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Abstract: Wildfires are a widespread phenomenon that affects every corner of the world with the warming climate. 

Wildfires burn tens of thousands of square kilometres of forests and vegetation every year in the United States alone 

with the past decade witnessing a dramatic increase in the number of wildfire incidents. This research aims to 

understand the regions of forests and vegetation across the US that are susceptible to wildfires using spatiotemporal 

kernel heat maps and, forecast these wildfires across the United States at country-wide and state levels on a weekly 

and monthly basis in an attempt to reduce the reaction time of the suppression operations and effectively design 

resource maps to mitigate wildfires. We employed the state-of-the-art Neural Basis Expansion Analysis for Time 

Series (N-BEATS) model to predict the total area burned by wildfires by several weeks and months into the future. 

The model was evaluated based on forecasting metrics including mean-squared error (MSE)., and mean average 

error (MAE). The N-BEATS model demonstrates improved performance compared to other state-of-the-art (SOTA) 

models, obtaining MSE values of 116.3, 38.2, and 19.0 for yearly, monthly, and weekly forecasting, respectively. 
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1. Introduction 

Every year wildfires burn through millions of acres of forests and natural reserves in the United States 

alone, destroying various wildlife and ecological habitats1. Furthermore, wildfire suppression operations 

can accrue huge expenses on the government’s monetary and fiscal plans. Generally, states are legally 

responsible for their suppression operations with optimal planning for resource allocation. Wildfire 

forecasting is beneficial for the effective distribution of wildfire suppression efforts and their resources. 

Weekly wildfire forecasts at state level can help minimise suppression costs and ensure optimal resource 

allocation. Even in worst-case scenarios, with the annual expenditure for suppression operations averaging 

over a billion dollars per year over the past two decades2, marginal improvements in the suppression 

efficiency can lead to a substantial reduction in the costs for the operations. While occurrences of wildfire 

incidents and their sizes are largely dependent on a number of factors 3, these events are chaotic and 

stochastic in nature. Hence, forecasting wildfires is a challenging task overall. Time series models are used 

for forecasting time-varying data by learning the patterns and trends observed from anterior observation 

points and extrapolating future values based on these learned patterns. Many statistical, machine learning 

 
1 https://apps.dtic.mil/sti/citations/AD1143321 
2 https://www.nifc.gov/fire-information/statistics/suppression-costs 
3 https://www.nps.gov/articles/wildfire-causes-and-evaluation. html 
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and deep learning approaches have previously been explored for forecasting time series data [1,2]. Some 

recent univariate approaches include the use of models such as autoregressive (AR) [3], moving average 

(MA), autoregressive moving average (ARMA) [4], autoregressive integrated moving average (ARIMA), 

and autoregressive recurrent network (DeepAR). Additionally, a variety of univariate and multivariate 

machine learning state-of-the-art approaches including long short-term memory (LSTM) [5], LSTM and 

Box-Cox [6], N-BEATS [7], Spacetimeformer [8], Temporal Fusion [9], and Transformer (TFT) [10] have also 

been employed in the past for time series analysis. In this study, we investigate the potential of the advanced 

deep learning-based, state-of-the-art forecasting model N-BEATS, to predict the total area burned (TAB) 

from wildfire events at state level across the United States. The study analyzes the N-BEATS model against 

MLP and LSTM baseline models for wildfire forecasting accuracy, utilizing a dataset from ArcGIS Hub. The 

dataset includes wildfire information and was pre-processed with QGIS, Geopandas, and Pandas for state-

level analysis. Both baseline models, trained over, are rated on MSE values to gauge prediction accuracy. 

MSE is a widely used metric for evaluating the accuracy of predictive models. It quantifies the average 

squared difference between predicted values and actual values in a dataset.  Furthermore, we discern 

meaningful spatiotemporal patterns from wildfire events across the United States using kernel density 

maps.  Figure 1 shows the summary of the contribution. 

 

Figure 1. A block diagram detailing the contributions 

2. Related Works 

This section reviews the prior art and literature relevant to our research. Numerous techniques have 

previously been examined in the literature for wildfire forecasting.  

Preisler and Westerling [11] developed a statistical wildfire forecasting model using logistic regression 

and spline functions that is capable of extrapolating large wildfire events one month ahead. Introducing 

piecewise polynomials enhanced the logistic regression model’s ability to learn non-linear features and, 

hence, making it more reliable as a forecasting model. A number of climatic and topographic variables were 

combined and projected on a plane of 1 by 1-degree grid size. The data were grouped by month. A 

probability distribution characterised by the spread and ignition of wildfires was approximated from the 

resulting time-varying data. The distribution was analyzed using logistic regression in conjunction with 

piecewise polynomial functions. 

Rubí el al. [12] offered a comprehensive literature analysis on wildfire risk prediction, reviewing several 

studies that employed machine learning algorithms to forecast wildfire occurrences. It analyzed the 

techniques, features, and outcomes of numerous significant researches, comparing their approaches, model 

performances, and the significance of different features in wildfire prediction. The study then focused 

research undertaken globally, with an emphasis on applying these models to the Brazilian Federal District 

region, underlining the relevance of selecting relevant models and features for specific geographic areas. 

Nur et al. [13] proposed an integrated approach to predicting wildfire vulnerability in Sydney, 

Australia, utilizing Support Vector Regression (SVR) supplemented by metaheuristic optimization methods 

Grey Wolf Optimization (GWO) and Particle Swarm Optimization (PSO). It utilizes geographic information 
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system (GIS) tools and remote sensing data to investigate factors impacting wildfire occurrences. The 

research examines the performance of hybrid machine learning models against traditional SVR, 

demonstrating that the optimized models greatly enhance prediction accuracy. 

Hoang et al. [14] proposed a novel stochastic temporal video-predicting model for wildfire detection 

from a series of geospatial wildfire images. The model was based on stochastic residual neural networks 

and state space models. The model was evaluated on the GOES-16 dataset for benchmarking. However, 

their data collection length was around 56 days with a limited time frame. Therefore, our study goes beyond 

the typical video prediction abilities of the stochastic dynamic model by offering a direct benefit in 

forecasting and handling natural disasters. 

Hernandez et al. [15] used three meteorological covariates and two remotely sensed fire variables to 

model a conditional density function for identifying wildfire risks. The authors collected these wildfire data 

from the MODIS catalogue. Nevertheless, their method relies mostly on statistics, using past data and 

weather variables to predict fire hazards. Our study signifies a transition from a statistical approach to a 

machine learning-based method, which is expected to enhance prediction accuracy and effectively manage 

intricate nonlinear patterns in data. The improved efficiency of our method compared to prior work may 

be attributed to its direct applicability to a wider geographical area and its enhanced ability to capture 

complicated spatiotemporal interactions more efficiently. Beckage and Platt [16] used an autoregressive 

moving average (ARMA) model to forecast wildfires at Everglades National Park in southern Florida, three 

months and twelve months beforehand. The authors employed the amount of area burned as the primary 

covariate for the forecasting model. The dataset was obtained from ENP fire records. Besides, this approach 

depends mainly on statistical modeling of past data to create predictions regarding wildfire seasons. 

Whereas, our research employs sophisticated deep learning techniques (N-BEATS) and geospatial analysis 

(kernel density maps) to forecast and examine wildfire occurrences throughout the United States. This 

methodological improvement integrates machine learning for predictive accuracy and geospatial 

approaches for spatial pattern detection, providing possibly more precise and complete insights into 

wildfire dynamics on a bigger scale. This method has the potential to result in more efficient and focused 

wildfire management tactics. 

Gudmundsson et al. [17] analyzed the predictability of wildfires from large-scale droughts in southern 

Europe using logistic regression. The authors utilized a standardized precipitation index (SPI) as their 

dataset which was derived from E-OBS. The model predicted monthly probabilities, up to two months in 

advance, of the above-normal total area burned based on the prior meteorological drought that was proxied 

by the SPI. For evaluating the models, Receiver Operating Characteristics (ROC) statistics were computed 

from leave-one-out cross-validation training of the logistic regression model. However, the study employed 

logistic regression to forecast wildfire activity based on meteorological dry conditions. It illustrates that 

lengthy lead-time projections of wildfire risk are viable in southern Europe using historical data on dry 

conditions. But in terms of managing vast quantities of data, the model might not do well in terms of 

accuracy. This will hinder the practicality and scalability of model improvement. But our study confirms 

that employing a more advanced N-BEATS model that consists of a collection of stacks of multi-layer fully 

connected (FC) layers. Each stack comprises a succession of blocks, each built up of multi-layer FC layers 

injected with ReLU nonlinearities. 

Kaur and Sood [18] proposed a multifaceted, fog-aided, Internet of Things (IoT) based architectural 

paradigm for wildfire prediction and forecasting. Two models, Naïve Bayes (NB) and autoregressive 

integrated moving average (ARIMA), were tasked with predicting and forecasting the wildfire vulnerability 

level of terrains in the cloud, respectively. An additional model, support vector machines (SVM), was used 

to predict the burnt forest area. Several sensing devices were employed to sample wildfire influent 

parameters. The fog layer was concerned with energy conservation, i.e. energy efficient sampling, and 

dimensionality reduction using one-way ANOVA method and principal component analysis (PCA), 

respectively. The final layer was entrusted with the responsibility of storing, processing, and analysing the 

pre-processed data. Our contribution advances over their work by applying the N-BEATS deep learning 

model and thorough spatial analyses through choropleth and kernel density maps, enabling more accurate 

wildfire predictions and insights into spatiotemporal patterns across the United States. Enhanced data pre-

processing and the use of PyTorch for setting up models further contribute to the efficiency and 

sophistication of our approach, potentially offering richer, more actionable forecasting predictions. 
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Song and Wang [19] explored three statistical models for monthly wildfire forecasting including a 

generalised linear model, regression tree and neural networks, with the latter trained using Levenberg–

Marquardt backpropagation. The monthly wildfire dataset was collected from Global Fire Emissions 

Database (GFED). The forecasting models performed better during high-fire seasons as compared to the 

low-fire seasons. Additionally, significant differences in performance were observed in tropics and 

subtropics regions as compared to temperate and boreal regions. However, their study produced monthly 

wildfire predictions from their used models on the contrary our data collection process focuses on the 

weekly, monthly and yearly forecasts. 

Cheng et al. [20] proposed an ensemble approach to wildfire spread forecasting that utilised a forward 

and inverse modelling scheme and a reduced-order modelling (ROM) scheme. The model was evaluated 

on the 2018 California Chimney and Ferguson wildfire dataset. The ROM scheme comprised several 

dimensionality reduction and compression techniques including Principal Component Analysis (PCA), 

Convolutional Autoencoding and Singular Value Decomposition Autoencoding. The resultant ensemble of 

perturbed parameters was sampled using Latin Hypercube Samplings (LHSs) to predict latent variables 

using Random Forest Regression and K-Nearest Neighbor Regression. Lastly, a multi-layer perceptron was 

employed to predict the fire propagation from the latent space variables. The model was optimised and 

tuned using a novel latent data assimilation (LDA) method. Moreover, our study potentially prevails over 

their ensemble technique by focusing on direct, state-level wildfire prediction utilizing the N-BEATS model 

and geographical analysis through choropleth and kernel density maps. It offers a simplified, efficient 

forecasting strategy, boosted by extensive data preparation and the application of latest deep learning tools 

like PyTorch, providing a thorough understanding of wildfire dynamics. 

Preisler et al. [21] developed a statistical model to forecast large fire occurrences in the US using fire 

danger indices and other variables. The study analysed six years of fire data from the Western US and found 

that the Significant Fire Potential Outlook and Energy Release Component significantly influenced the 

probability and number of significant fires. The model provided a quantitative risk index and forecast maps, 

aiding fire managers in resource allocation and decision-making. The study emphasised the importance of 

accurate fire forecasts for effective fire management. Their study focuses on statistical modeling employing 

fire danger indexes for wildfire forecasting in the Western US, giving tools for fire management. Our 

technique, by comparison, utilises the N-BEATS deep learning model with spatial analysis for a broader, 

countrywide prediction. The significant distinction resides in technique where they focus on statistical 

rather than a new advanced deep learning model and scope, with our study utilizing sophisticated spatial 

analysis for increased knowledge of wildfire patterns, enabling possibly more detailed and dynamic 

forecasting capabilities. 

3. Research Methodology 

3.1. Data Sources and Pre-processing 

The dataset, acquired from ArcGIS Hub, comprises the date of first occurrence or ignition, geographic 

coordinates, acres burned from the fire event, fire type, etc. The dataset was filtered to discard all non-

wildfire-related fire events. Software and application packages such as QGIS, Geopandas, and Pandas were 

used for pre-processing the data for training. QGIS: An open-source Geographic Information System (GIS) 

application that enables users to create, modify, view, analyze, and publish geospatial information. In this 

setting, QGIS was utilized to connect state polygons with geographic vector points for state-level wildfire 

forecasting. Geopandas which is a Python module that extends the datatypes used by pandas to allow 

spatial operations on geometric types. It was applied for geospatial data processing and analysis, 

simplifying procedures like spatial joins and overlays. Pandas: which is a Python library providing high-

performance, easy-to-use data structures, and data analysis capabilities. It was applied for data pre-

processing activities such as filtering, cleaning, and preparing the wildfire dataset for training. Geopandas, 

Geopy and Pandas modules were used inside a Jupyter Notebook environment for further pre-processing 

and preparation of the data for training.  Rows with missing values were dropped. For state-level 

forecasting, states with less than 3 million acres of total area burned from wildfires in the past 38 years were 

discarded for their lack of temporal variations. For model deployment and experimentation, we used a 

popular deep-learning framework called PyTorch. 
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3.2. Choropleth and Kernel Density Maps 

Choropleth maps provide a convenient way to visualise and analyse time-varying data via thematic 

maps4. We used choropleth maps to understand wildfire patterns over the past three decades. The state 

boundaries were collected from ArcGIS Hub and the coordinate points were reverse geocoded to obtain the 

names of their corresponding states. Kernel density maps are another way of analysing geospatial data. 

Kernel density maps estimate the concentration of features in the area surrounding those features. These 

maps can be created for both point and line features. It does so by fitting a smooth curved surface over each 

neighbouring point. The intensity of the kernel density map is greatest at the location of the point feature 

and decreases as the distance from the point increases, eventually becoming zero at the search radius 

distance from the point. The kernel density map only considers a circular area around the point. The total 

value of the kernel density map for a point is determined by the value of the population field for that point, 

or is set to 1 if no population value is specified. To determine the density of the kernel heat map at each cell 

in the output raster, the values of all the kernel density maps for the point features are added together at 

the location of each raster cell5. 

3.3. N-BEATS Forecasting Model 

The Neural Basis Expansion Analysis for Time Series (N-BEATS) model, as proffered by Oreshkin et al. 

[5], is composed of a collection of stacks of multi-layer fully connected (FC) layers. Each stack comprises a 

sequence of blocks, each made up of multi-layer FC layers infused with ReLU nonlinearities. The 𝑙𝑡ℎ block 

takes in an input 𝑥𝑙 that results from the output of the FC layer, and predicts the forward and backward 

basis expansion coefficients 𝜃𝑓
 and 𝜃𝑏

 busing a set of linear projection layers as described by the following 

equations: 

    𝜃𝑙
𝑓

=  𝐿𝐼𝑁𝐸𝐴𝑅𝑙
𝑓

 (ℎ𝑙)                                                                                                                              (1) 

    𝜃𝑙
𝑏

= 𝐿𝐼𝑁𝐸𝐴𝑅𝑙
𝑏 (ℎ𝑙)                                                                                                                                     (2) 

where ℎ𝑙 is the output of the aforementioned FC layer. Two shared basis networks 𝑔𝑏 and 𝑔𝑓 employ 

these basis coefficients to compute the forward forecast �̂�𝑙 of length 𝐻, where 𝐻 is the forecast horizon; and 

the best estimate (backcast), �̂�𝑙 of lookback window 𝜂𝐻, based on the trainable weights of the 𝑙𝑡ℎ block. The 

architecture design was motivated by the need for optimization of the accuracy of �̂�𝑙 from the appropriate 

mix of basis vectors from 𝑔𝑓.  �̂�𝑙, on the other hand, is optimised to refine the input components. Hence, the 

equations for computing  �̂�𝑙 and �̂�𝑙 are as follows:  

�̂�𝑙  =  ∑ 𝜃𝑙,𝑖
𝑓

𝑣𝑖
𝑓𝑑𝑖𝑚(𝜃𝑙

𝑓
) 

𝑖 = 1
                                                                                                                              (3) 

�̂�𝑙 = ∑ 𝜃𝑙,𝑖
𝑏 𝑣𝑖

𝑏𝑑𝑖𝑚(𝜃𝑙
𝑏) 

𝑖 = 1                                                                                                                                              (4) 

where 𝑣𝑖
𝑓
 and 𝑣𝑖

𝑏 are forecast and backcast basis vectors. As a result, the final outputs of block 𝑙  are 

defined as follows: 

�̂�𝑙 = 𝑉𝑙
𝑓

𝜃𝑙
𝑓

 + 𝑏𝑙
𝑓
                                                                                                                               (5) 

�̂�𝑙 = 𝑉𝑙
𝑏𝜃𝑙

𝑏  + 𝑏𝑙
𝑏                                                                                                                                (6) 

where 𝑣𝑖
𝑓

 and 𝑣𝑖
𝑏  are both basis matrices and,  𝑏𝑙

𝑓
  and 𝑏𝑙

𝑏   are the corresponding bias terms. The 

computation of the forecast and the backcast vectors are accompanied by two residual branches each for 

every 𝑙𝑡ℎ block in a stack. The forecasts are then aggregated in a hierarchical manner to produce the model 

output �̂�  whose length is parameterized by forecast horizon 𝐻 . This is mathematically represented as 

follows:  

𝑥𝑙 = 𝑥𝑙−1 − �̂�𝑙−1                                                                                                                               (7) 

�̂� = 𝛴𝑙�̂�𝑙                                                                                                                                    (8) 

 
4 https://geographicdata.science/book/notebooks/05_choropleth.html 
5 https://bookdown.org/epeterson_2010/docs/introduction-to-kernel-density-estimation.html 
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In the last equation, the forecast vector �̂� is computed as the sum of all partial forecasts �̂�𝑙. By analysing 

wildfire data, the model can identify and predict regular, cyclical, recurring, and fluctuating patterns, hence, 

allowing it to function as a seasonal and trend forecasting model. 

4. Results and Discussions 

4.1. Data Analysis 

By using state-level choropleth maps and kernel density maps, we were able to uncover meaningful 

patterns in the data. The figures below show the results of our analysis (the state of Alaska has been partially 

occluded in the following figures for brevity): 

(a)  

 

(b)  
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(c) 

Figure 2. Total area burned across last three decades (1990-2020): (a) Total area burned (in acres) for the decade 1990-

2000, (b) Total area burned (in acres) for the decade 2000-2010 and (c) Total area burned (in acres) for the decade 2010-

2020 

Throughout all three decades, the state of Alaska, having the highest forest biomass among all the 

states, indicated the highest amount of area burned. Figure 2(a) demonstrates the highest TAB in the states 

of California, Nevada and Idaho from the year 1990 to 2000. In Figure 2(c), the TAB has more than doubled 

across all the states in the following decade with the state of California, Nevada, Idaho, Oregon, Montana 

and Texas being amongst the top ten states. Lastly, Figure 2(c) illustrates a steady increase in the total area 

burned across all the states with high forest biomass. The state of Kansas in particular observed a dramatic 

increase in TAB in contrast to the past two decades. Further analysis of the wildfire data using kernel density 

maps demonstrated distinct patterns. 

The data were grouped together based on the first two and last two quarters for each year. Performing 

temporal kernel density map analysis revealed the following: The first half of a particular year (January to 

June) witnessed the highest occurrences of wildfires in the southern states. In contrast, the western states 

tend to experience a higher frequency of wildfires during the latter half of the year. This is illustrated in 

Figure 3. Despite a marginal decrease in the total area affected by fires in the past decade, effectively 

combating and suppressing wildfires remains a pressing issue.  

 

Figure 3. (Left): Kernel density map of wildfire events from January to June for the years 1984-2021; (Right): Kernel 

density map of wildfire events from July to December for the years 1984-2021 
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4.2. N-BEATS Forecasting 

The model was configured to have three layers of trend blocks with 256 dimensions, followed by three 

layers of seasonality blocks of 256 dimensions each. The models were trained for over 1000 epochs with a 

learning rate of 1×10−4 and a forecast horizon of 5. The lookback parameter was set to 7. The model suffered 

from severe overfitting in some instances of state-wide forecasts including Washington, Oklahoma, and 

California. On the other hand, in the case of the weekly, monthly, and yearly countrywide forecasts, the 

model prediction exhibits improved accuracy and loss scores with an MSE of 19.018 and 38.229, 

respectively. Table 1 shows the performance of the N-BEATS model in forecasting the Total Area Burned 

(TAB) from wildfires across different intervals at a nationwide and state-wide level. It displays the Mean 

Squared Error (MSE) for annual, monthly, and weekly forecasts. The MSE values represent the model's 

accuracy, with lower numbers reflecting more accurate predictions. For countrywide projections, the MSE 

is highest for yearly intervals (116.346) and lower for monthly (38.229) and weekly (19.018) intervals, 

suggesting the model performs better at shorter forecasting intervals. 

Figure 4 illustrates the countrywide forecasting results, the disparity in yearly estimates, where the 

model overestimated the area burned, demonstrates the problems in capturing long-term patterns and 

external variables that may influence wildfire severity. The improved performance in monthly projections 

reflects the model's strength in recognizing seasonal patterns and short-term climate influences on wildfire 

incidence. The difficulty with weekly projections in projecting trends appropriately could be related to the 

model's susceptibility to short-term swings or lack of data on immediate causes driving wildfire spread. 

This underscores the necessity of integrating more granular data and modifying model parameters for 

improved short-term forecasts. 

Table 1. Results of the N-BEATS model at (a) countrywide forecasting of TAB from wildfires 
Interval Mean Squared Error (MSE) 

yearly 116.346 

monthly 38.229 

weekly 19.018 

Table 2. Results of the N-BEATS model at state-wide forecasting of State-level TAB from wildfires 
State Mean Squared Error (MSE) State Mean Squared Error (MSE) 

Alaska 16.124 Oregon 16.015 

Arizona 6.981 Utah 10.283 

California 150.091 Kansas 15.092 

Colorado 22.275 Montana 45.696 

Florida 16.940 Oklahoma 381.019 

Idaho 8.434 Texas 1.138 

Nevada 13.707 Washington 327.111 

New Mexico 6.087 Wyoming 0.987 

For state-wide predictions, the model had difficulty accurately predicting state-level trends for TAB 

due to the lack of significant fluctuating, cyclic, and recurring patterns in its data. Wyoming and Texas had 

the lowest MSE of 0.987 and 1.138, respectively, amongst all the states. 

 

Figure 4. (a) Yearly, (b) Monthly (c) Weekly forecasts of TAB from wildfires 

For evaluating the performance of the N-BEATS model, we compare its results with two baseline 

models: MLP (Multi-Layer Perceptron) and LSTM (Long Short-Term Memory). The MLP model is a 

feedforward neural network known for learning complex patterns, while the LSTM model is a recurrent 

neural network designed to capture long-term dependencies. MLP models have been employed in various 
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domains to capture nonlinear patterns, while LSTM models have demonstrated success in capturing long-

term dependencies in sequential data. By comparing against established baselines, it becomes possible to 

assess whether N-BEATS offer improvements in forecasting accuracy, interpretability, computational 

efficiency, or other relevant factors. Both models were trained for 2000 epochs using Adam optimizer and 

MSE as the loss function, and evaluated on training and testing datasets. The baseline models were 

evaluated by comparing MSE values to assess forecasting accuracy. Lower MSE values indicate more 

accurate predictions.  

Table 3. Comparison of the models on MSE 
Model Yearly Monthly Weekly 

N-BEATS 116.346 38.229 19.018 

LSTM 1.647 × 106 5.353 × 106 1.010 × 107 

MLP 1.386 × 106 4.926 × 106 9.828 × 106 

A comparison between the MSE scores of the three models has been shown in Table 3. The models, N-

BEATS, LSTM, and MLP, were evaluated based on their Mean Squared Error (MSE) values for different 

time frequencies. The N-BEATS model achieved MSE values of 116.346 for yearly, 38.229 for monthly, and 

19.018 for weekly data. In comparison, the LSTM model yielded higher MSE values of 1.647 × 106 , 

5.353 × 106, and 1.010 × 107 for yearly, monthly, and weekly frequencies, respectively. Similarly, the MLP 

model had MSE values of 1.386 × 106, 4.926 × 106, and 9.828 × 106 for the corresponding time frequencies.  

In yearly TAB forecasts, the MLP performed marginally better than LSTM whereas in monthly and weekly 

forecasts of TAB, LSTM performed better than MLP. These results indicate that the N-BEATS model 

outperformed both baseline models in terms of forecasting accuracy, as it achieved lower MSE values across 

all time frequencies.  

Our proposed model performed better than LSTM and MLP in wildfire prediction, primarily due to 

the unique capabilities of the N-BEATS architecture. N-BEATS offers a distinct advantage with its multi-

horizon forecasting capability, allowing it to predict future values across multiple time horizons 

simultaneously. Additionally, N-BEATS is highly adaptable to different types of time series data, requiring 

minimal manual tuning. This adaptability ensures that N-BEATS can effectively capture complex temporal 

patterns and non-linear relationships present in wildfire occurrence data without extensive pre-processing 

or feature engineering. In contrast, the MLP model, despite its ability to learn complex patterns, struggles 

to capture long-term dependencies and handle noisy data effectively. It relies on the architecture of fully 

connected layers, which may limit its capacity to model temporal relationships in time series data. MLPs 

process each input independently, lacking the ability to retain sequential information across time steps. This 

limitation hinders their performance in tasks like wildfire prediction, where understanding the temporal 

dynamics and dependencies is crucial. 

On the other hand, the LSTM model is specifically designed to capture long-term dependencies in time 

series data. However, it can encounter issues with vanishing or exploding gradients, particularly when 

dealing with lengthy sequences. This can hinder its learning process and affect the model's ability to capture 

intricate temporal patterns effectively. Additionally, LSTM models require more computational resources 

compared to MLP models due to their recurrent nature and complex architecture. 

5. Conclusion and Future Work 

This study examined the use of the advanced deep learning-based forecasting model N-BEATS to 

predict the total area burned by wildfire events at state and country levels in the United States. We also 

sought to identify spatiotemporal patterns in countrywide wildfire events using kernel density maps. 

Comparing our technique with the prior works, we find a change from statistical models and ensemble 

methods towards a more integrated deep learning and spatial analysis methodology. While the prior 

studies focused on specific regions or employed standard statistical and machine learning techniques (e.g., 

ARIMA, SVM, Random Forest) for wildfire prediction, our approach employs the N-BEATS model and 

spatial analysis tools (choropleth, kernel density maps) for countrywide monthly forecasting which 

exhibited an MSE of 38.2. Our results show that N-BEATS has the potential to be an effective tool for 

forecasting wildfire activity and that there are distinct spatiotemporal patterns in wildfire occurrence across 

the United States. These findings have implications for wildfire suppression efforts, as accurate forecasting 

can help optimise resource allocation and reduce costs. One limitation of this study is that the time series 
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data available was not sufficient to accurately forecast wildfire activity at the state level. While the N-BEATS 

model exhibits some reliability in predicting the total area burned at country level, the limited size of the 

data set may have impacted the model’s performance at the state level. In the future, it would be beneficial 

to have access to a larger, comprehensive, and multivariate time series data set to further test the capabilities 

of forecasting models for predicting wildfire activity at the state level. Additionally, we can utilise other 

data sources, such as meteorological and topographic data, to enhance the predictive power of the models. 

Furthermore, the potential of transfer learning and ensemble techniques can be investigated to leverage the 

strengths of different models for improved wildfire forecasting. 
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