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Abstract: Enhancing robot navigation efficiency is a crucial objective in modern robotics. Robots relying on 

external navigation systems are often susceptible to electromagnetic interference (EMI) and encounter 

environmental disturbances, resulting in orientation errors within their surroundings. Therefore, the study 

employed an internal navigation system to enhance robot navigation efficacy under interference conditions, based 

on the analysis of the internal parameters and the external signals. This article presents details of the robot’s 

autonomous operation, which allows for setting the robot's trajectory using an embedded map. The robot’s 

navigation process involves counting the number of wheel revolutions as well as adjusting wheel orientation after 

each straight path section. In this article, an autonomous robot navigation system has been presented that leverages 

an embedded control navigation map utilising cellular automata with active cells which can effectively navigate in 

an environment containing various types of obstacles. By analysing the neighbouring cells of the active cell, the 

cellular environment determines which cell should become active during the robot’s next movement step. This 

approach ensures the robot’s independence from external control inputs. Furthermore, the accuracy and speed of 

the robot’s movement have been further enhanced using a hexagonal mosaic for navigation surface mapping. This 

concept of utilising on cellular automata with active cells has been extended to the navigation of a group of robots 

on a shared navigation surface, taking into account the intersections of the robots’ trajectories over time. To achieve 

this, a distance control module has been used that records the travelled trajectories in terms of wheel turns and 

revolutions.  
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1. Introduction 

Currently, robotisation of all branches of human activity is significantly expanding. Robots are 

replacing many tasks and functions which were previously performed by humans. Modern robots can be 

categorised into two large classes: stationary and mobile. Stationary robots perform various intelligent tasks 

exclusively within their designated locations. For instance, they can be permanently stationed on a conveyor 

belt, participating in the assembly of specific structure. In other words, a stationary robot is mounted on a 

stationary platform for performing its assigned tasks. In contrast, mobile robots are complex robotic systems 

affixed to moving platforms, with their motion precisely controlled by automation. 

In third-generation mobile robots (intelligent robots), an important task involves enhancing robot 

navigation, enabling precise control the robot’s movement within the given space, allowing it to reach 
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specific points and perform assigned tasks. Key aspects of robot navigation include determining location, 

constructing a map of the surrounding environment, path planning and motion control. 

Existing navigation systems rely on various approaches: inertial methods [1], GPS-based systems [2-

6], LPS-based systems [7, 8] and simulation navigation systems [9-12]. In fact, all these approaches require 

a multitude of sensors, both internal and external signals as well as mobile communication systems. 

Consequently, the robot’s navigation process become complex and highly dependent on external factors 

and surrounding environmental changes. 

Approaches that use preliminary modelling of the robot’s movement trajectory are worthy of attention 

[9-12]. These approaches do not rigidly tie the robot to the sensors responsible for movement. However, 

they are most effective for stationary environments where the surroundings remain relatively stable. The 

optimal solution to the navigation challenges lies in integrating all approaches to anticipate diverse 

scenarios that arise during navigation. In this context, our work addresses the problem of enhancing robot 

navigation using an embedded operational navigation map employing cellular automata with active cells. 

2. Literature Review 

There are four main categories of modern robot navigation systems: 

• Inertial navigation systems (INS) [1];  

• Global positioning system (GPS) [2-6];  

• Local positioning system (LPS) [7, 8] and 

• Simulated navigation systems [9-12].  

Each of these systems possess unique characteristics and serves to address specific situational 

challenges. Each of these systems find widespread application across various industries, particularly where 

their effectiveness is most pronounced. 

Inertial navigation systems (INS) are based on the use of inertial sensors and measuring instruments 

[13, 14]. Accelerometers and gyroscopes can be used as inertial sensors, using which, the robot can 

autonomously determine its location without relying on other navigation systems. However, autonomous 

use of INS is most effective for short distances with minimal obstacles. Combining INS with other 

navigation systems enhances overall effectiveness. In addition, the operation of such systems is significantly 

influenced by the topography of the surface on which the robot moves.  

GPS uses satellite systems for navigation [2]. Robots exchange signals with satellites, enabling the 

satellite system to determine their location. The satellite signals provide the robots with necessary 

information about the next direction of movement. GPS based robot navigation systems excel in open areas 

with high navigation accuracy. However, it often fails in closed spaces, such as indoor rooms. In addition, 

expensive equipment is required to implement such GPS based system. In terms of security, unauthorised 

access may compromise the robot's navigation. 

LPS are implemented based on the placement of local sensors, as well as various pointers in the form 

of signal beacons, which allow the robot to navigate in the local space [7]. These systems are typically used 

in enclosed spaces, such as automated warehouses, conveyors and restaurants. However, LPS based robot 

navigation systems have their own limitations: they make the robots dependent on the placement of various 

sensors and beacons, without which the robot cannot navigate effectively. In addition, LPS does not perform 

optimally in dynamically changing environments. 

Simulation of navigation systems are very popular [9-12] and play a crucial role in testing and refining 

navigation algorithms and strategies without relying on physical robots. Such simulations can be 

implemented purely through software. For instance, a combined framework utilising CoppeliaSim and 

robot operating system (ROS) has gained popularity amongst the robot developers and researchers [9, 15]. 

Additionally, the robot virtual navigation (RVN) framework, based on OpenGL,[10] serves as one of the 

effective tools for simulating robot navigation. Another approach is to integrate the physical models with 

the software-based ones. For instance, the interactive robotics modelling & simulation System (IRMSS) [11], 

which consists of two subsystems: a physical model for robots and a 3D robotics modelling subsystem. 

While virtual models dominate these systems, they often overlook the real-world unpredictability and 

the changes in the environment of the movement platform.  Therefore, robotic experts are focusing on the 

autonomous navigation and path planning. One of highly researched algorithms in autonomous robot 
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navigation is the use of graph theory, which plays a key role in finding optimal paths and determining 

efficient movement [16]. However, it requires pre-assessing the environment along the entire path, which 

can be challenging due to dynamic changes.  

Heuristic path-finding algorithms using A* and D* also require preliminary terrain assessment and 

substantial computing resources [17–19]. A comprehensive overview of various methods and tools used for 

robot path planning is provided by Sánchez-Ibáñez at al. [20]. This paper [20] examines different types of 

cell shapes that define the robot movement spaces and discusses various interaction methods between 

robots and surfaces. Algorithms, such as local and global planning, reactive computing local optimisation, 

etc. were also evaluated, emphasising on their advantages and disadvantages. These algorithms use cell 

decompositions and roadmaps that are defined in advance. These algorithms require significant computing 

resources, and local optimisation may lead to local minima. Researchers continue to explore graph-based 

algorithms, which despite being time-consuming to construct, offer promising solutions. 

There are numerous works that leverage cellular automata (CA) technologies for developing robot 

path planning algorithms [21–23]. The paper [21] presents a model, namely Genetic Shared Tabu Inverted 

Ant Cellular Automata (GSTIACA), for observing a group of robots by combining cellular automation 

technologies, genetic algorithms, ant algorithms and insights from the social behaviour of the pedestrians. 

The model initially implements a genetic algorithm, followed by CA technologies applied during specific 

navigation steps across diverse environments. The results demonstrate effective swarm behaviour of the 

robots. However, this model requires substantial computing resources and exhibits inertial since the 

individual robot behaviour model consumes time in analysing pheromones and queues, determining 

positions and also preliminary room identification. Additionally, the robot’s analysis is confined to 

neighbouring cells within the Moore neighbourhood, without considering the broader environmental 

context of the movement platforms. 

Syed and Kunwar [23] propose a robot path planning algorithm based on CA. The algorithm pre-

processes the environmental contexts of the workspace employing image processing techniques using 

Minkowski sums. The CA generates a set of waypoints by analysing the activated parent and daughter cells 

within Moore neighbourhood. This algorithm is effective for short robot path distances. While the scale of 

the resulting image has a significant influence, it may not always be commensurate with the actual size of 

the robot. It’s important to note that the algorithm pre-determines the optimal path, which, in real 

conditions, may not always be possible to implement. Furthermore, at each step of the movement, the robot 

estimates the path a single cell distance. 

To address the potential existing issues, combining path planning with internal robot navigation allows 

the robot to adapt to unforeseen situations, minimising delays as well as avoiding unwanted trajectories. 

This combination allows the robot to function autonomously, continuously adjusting its movement 

trajectory even when deviations from the planned path occur, all while progressing toward its intended 

goal. 

3. Navigation system for a robot working in a group 

In robotics, a critical task involves coordinating the interaction of a group of robots during navigation 

and while performing tasks that require collective effort. To address these challenges of robot group 

navigation, several conditions must be met: 

• All the robots working within the group must maintain appropriate distances from each other 

as well as from any obstacles and other moving objects. 

• Each robot should be equipped with autonomous navigation system. 

• The robots should possess the ability to identify the group member as well as objects within 

their field of view. 

• The group must have the ability to jointly solve complex problems that cannot be tackled by a 

single robot. 

To achieve these goals, each robot in the group must have both internal and external navigation 

capabilities. When navigating, the robots must detect the presence of obstacles, various stationary objects 

and moving entities in their paths. While stationary objects can often be bypassed, moving objects pose 

challenges. To address this issue, the robot's navigation system must predict the trajectory of such objects. 
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Additionally, robots within the same group maintain a minimum distance from each other, which can vary 

based on the assigned tasks. 

To fulfil the aforementioned conditions, the robots also must have the necessary sensors. In fact, the 

robot's navigation system comprises three key components: 

• Autonomous navigation unit; 

• Sensor network; and 

• Movement trajectory prediction unit. 

While the autonomous navigation unit monitors the robot’s travelled path, the sensor network 

facilitates interaction with the external environment. The motion trajectory prediction unit enables 

autonomous movement ensuring obstacle avoidance and collision prevention. 

4. Functioning model of the robot control module 

The robot control unit analogised with the black box model. To implement such a model, it is necessary 

to conduct a detailed analysis of the dynamics of the robot’s behaviour. While the number of inputs 

corresponds to the number of sensors used, the number of outputs depend on the number of active 

mechanisms and their operating states. Interactions between these active mechanisms should also be taken 

into account, because these can significantly increase the number of states of the control unit. 

It is also essential to comprehensively analyse all the potential situations that may arise during the task 

execution of the robots. The task execution period begins after receiving the task and ends upon completion. 

When multiple robots are involved, the task duration can vary. 

Robots can navigate in two different modes, viz.  offline navigation and task execution 

The first mode characterises the complete autonomy of the robot's navigation and execution of 

functions, relying on the analysis of internal actions and calculations of various established quantitative 

values of the physical parameters of the robot elements. While in offline mode the robots evaluate the states 

of the internal elements instead of practically analysing the external signals, in task execution mode the 

robots mainly focus on analysis of the external signals coming from the sensor outputs. 

In the autonomous operating mode of robot navigation, the initial states play a crucial role. These 

include: 

• The robot's starting point on the location map; 

• The target point(s) for navigation; 

• The number of obstacles and their locations on the map; 

• The robot’s trajectory, accounting for obstacle avoidance as well as uneven terrain, such as 

ascents and descents. 

After setting the target point, which can be specified in the form of conditional coordinates on the 

robot’s navigation map, the computing unit calculates the potential short routes (if multiple trajectories 

exist) to reach that point. To achieve this, various algorithms can be used, such as graphs theories, ant 

algorithms, etc. 

If the robot’s navigation trajectory is divided into cells, then the distance is calculated using the 

following coordinates: Уd= У1- У0; and Хd= Х1- Х0, where У1 and У0are the vertical coordinates of the target 

point and, the robot location, respectively; whereas Х1 and Х0 are the horizontal ones. If У0 = 0, all necessary 

parameters are computed. Otherwise, (i.e., if У0 ≠ 0), the nearest coordinate is considered, which determines 

the robot’s turning point. The distance is then calculated using the following formula: 

         Yd = Y1 − (Yturn − Y0)                                                                                                                                                           (1) 

Where Yturn represents the vertical coordinate of the robot's closest turn. 

After calculating the robot's trajectory to the specified point, the following calculations are performed: 

The length of the wheel perimeter (L) is determined, which is typically known in advance. 

The distance to the point with Yturn coordinates is taken into account and the number of wheel turns 

(RYturn
) of the robot is calculated. For example, if the distance to the turning point is 10 mitres (m), with a 

wheel length, Lwheel = 1 m, then the robot's wheels must complete 10 full revolutions in the forward 

direction on a flat surface. 

The horizontal distance Xd is then calculated and determine its sign to ascertain the rotation angle of 

the wheels. If the result is negative, then the robot's wheels turn to the left when it reaches the vertical 
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coordinate Yturn. If the surface is divided into rectangular cells, the rotation angles correspond to 900 and 

movement occurs along these cells. 

Next, the number of full and partial revolutions of the wheel is determined based on the algorithm. 

The distance from the rotation coordinate to the coordinate of the next rotation point is also 

determined. Typically, these distances are calculated in advance before the robot begins navigation. 

The robot's movement stops after all distances between turns have been covered and all turns have 

been completed. In practice, the following sequence of numbers (M) is stored in the robot’s memory: 

         M = 〈(X1, Y1, Z1, L1), (X2, Y2, Z2, L2), … , (XN, YN, ZN, LN) 〉                                                                                             (2) 

Where  Xi, Yi – indicate the coordinates of the i-th point or cell of rotation of the robot wheels; Zi =

{+ 900, − 900} – indicates the direction and angle of rotation on the cellular layout of the surface along which 

the robot moves; Li- represents the distance (number of wheel revolutions) that the robot must travel from 

the (i-1)th turning point to the i-th turning point. 

 Having stored in the memory, the sequence allows the robot to sequentially transmits the coordinate 

values and the distances. It is to note that the distances are represented in wheel revolutions, not in meters. 

The number L may have a fractional part, indicating the amount of partial rotation of the wheel. After 

covering the distance to the next turning point, the robot's wheels turn by an angle determined by the Z 

value. 

When the surface on which the robot moves has a complex terrain, more sophisticated methods are 

employed to calculate the distances between the turning points. These methods include: straight segments, 

arcs, integrals and others. 

It is necessary to take into account the fact that in autonomous systems various types of errors have 

significant impacts on the accuracy of the task execution. Key error margins that affect the problem-solving 

precision include: 

• Geometric shape of the wheel; 

• Unevenness of the surface on which the robot moves; 

• Errors in the accuracy of dividing the surface into cells; 

• Inertia of rotation of the shaft on which the wheels are mounted. 

To mitigate these error margins, the necessary confidence intervals for permissible error are established 

based on experimental studies. 

The second mode operates the robot fully relying on the internal states of the environment in which 

the robot navigates. This mode is more reliable than the first one, as it also encompasses functionalities of 

the first mode. 

Initially, the robot begins to move following the first mode. The initial direction of movement is 

calculated by finding the difference in the Xd coordinate from the robot’s starting point is calculated, using 

the formula Xd = X1 − X0. When Xd = 0, the robot moves solely along the Y coordinate. Otherwise (i.e., if 

Xd ≠ 0), the sign of the difference is determined to ascertain the initial direction of movement. If Xd < 0, 

then the robot's wheels turn to the left, otherwise (i.e., if Xd > 0) the robot's wheels turn 900 to the right. 

Once the initial direction of movement is determined, the robot navigates by analysing the signals 

received as the inputs of the control unit from the outputs of various sensors. These sensors receive signals 

from special physical emitters, such as light and radio waves. In addition, these robots are also equipped 

with the sensors that react to objects located near it. 

For normal robot movement, the control unit must have the following analysed inputs: 

g0 – forward movement (logical "1"); 

g1 – movement to the left (logical “1”), movement to the right (logical “0”); 

g2 – presence of an obstacle on the right (logical “1”), absence of an obstacle on the right (logical “0”); 

g3 – presence of an obstacle on the left (logical “1”), absence of an obstacle on the left (logical “0”); 

g4 –presence of an obstacle in front (logical “1”), absence of an obstacle in front (logical “0”); 

g5 – presence of an obstacle behind (logical “1”), absence of an obstacle behind (logical “0”); 

g6 – stopping the robot (logical “1”); and 

g7 – reverse movement (logical "1"). 
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Input g1 receives signals from internal computers that calculate the direction of movement of the robot. 

Inputs g2, …, g5 receive signals from distance sensors that detect nearby objects. Typically, infrared or 

ultrasonic distance sensors are used. 

The control unit generates control actions based on these aforementioned inputs. 

Let us describe the functional purpose of each output of the control unit. In practice, the number of 

active states of the robot determines the number of outputs. 

The potential states are as follows: 

1. State of calm: No action occurs. 

2. Forward motion state: The robot's wheels rotate in the forward direction. 

3. Reverse motion state: The robot's wheels spin in the opposite direction. 

4. Right turn state: The robot’s wheels turn 900 degrees to the right. 

5. Left turn state: The robot’s wheels turn 900 degrees to the left. 

 
Figure 1. Graph of the control unit automaton obtained in the Active-HDL CAD system 

Taking into account all possible states and input signals, we have compiled a sequence of actions in 

the form of an algorithm, for the operation of the control unit. 

1. Initial state: All inputs contain logical “0” signals, except the zero output (q0=1), since this signal 

keeps all active mechanisms in a state of calm. 

2. Upon receiving the coordinates of the target cell, a logical “1” signal appears at the zero input 

(g0=1) of the control unit. Consequently, a logical “1” signal is generated as the first output of 

the control unit (q1=1) and the robot moves forward. 

3. While in motion, on-board sensors analyse signals that from different objects or obstacles. If the 

left sensor receives a signal (g1=1), a logical “1” signal is generated as the second output of the 

control unit (q2=1). The robot then turns its wheels 900 to the left while continuing forward 

(q1=1). 

S1
/000/

S2
/001/

S3
/010/

S4
/011/

S5
/100/

x0='0' and x1='1' and x2='0' and x3='0'

x0='1' and x1='0' and x2='0' and x3='0'

y0<='0';
y1<='0';
y2<='0';
y3<='1';

y0<='0';
y1<='0';
y2<='0';
y3<='1';

y0<='0';
y1<='1';
y2<='1';
y3<='0';

y0<='0';
y1<='1';
y2<='1';
y3<='0';

y0<='1';
y1<='1';
y2<='0';
y3<='0';

y0<='1';
y1<='1';
y2<='0';
y3<='0';

y0<='1';
y1<='0';
y2<='0';
y3<='0';

y0<='1';
y1<='0';
y2<='0';
y3<='0';

y0<='0';
y1<='0';
y2<='0';
y3<='0';

y0<='0';
y1<='0';
y2<='0';
y3<='0';

x0='0' and x1='0' and x2='1' and x3='0'x0='0' and x1='0' and x2='1' and x3='0'

x0='0' and x1='1' and x2='0' and x3='0'

x0='0' and x1='0' and x2='0' and x3='0'

x0='0' and x1='0' and x2='0' and x3='1'

x0='0' and x1='0' and x2='0' and x3='1'

x0='0' and x1='0' and x2='1' and x3='0'

r='1'

@else

@else

@else

@else

x0='0' and x1='1' and x2='0' and x3='0'
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4. Similarly, If the right sensor detects a signal (g2=1), a logical “1” signal is generated as the third 

output of the control unit (q3=1). The robot then turns its wheels 900 to the right while 

continuing forward (q1=1). 

5. When the sensor receives a signal (g3=1) indicating arrival at the destination cell, the robot stops 

(q0=0). 

6. The movement ceases. 

This algorithm can be presented using a truth table. Also, taking into account the number of inputs 

and outputs, the control unit’s states can be described. Since four outputs are used, there could be 16 states. 

However, in this case, only six states are relevant. This robot navigation control unit is quite simple and can 

be implemented on an FPGA. An example of its implementation using the finite state machine editor is 

shown in Fig. 1. 

5. Robot navigation based on cellular technologies  

Previously discussed navigation methods allow robots to move with few obstacles but at the cost of 

reduced speed for reliability. The errors in navigation, as described before, over large distances from the 

target cell can lead to either significant deviations or delays due constant correction of the robot’s trajectory 

or both. 

To enhance navigation within obstacle-rich environments, the use of cellular technologies possesses 

great potentials [24 -27]. In such environments, traditional rules of cell transition cannot be applied since 

cell states are not considered in their classical representation. However, the fundamentals of cellular 

automata technologies with active cells can rather be used, which are described in [27, 28]. In this context, 

the active cell represents the robot’s location at any given time. 

The direction of movement depends on several parameters, such as: 

Signs of the X and Y coordinates of the target cell where the robot aim to arrive; and 

State of cells in the neighbourhood of the active cell in which the robot is currently located. 

The first parameters, relating to the coordinates of the arrival cell at each moment of the robot’s 

movement, are determined by the number of revolutions and turns of the robot’s wheels. The second 

parameters determine the neighbouring cell, which will become active at the next step. That is, the robot 

will move into this cell. However, the robot cannot move to the robot cannot move to a neighbouring cell 

marked as an obstacle (logical “1”). Fig. 2 illustrates the coding of neighbourhood cells for moving the robot 

with 900 turns. 

 
Figure 2. Coding of the neighbourhood cells for 900 rotations   

Cell b0 is the active cell, and cells b1, …, b4 constitute the von Neumann neighbourhood. 

The algorithm for successful robot navigation is outlined below: 

1. The navigation field is divided into rectangular cells (typically squares). 

2. Determine the target cell where the robot aims to arrive. 

3. Identify the initial cell where the robot is positioned. 

4. Based on steps 2, 3, calculate the number of cells vertically and horizontally from the initial cell 

to the target cell. 

5. Determine the direction of movement of the robot along the cells: 

a. If the difference Уd along the Y coordinate has a positive sign, the robot moves in the forward 

direction;  

b. If the difference Уd along the Y coordinate has a negative sign, the robot moves backward 

from the central cell (its initial location). 
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c. If the difference Xd along the Y coordinate of the target cell has a positive sign, the robot 

moves to the right, otherwise it moves left. 

6. After determining the direction of movement, the robot begins to analyse groups of cells in a 

given direction that share a common cell. If one of the X or Y coordinates has a value of zero, 

the cells of the same group, located in the direction of movement, are analysed. 

7. Based on the analysis, the robot moves to one of the cells within the analysed groups. 

8. If the analysis shows that movement is impossible, then the robot analyses the remaining 

groups of cells until it finds a free cell. 

9. If the analysis shows that the differences in the X and Y coordinates are both zero, the robot 

completes the movement; otherwise, it returns to step 4. 

Analysis of groups of cells is carried out by simultaneous analysis of the nearest cells in the 

neighbourhood of the active cell as well as by analysis of the nearest cell from the cells in the neighbourhood. 

Initially, the direction of analysis of neighbourhood cells is established. The initial direction aims to reduce 

the vertical difference Yd between the coordinates of the initial and the target cells (vertical movement), 

followed by horizontal movement along the X coordinate. 

At the start, cell b0 analyses the first cell b1 in its neighbourhood. If b1 = 0, this cell then analyses its top 

cell of the neighbourhood, denoted as b1
1. This can be described by the following formula: 

b1(t + 1) = {
0, if b0(t) = active, b1

1(t)⋀b1
2(t) = 0 

1, in other cases                                         
                                                                                          (3) 

To implement this approach, we will use the encoding shown in Fig. 3. 

 
Figure 3. Encoding neighbourhood cells for each cell   

If cell b1(t + 1) = 0 at the next time step, the robot moves to this cell, and it becomes active. An example 

of the formation of a robot’s movement trajectory for different obstacle locations is shown in Fig. 4. 

 
Figure 4. An example of the formation of robot’s movement trajectory for different obstacle locations   
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As seen from the Fig. 4, obstacles are indicated by white logical "1" on a black cell background. The 

robot cannot enter these cells, and they remain inactive. Cells without obstacles are represented as empty 

and are coded as logical “0”. A robot can enter these cells, making them active. Between the initial cell S and 

the target cell F, in both the examples, the numbers indicate the sequence of steps for the robot’s movement. 

The number in each cell represents the time step during which the robot moves from one cell to another. 

In the second example, the robot moved from cell S to cell F in eight time steps. The robot had to achieve 

zero horizontal difference. However, the robot to obtain a negative horizontal value by cell analysis since 

upward vertical movement was impossible due to the presence of obstacles. 

Thus, cells in the neighbourhood of the active cell are analysed sequentially in a clockwise direction. If 

b1 =1, then cell b2(t) is analysed, and if b2(t)=0, then its neighbourhood cells are analysed, according to the 

following expression: 

        b2(t + 1) = {
0, if b0(t) = active, b1,2

2,1(t)⋀b2
2(t) = 0 

1, in other cases                                         
                                                                         (4) 

Using the above scheme, the robot can move along a trajectory formed by the cellular environment. 

The robot’s transition from one cell to another depends on the geometric dimensions of the cell relative to 

the robot’s wheel size. Based on the number of wheel revolutions, the robot determines the transition to the 

next cell, using an internal wheel revolution counter. 

The general algorithm for the functioning of a navigation cell within a cell area is presented in Fig. 5. 

 
Figure 5. General algorithm for the functioning of a navigation cell within a cell area   
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According to the algorithm (Fig. 5), The cell assesses whether it is active (occupied by the robot). If the 

robot occupies a cell, that cell becomes active and selects the movement direction for the next time step.  In 

accordance with this, the coding of the neighbourhood cells is determined. The algorithm that implements 

the choice of cell coding is presented in Fig. 6. 

 
Figure 6. Algorithm for determining the direction of movement and coding neighbourhood cells   

In the algorithm presented in Fig. 6, the values Xd and Yd represent the differences between the X and 

Y coordinates of the initial and the target cells. 

After determining the direction of movement, the cell analyses the neighbourhood cells and generates 

an active signal. The active signal generation algorithm is shown in Fig. 7. 
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Figure 7. Block diagram of the active signal generation algorithm   

According to this algorithm, as shown in Fig. 7, an active signal is generated at the active output that 

indicates the cell within the neighbourhood where the robot will move next. The active signal is determined 

by logical “1” at the corresponding i-th output Yb0

i , (i = 1,4). 

If the cell is not active, then its state at the next time step is determined. The algorithm for an inactive 

cell state determination at the next time step is presented in Fig. 8. 

The algorithm, as shown in Fig. 8, detects the presence of an active signal from one of the cells in its 

neighbourhood. In accordance with the neighbouring cell from which the active signal originates, the cells 

within the neighbourhood are encoded. Specifically, the cell opposite the one receiving the active signal is 

selected as the first cell of the neighbourhood. Once the encoding is formed, states are analysed in 

accordance with the selected direction of movement. To achieve this, input signals from neighbourhood 

cells are analysed in alignment with a specific direction of movement. For instance, the signal X1,2
a = 1 

indicates the direction of movement towards the cell in the neighbourhood of b1 and b2. In this case, the cell 

b1 is analysed first, followed by b2. In order for cell b0 to assume the logical value “0” at time t+1, rules 136 

and 172 according to Stephen Wolfram [16] must be fulfilled. The states of the cell according to rules 136 

and 172 at the next time step are presented in Table 1. 

Table 1. Implementation of rules 136 and 172 in elementary cellular automata 

X4(t)  X1(t)  X2(t) 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 

Rule 136, b0(t+1) 0 0 0 1 0 0 0 1 

Rule 172, b0(t+1) 0 0 0 0 0 0 1 1 
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Figure 8. Algorithm for determination of the neighbourhood cell state at the next time step   

Each robot contains an internal cellular environment that governs its navigation. The sizes of the cells 

can vary, but they must be large enough to accommodate the robot without extending beyond the cell 

boundaries. 

The use of orthogonal mosaics significantly limits navigation, since it has a small number of movement 

options. Employing a hexagonal mosaic, as shown in Fig. 9, the navigation possibilities can be enhanced 

[25, 26]. 

The use of hexagonal mosaics increases the available of movement directions to six. The coding of 

neighbourhood cells is shown in Fig. 9 (b), where each cell shares a common side with one of the cells within 

the neighbourhood. The robot moves in the direction of one of the sides of the cell, in accordance with the 

calculated direction of movement. To determine the next cell the robot should move into, the three main 

cells of the neighbourhood aligned with the chosen direction of movement are analysed. If the direction of 

movement is towards cell Cj (j = 1,6), the neighbouring cells considered are Cj-1, Cj, Cj+2. If j=1, then Cj-1= C6 

and if j=6, then Cj+1= C1. 
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Figure 9. Hexagonal mosaic shape   

If at least one of the three analysed cells in the neighbourhood has a logical “0” state, the control cell 

C0= 0. This indicates that the robot can move to this cell and the cell will become active. The robot can move 

in the direction of increasing the difference between the coordinates of the current cell and the target cell, if 

and only if the condition Cj−1(t) ∧ Cj(t) ∧ Cj+1(t) = 1 is met. In such a case, the cell Cj+2 of the neighbourhood 

is analysed. This process applies for all the cells in the neighbourhood in a clockwise direction. If all the 

cells in the neighbourhood have a logical “1” state, the robot changes the direction of movement and, 

therefore, moves to another cell within the neighbourhood of its own active cell, which has smaller 

differences in coordinates. 

6. Conclusion  

The paper presented the principles of robot navigation from the starting point to a designated target. 

The principles combine insights from analysis of the internal characteristics as well as the environment of 

the movement surface. Leveraging cellular technologies based on cellular automata with active cells has 

significantly enhanced robot navigation. Notably, this method is especially effective when the movement 

map is formed in advance and all obstacles are already located within the cellular navigation environment. 

Remarkably, in such scenarios there is no need to use sensors.  

Even when obstacles aren’t predetermined, the method remains similarly efficient. By employing 

multiple distance sensors simultaneously scan the neighbouring cells, the robot acquires information about 

their states. By using the cellular environment, the robot then determines its next cell of movement. This 

whole process is completed within a single clock cycle, by taking advantage of the speed of the cellular 

automaton. Thus, this approach ensures highly reliable and efficient robot navigation.  

In practice, the robot executes commands exclusively from the embedded navigation cell environment. 

The use of cellular automata significantly reduces the number of computational operations, allowing the 

navigation module to be implemented in the form of a finite state machine with hard logic. This design 

enhances the performance of the system, which relies on the switching time of the electronic gates.  

Furthermore, based on cellular automata with active cells, group navigation of robots on a shared 

surface becomes straightforward, taking into account the intersections of their trajectories over time. To 

facilitate this approach, a distance control module keeps records of the trajectories of the travelled paths, in 

terms of the number of wheel turns and wheel revolutions. 

Future research aims to explore navigation principles for group of robots using cellular automata with 

multiple active cells, facilitating collaborative tasks. The use of multiple active cells will help the group 

robots to avoid collisions amongst themselves. In such group navigation approach, each active cell will 

describe the trajectory of an individual robot in real time. 
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