead to failures or inaccuracies, was an important drawback.

Lin et al. [15] deployed a Planar Primitive group-based Point Cloud Registration Structure for AVL in
underground parking lots. For LIDAR 3D data evaluation, the system applied the Iterative Closest Point
(ICP), Normal Distribution Transform (NDT) algorithm, and SLAM. The approach determined the
parallel efficiency of four datasets to serve RT applications. The model attained decimetre-level
localization perfection; however, it has limited applicability in non-planar environments.

The literature review explores various approaches to Autonomous Vehicle Localization (AVL) and
their associated challenges. Still, these systems had the following limitations:
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o Difficulty to adapt with real-time road changes

e Lacked robustness in poor weather conditions which in turn affects the LIDAR accuracy
e Dependence on Wi-Fi networks and sensors posed potential failure risks

e Accuracy issues in non-planar environments

3. Proposed Methodology for Secured AVL and Navigation

The proposed work employs secured AVL utilizing GMECC and CG-KF-based navigation
framework. Figure 1 exemplifies the proposed architecture.
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Figure 1. Block diagram of the proposed model

The block diagram in Figure 1 outlines the process of secure localization and navigation in
autonomous vehicles (AVs), integrating various technologies and algorithms for accurate vehicle
positioning. The workflow begins with the Autonomous Vehicle which registers and logs in through a
secure system. The vehicle's sensors—Radar, Camera, and LIDAR—collect data related to the vehicle's
surroundings.

Once the vehicle is registered, a decision is made based on GPS availability. If GPS is available, a
secure location is determined using the Gini-Montgomery Curve Cryptography (GMCC) algorithm to
ensure safe communication and location privacy. In cases where GPS is unavailable, Beacon Node (BN)
Clustering is performed using the Fisher Score Chi-Hell Square K-Means Clustering (FSCH-KMC)
algorithm for localization without GPS.

The sensor data is processed by the On-Board Unit (OBU), which then sends the data for Map
Matching using the Pareto Distribution-based Hidden Markov Model (PD-HMM). If the map matching
process identifies discrepancies (i.e., if the data does not match the map), an alert is generated to notify the
vehicle of potential issues or inaccuracies.

If the map matching is successful, the system proceeds with Prioritization and Localization. For
prioritization, the FSCH-KMC algorithm is employed again to manage and prioritize navigation tasks. For
localization, the Cosine Gramian-Kalman Filter (CG-KF) is used to ensure real-time and precise
localization. Hadoop Distributed File System (HDEFS) is also integrated for managing large sensor
datasets, optimizing the navigation process, and ensuring efficient storage of the data.

This integrated system ensures secure, reliable, and precise navigation for autonomous vehicles in
various conditions, including GPS-denied environments.
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3.1. AV Registration & Login

Primarily, for accessing the vehicle location, vehicle details, namely Identity Document (ID), Source
and Destination (SD) messages, GPS ID, and On-Board Unit (OBU) numbers are to be registered and
logged in. After that, the GPS availability is checked for routing the AV. If GPS is available, then the
number of sensed GPS signals can be articulated as,

Sk = 01,02, v .. Sn k=12,.... n) 1)

3.2. GPS Location Security

Here, 8, from GPS is encrypted using GMCC for secure navigation. Elliptic Curve Cryptography
(ECC) offers faster encryption and decryption as well as enhanced security. However, it faces challenges
in generating private keys using random values. The Montgomery curve along with Gini coefficients is
employed to address the issue. It provides resistance to quantum attacks and concentrates on point
addition and doubling for secure cryptographic calculations. The GMCC algorithm comprises the
following steps.

3.2.1. Curve Selection

Firstly, the Gini-based Montgomery curve is selected, and the curve parameters (sq,s,) including
curve equation, coefficients, and base point are described as,

S;y2=1-3%_ x(x* +s;x +1) )

Here, x and y signify the coordinates of curve.
3.2.2. Private and Public Key Computation

Thereafter, from the above curve equation, the private key (d) and base point (b) are generated
randomly; then, the public key (Q") is computed through scalar multiplication utilizing adding and
doubling methods. Now, two points P and @ are initiated from equation 2. If bit = 1, then two points
addition with point (R) takes place.

POQ=R ®)

Afterward, the slope u of the curve is computed by assigning P = (xP,yP), Q = (xQ,yQ) and R =
(xR, yR) as,

_ (yQ-yP
n=(7) @
XR = s, * u?> —s; — xP — xQ )
If bit=0, then two points doubling is performed as per the following equations,
2P =R (6)
_ 3xP22+52s1:P+1 %)
2Y
XR = s, * u> —s; — 2 * xP (8)
YR = (2xP 4+ xQ +51) * u— sy * u> — yP )

3.2.3. Encryption
Now, the signal (&) is encrypted by utilizing a random integer (v) and (Q’, b), which is expressed as,
W, = (v*b)+S, (10)
Y, =M+ (v*Q)+Ss (11)
Here, ¥;, ¥, exemplify the cipher texts created for the input GPS signals.

3.2.2. Decryption

Thereafter, the encrypted data is imported into OBU; it is then decrypted by employing (d). The
decrypted signal (M) is formulated as,

M=(W,—d)«¥,)—b (12)

3.3. BN Clustering

By utilizing the FSCH-KMC technique, the vehicles undergo clustering with pre-initialized BN in
GPS-denied areas. FSCH-KMC clustering is chosen as it is more flexible and better at handling non-linear
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relationships compared to other clustering methods. FSCH-KMC can handle larger datasets more
efficiently and provides better handling of overlapping clusters, while hierarchical methods might be
more computationally intensive. Also, FSCH-KMC provides more control over cluster membership and
can handle cases where clusters are not of uniform density.

KMC has a high convergence ability; yet, the performance is affected by the random centroid
initialization. Hence, fisher score-based Chi-hell squared distance is implemented for centroid calculation,
which results in efficient clustering outcomes. The steps in FSCH-KMC are described further.

3.3.1. Initialization
Primarily, BN (b,) is initiated as data points with K —clusters; then, by adopting the Fisher score
technique, the centroid is calculated as follows:

b, = {by, by, ... ., by} (13)
21 py(By—B)°
¢ - k=220 1)
y=1Fy %y

Here, ¢; implies centroid, F; elucidates the selected ¢;, f,, signifies data points belonging to a classy, g,
exemplifies standard deviation, and p,is the fraction of ), and f is the global means of data.

3.3.2. Assignment
Chi-hell squared distance (D,z) distances between b, and F, is calculated for BN as,

Dy (bni' FSJ) -

3.3.3. Updation of Centroid
After D,z calculation, F; for iteration 7 + 1, (FSTH) is updated by,
+1 _ (1 (bn=Fs;")
k= (E) X bp+Fs )

Here, 7 implies the iteration number and Ny notates the number of b, on cluster K.

3.3.4. Convergence Check
Now, the change in F (AFSK) for all K between the current (FST“) and previous (F;") iteration is

assessed as,
AFSK=||FST+1_FST” (4)

3.3.5. Termination
The above step continues until a maximum number of iterations (7,,4,) is reached. The Y number of
clustered BN (Uy,) is determined as,
Up = uqg, uy, .. ... Uy (5)
The pseudocode of the proposed FSCH-K Means Clustering is given in Algorithm 1.
Algorithm 1. Pseudocode of the proposed FSCH-K Means Clustering
Input: Beacon nodes (b,)

Output: Clustered BN Uj
Begin

Initialize beacon nodes

While 7 < Tjax
Select fisher score centroid K
for 1<bh,-i<N

Compute Dy, (bni,FSj)
Evaluate centroid updation F,°*!

Calculate AF" =||E™" - K|
End for
End While
Obtain U = uq, Uy, ... Uy,

End

This pseudo-code outlines a clustering algorithm for beacon nodes using Fisher Score-based centroid
selection and Chi-square distance. Initially, the beacon nodes are initialized, and the algorithm iterates
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until a maximum time limit is reached. In each iteration, a centroid is selected based on the Fisher Score,
and for each beacon node, the Chi-square distance to the centroid is computed. The centroid is then
updated iteratively, and the change in centroid position is calculated. The process continues until
convergence or the maximum iterations are met, resulting in clustered beacon nodes as the output.

Thereafter, the clustered BN provides a location for AV. Hence, the location is secured utilizing the
GMCC algorithm that is defined above in section 3.2.

3.4. On Board Unit (OBU)

The information on secured location and sensed data from RADAR, LiDAR, and camera are given in
OBU. Then, for accurate matching and navigation of AVs, the map obtained from BN clustering and the
offline map developed during vehicle initialization are compared utilizing the PD-HMM algorithm.

3.4.1. Map Matching

In this phase, map matching utilizing the PD-HMM algorithm is executed. When contrasted with
complicated models, HMM makes better predictions. However, the process of HMM was complicated
owing to the large number of states and interactions between them. Hence, the Pareto Distribution is
deployed to reduce the interaction between the states. The steps involved in PD-HMM are as follows.

fi 32
Q rll Q rll Q ‘r51 Q rmn

Figure 2. Structural design of PD-HMM

In the beginning, transition T, observation E, probabilities p , and initial probability array m are
initialized, and HMM (4)is described as,

A=TEm (6)
_ _ fs=jn

T = [tnl. tn = (f—g_lzjm)ﬁ 7)
= = (9=t

E = [en()] en(L) = p (9=7) ®)

T = [m], T = p(fi = jm) )

Here, t,,epitomizes transition matrix, f; = fi,f5 ... ... fn and g: = g1, 92 - gn specify the fixed

states and observation sequence, j,, j, exemplify the storing p of state n following state m, and 9, implies
storing p of E(L) being produced from n.

Thereafter, the Pareto Distribution function () — p(G|4) for minimizing the interactions with
positive real numbers (@)is evaluated by,

p(GI) =1—Yno (10)
Now, equation (22) undergoes optimal backtracking with probability (p *) which is represented as,
p+= max [5,(m)] an

Afterward, (p *) undergoes illustrative training to match offline and online maps of AV and gives
information to navigate.

3.5. On Board Unit (OBU)

Prioritization and Localization are done in navigation through FSCH-KMC and CG-KF. The big data
has dropouts in data storage and consistency. Therefore, HDFS is utilized that ensure data reliability and
parallel processing by dividing large files into blocks and distributing them across a cluster to provide
structured data for efficient clustering.
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3.5.1. Prioritization

The FSCH-KMC algorithm is utilized for prioritizing the minimum distance signal in cases where
unexpected objects suddenly appear in front of the vehicle. The algorithm mentioned in section 3.3
clusters nearby signals (y;) to curb speed in situations of the sudden appearance of objects in AVs.

3.5.2. Localization

Hence, by utilizing the CG-KF algorithm, the prioritized signals (ys) are localized. Conventional KF
can handle nonlinear and non-Gaussian data, but it assumes the data as linear observation models, which
is not realistic in real-world scenarios. Hence, to mitigate such an assumption, Cosine Gramian-KF is
utilized. The CG-KEF steps are as follows.

Initialization: Primarily, the state vector (NO) and state covariance matrix (®,) are initiated as,

xc|c—1 = Ugp N + vgpde (12)
Where, X |._;signifies state estimate vector, X.symbolizes state transition vector, ug, and v, specify

the state transition and control input matrix, and A epitomizes control input.

Prediction: After initialization, . ._; and @ are predicted utilizing a Cosine Gramian matrix (Q.) with
aZtime step. It is given by,

Rejeos = UsnRe gty + |22 13
cle-1 UspNe-1Usp + —T ( )
QcQc

Gramian Updation: Now, Gramian matrix (Js) of us, and @, utilizing J,is updated by,

Ssn = ushuth &mch:—l = iV—‘shmdc—lSth (14)

Gain Estimation: From the above predictions, K gain using R.._j;and measurement covariance®yis

estimated as,

Ke = SRclc—lMth(Mshmdc—lMth + (DM) (15)

Re=0U~- KcMsh)iRdc—l (16)
Where, k. symbolizes Kalman Gain and Mg, epitomizes the measurement matrix for Z, which is

required for time-to-time updation of AVL to navigate in the correct path. Hence, the proposed system
provides SL and efficient navigation for AVs.

4. Results and Discussion

To validate the proposed model’s performance and consistency, the entire research was conducted
and tested on the Python platform, which provides a versatile and effective environment for coding,
testing, and deploying a wide range of applications and tools.

4.1. Performance Analysis of AVL in SL

To show the effectiveness of the work, the proposed techniques’ performance is included in this
section. A performance comparison between the proposed GMCC and other prevailing techniques,
namely ECC, Rivest-Shamir-Adleman (RSA), Digital Signature Algorithm (DSA), and ElGamal is given in
Table 1. The conventional ECCs’ security level is improved by the inclusion of the Montgomery curve
together with the Gini coefficient. When compared to other models, the proposed model obtains a better
security level of 98% and a lower attack rate of 3%. Moreover, GMCCs’ shorter encryption and decryption
times and lower memory storage requirements confirm better performance compared to others.

Table 1. Validation of GMCC

Methods Proposed GMCC ECC RSA DSA ElGamal
Security Level (%) 98.63 96.57 94.24 92.15 89.25
Attack Level (%) 3.89 7.52 12.35 15.84 19.57
Encryption Time (ms) 1058 1365 1565 1765 1986
Decryption Time (ms) 1035 1325 1524 1741 1898
Memory Usage on Encryption (kb) | 31924960 33117824 | 35697864 | 37332600 | 39774856
Memory Usage on Decryption (kb) = 31396048 33890144 @ 35531856 | 37643536 @ 39852152

The proposed BN clustering performance is depicted by contrasting it with prevailing methods in
Figure 3. Chi-Hell Square distance measurement tailored for centroid and distance calculation is
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employed in this work. This approach remarkably obtains 13247 milliseconds (ms) CT, outperforming
KMC, Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH), Partition Around Medoids
(PAM), and Fuzzy C-Means (FCM) that have longer CT of 17523 ms, 22354 ms, 26847 ms, and 29685 m:s,
correspondingly. Therefore, the proposed FSCH-KMC performed better than existing clustering
methodologies.
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,g I B B
< 20000 - — — —
g - = = =
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g B B B B B
E 10000 { =—— I — I —
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Figure 3. Clustering Time (CT) Analysis
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Figure 4. Comparative analysis of PD-HMM

The proposed PD-HMM algorithms’ comparative analysis is exemplified in Figure 4(a). From this
figure, it is evident that PD-HMM obtains impressive precision of 98%, recall of 99%, accuracy of 98%, and
similarity rates of 98%, correspondingly. This superior performance can be attributed to the PD’s
implementation within the HMM framework. Contrarily, lower percentages in the aforementioned
metrics are yielded by prevailing algorithms, namely Estimation Theory (ET), Andrey Markov Model
(AMM), Hidden Bernoulli Model (HBM), and HMM. Likewise, from Figure 4 (b), considerably less time of
4578 ms is required by the proposed work for matching maps, while other methods consume more time.
Thus, the proposed PD-HMM performs superior compared to other techniques, thus delivering better
outcomes.

The efficiency of the proposed FSCH-KMC method that considerably reduces response and
prioritization times during validation when contrasted with conventional techniques is highlighted in
Figure 5. This speed enhancement is credited for the utilization of Chi-Hell Square distance measurement,
thus facilitating quicker minimum distance signal selection. However, in AV applications, algorithms,
such as K-Means, BIRCH, PAM, and FCM experience delays and challenges. Hence, the proposed method
obtains a response time of 2145 ms and a prioritization time of 3587 ms, correspondingly, clearly
illustrating its better performance over alternatives.

The performance of the proposed CG-KF’'s Processing Time (PT) and error rate meeting with
prevailing methods, namely KF, Alpha Beta Filter (ABF), Kernel Adaptive Filter (KAF), and Covariance
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Intersection (CI) is displayed by the graphs in Figures 6 (a) and (b). It uses Cosine-based G-KF that excels
in handling real-life nonlinear and non-Gaussian systems. Particularly, the CG-KF obtains a low error rate
of 0.08475% and a rapid PT of 3896 ms, thus outperforming other methods that exhibit higher error rates
and slower processing times.
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K-Means
12000 4 BIRCH
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Figure 5. Response and Prioritization Time Investigation
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Figure 6. (a) Processing Time (PT); (b) Error Rate Scrutiny

Table 2. Comparative analysis with existing works

Techniques Methods used Precision CT PT Error = Accuracy
(%) (ms) (ms) (%) (%)
Proposed work GMCC, FSCH-KMC, PD-HMM, and CG-KF 98% 13247 3896 0.08475 98%
(Chu et al., 2021) [16] VL via Cooperative Mapping = = = 0.6 80%
(Luo & Ko, 2022) [17] USBL SLAM-based UKF 15423 - 0.15 -
(Wang et al., 2021) [18] Box particle filtering of AVL with OSM - 6470 0.7 77%
(Vivacqua et al., 2018) [19] | BLMR-based Map Matching for SL - 7660 0.401 97%
(Farag, 2021) [20] RT-MCL based UKF - 4745 03 -

In Table 2, the proposed work uses GMCC, FSCH-KMC, PD-HMM, and CG-KF for SL in AVL
systems, obtaining an impressive precision and accuracy of 98%. It also illustrates an effective clustering
time of 13247 milliseconds and a processing time of 3896 milliseconds, correspondingly, with a low error
rate of 0.08475. Contrarily, differing levels of performance are exhibited by several alternative methods
with some higher processing time and error rates of 0.6, 0.4, 0.3, 0.15, and 0.6 together with lower accuracy
and precision, highlighting the clear superiority of the proposed approach. Therefore, the effectiveness of
the proposed work of SL in AVs is confirmed by the experimental analysis.

5. Conclusion

This research proposed a robust and effective framework for ensuring faster and more secure
Autonomous Vehicle Localization (AVL) in both GPS-available and GPS-denied environments. By
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integrating advanced algorithms, this framework offers substantial improvements over existing methods.
For secure AVL, the Gini-Montgomery Curve Cryptography (GMCC) and Fisher Score Chi-Hell Square-
based K-Means Clustering (FSCH-KMC) algorithms were utilized. The GMCC algorithm provided a
significant security advantage, achieving a high security level of 99% and reducing the attack rate to only
3%. This demonstrates its effectiveness in safeguarding AVs from potential threats during localization.

Additionally, the FSCH-KMC algorithm played a critical role in optimizing navigation decision-
making. It delivered the fastest localization time of 3587 ms, efficiently clustering signals based on
minimal distances. This reduced the latency in signal processing, enabling AVs to make decisions swiftly
and reliably. For navigating AVs, the Cosine Gramian-Kalman Filter (CG-KF) further enhanced the
framework by ensuring rapid processing times of 3896 ms, with a low error rate of 0.084, demonstrating
its accuracy and speed in real-time navigation tasks.

Collectively, these results show that the proposed framework outperforms existing AVL systems in
terms of both security and processing speed, offering a comprehensive solution for fast, secure, and
precise AV localization.

6. Future scope of work

Despite the promising results, certain challenges remain, particularly when localizing AVs under
adverse weather conditions. Although the framework delivers faster and more secure AVL in optimal
conditions, signal prioritization and localization can become increasingly difficult in varying weather
scenarios. In the future, further research will focus on enhancing the localization process under harsh
weather conditions by integrating more advanced sensor technologies and algorithms. This will enable
the system to maintain its high performance in even the most challenging environmental conditions,
ensuring continuous and reliable AV navigation.
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