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Abstract: In recent times, advancements in text-to-speech technologies have yielded more natural-sounding voices. 

However, this has also made it easier to generate malicious fake voices and disseminate false narratives. ASVspoof 

stands out as a prominent benchmark in the ongoing effort to automatically detect fake voices, thereby playing a 

crucial role in countering illicit access to biometric systems. Consequently, there is a growing need to broaden our 

perspectives, particularly when it comes to detecting fake voices on social media platforms. Moreover, existing 

detection models commonly face challenges related to their generalization performance. This study sheds light on 

specific instances involving the latest speech generation models. Furthermore, we introduce a novel framework 

designed to address the nuances of detecting fake voices in the context of social media. This framework considers 

not only the voice waveform but also the speech content. Our experiments have demonstrated that the proposed 

framework considerably enhances classification performance, as evidenced by the reduction in equal error rate. This 

underscores the importance of considering the waveform and the content of the voice when tasked with identifying 

fake voices and disseminating false claims. 

Keywords: natural language processing; neural networks; speech synthesis; voice processing 

 

1. Introduction 

1.1. Background 

In recent years, speech synthesis technology has undergone substantial development [1–3]. On one 

hand, this progress has made it much easier for individuals to access more authentic and natural-sounding 

voices. On the other hand, there is growing concern regarding DeepFake voices, also known as fake voices 

or spoofing, which are used by malicious users to deceive others. We define DeepFake voices as synthesized 

speeches that convey false information. Previously, fake news, also known as disinformation or 

misinformation, has been a source of deception, leading to research efforts aimed at early detection [4]. 

DeepFakes can manifest as a multimodal form of fake news, which must be identified and addressed before 

widespread dissemination occurs. 
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Examples of fake voices utilizing voice synthesis are depicted in Figure 1(a). An occurrence of spoofing 

portrayed as a fictitious company’s CEO1 is illustrated in Figure 1(a). This example uses voice conversion 

(VC), transforming the attacker’s voice to match the targets. Figure 1(b) reveals an instance of spoofing 

through Text-To-Speech (TTS). Notably, Bunn2 advocates creating a novel TTS model utilizing merely three 

seconds of the target’s voice. Identifying attackers becomes challenging as they input text rather than voices. 

Furthermore, voices converted by VC encapsulate pertinent speaking features (e.g., speed, pitch, etc.) to 

identify attackers. This is serious problem because social media is widely used in several situations[5,6].  

We can verify the information by checking the spreader's details. However, given the security issues of 

social media platforms [7], there is also concern that DeepFakes could be sent through account hacking. In 

general, with TTS, it is easier to obtain the voice than with VC because it does not require the attacker’s 

voice as input. Therefore, the number of instances of the DeepFakes generated by TTS will increase. 

Consequently, the focus of this study is directed toward attacks that adopt TTS. In the current year, 

additional instances of fake voices mimicking celebrities to propagate false accusations have surfaced on 

social media3. In conjunction with celebrities, other malicious endeavours include cloning the voices of the 

target’s acquaintances or relatives for fraudulent purposes. Hence, considerable research has been directed 

toward thwarting fake voice attacks [8–11]. Moreover, extensive studies focus on detecting fraudulence 

through films [12] and media traceability [13]. In scenarios where users are unable to utilize films on social 

media or during online conversations, the methodology herein is dedicated to voice-based detection of false 

narratives about the given situation. 

  
(a)            (b) 

Figure 1. Examples of fraud utilized speech synthesis. (a) Voice conversion transforms the attacker’s voice to the 

target. (b) Text-To-Speech generates voice from the input text. Identifying attackers from TTS voice is difficult due to 

the lack of voice origin. 

The ASVspoof initiative stands out as the most widely recognized effort in the development of 

antispoofing methods [9,14–16]. This initiative has been ongoing every other year since its inception in 2015, 

attracting numerous participants who propose models aimed at distinguishing DeepFake voices (referred 

to as spoofing) from genuine voices. Originally, ASVspoof primarily focused on using DeepFake voices to 

challenge biometric systems. However, in 2021, the initiative expanded its scope to include tasks targeting 

users on social media [16]. The inaugural event in 2015 involved the generation of two types of speech, text-

to-speech (TTS) and voice conversion, which were played back over a telephone line [17]. Subsequent 

iterations included the release of datasets designed to test the vulnerability of biometrics systems by playing 

back prerecorded real voices in 2017 [14]. In 2019, ASVspoof introduced the logical attack (LA) and the 

physical attack (PA) scenarios, incorporating new methods and environments [15]. In the 2021 edition, 

ASVspoof added a new DeepFake (DF) task to the LA, involving the classification of audio played in an 

online environment [16]. Notably, it was observed that the generalization performance of many methods 

participating in the DF task was lacking. Models trained on datasets up to 2019 struggled to accurately 

classify validation sets from 2020 onward [16]. 

 
1  Catherine Stupp, 2019, Fraudsters Used AI to Mimic CEO’s Voice in Unusual Cybercrime Case, Available: 
https://www.wsj.com/articles/fraudsters-use-ai-to-mimic-ceos-voice-in-unusual-cybercrime-case-11567157402.  
2 Amy Bunn, Artificial imposters-cybercriminals turn to ai voice cloning for a new breed of scam, Available: https://mcafee.ly/3pNjfCE.  
3  Joseph Cox, 2023, Ai-generated voice firm clamps down after 4chan makes celebrity voices for abuse, Available: 

https://www.vice.com/en/article/dy7mww/ai-voice-firm-4chan-celebrity-voices-emma-watson-joe-rogan-elevenlabs.  
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1.2. Problem Statement 

Furthermore, over the past couple of years, numerous new TTS methods have emerged, yielding voices 

that sound more natural than ever before. Consequently, there is a growing concern that DeepFake 

detection models may soon become obsolete as voice generation techniques continue to advance [16,18]. To 

address this evolving landscape, we recognize the importance of evaluating not only the quality of 

waveforms but also the content of the voice, specifically what the speaker is saying. Consequently, the 

present study conducts targeted experiments to assess the effectiveness of classification models trained on 

the ASVspoof 2021 DF dataset in identifying fake voices generated using recently developed TTS methods. 

Preliminary results reveal that the classification model failed to detect fake voices, aligning with previous 

findings [16], thus underlining the necessity for improved generalization performance. 

1.3. Research Contribution 

As a result, this study reports the failure of the classification model in detecting DeepFake voices in 

nearly all cases. Subsequently, we conducted an experiment aimed at classifying voices from tweets posted 

on Twitter, distinguishing between those conveying real news and fake news using tweet embeddings. Our 

findings indicate that considering both the waveform of the voices and the content provides a more effective 

method for assessing credibility compared to waveform analysis alone. In response to these results, this 

study delves into the prospects of detecting DeepFake voices disseminating false information on social 

media. Additionally, we propose a novel framework designed to identify DeepFake voices by 

simultaneously analysing the waveform and speech content. Moving forward, this study will outline its 

contents in the following sequence. Table 1 shows the differences between the previous models and 

proposed one. Our model employs a dual-processing approach, examining the waveform and speech 

content, as detailed in Table 1. In section 2, we provide an overview of related research in the field, focusing 

on the automatic detection of fake news and DeepFake voices. Next, in section 3, we introduce the models 

used for classifying DeepFake voices. We elaborate on the experimental procedures, including the 

generation of a DeepFake voice dataset and the setup of the classification models, in section 4. Our 

experimental results are detailed in section 5. Subsequently, we offer a comprehensive evaluation of these 

results from various perspectives in section 6. Finally, we summarize our findings in section 7. It is 

important to note that this study extends and builds upon the work presented in our conference paper at 

ICMECE 2022 [19].  

Table 1. The difference between previous methods and our proposed framework. 

Model Name Input Apply voice? Evaluate content? 

RawNet2 Voice Waveform ✓ ✗ 

RawBoost Voice Waveform ✗ ✗ 

Classify text Text embedding (emb.) ✗ ✓ 

Proposed Waveform & Text emb. ✓ ✓ 

2. Literature Review 

In this section, we introduce the research related to DeepFake voices, categorizing it into three sections 

to facilitate a comprehensive comparison. These sections include investigations into the automatic detection 

of DeepFake speech/texts and highlight the problem posed by advances in speech synthesis technologies. 

2.1. Automatic Detection of DeepFake Voices 

Numerous endeavours have been made in developing countermeasures against deceptive practices 

involving speech synthesis [8,20,21], voice conversion [22–25], and replay attacks [26], particularly before 

the year 2013. The need for standard datasets, protocols, and metrics was highlighted by a research team in 

2013 [27,28]. Subsequently, in 2015, the ASVspoof challenge was introduced [9,17]. This initiative marked a 

significant step in creating a shared dataset, establishing evaluation protocols, and defining metrics. The 

ASVspoof challenge comprises various tasks. The first is the LA task, which centres on spoofing the 

telephony environment. Subsequently, ASVspoof 2017 focused on the PA task, which involves replay 
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attacks using audio from the target [14]. These two tasks were further enhanced in ASVspoof 2019 [15], with 

the addition of new voice generation models and environments for replay attacks. The latest iteration in 

2021 introduced the DF task, which involves the classification of voices in an online environment [16] with 

baseline models [29]. Notably, it was observed that the generalization performance in 2021 was insufficient 

[16]. This trend has emerged because models trained using methods developed up to 2019 struggled to 

accurately classify the DeepFake voices generated using newer techniques introduced in 2020. Additionally, 

an extended shared task that builds upon ASVspoof, known as the Audio DeepFake Detection, was 

proposed towards the end of 2021 [30]. The organizers have scheduled the latest iteration for 2023. 

A common aspect shared by ASVspoof tasks is the classification of real and generated voices based on 

the same voice content, specifically what the speaker is saying. In other words, previous methods have 

lacked a perspective on assessing the credibility of the voice content. However, we believe that evaluating 

the speech content is crucial when attempting to detect generated voices disseminating false information 

on social media. 

2.2. Developments of Text-To-Speech 

In ASVspoof 2015, the organizers employed TTS methods for speech synthesis [17,31]. In ASVspoof 

2019, they expanded their approach by incorporating numerous neural-network-based TTS models [32]. 

Historically, the prevailing method for speech generation from pre-processed sentences has involved a two-

stage process. Initially, acoustic [2,33] and linguistic features [34] are extracted using one model, followed 

by the generation of output waveforms using another model [34,35]. A common characteristic of these 

approaches is the division of the voice generation process into two stages. However, this two-stage pipeline 

framework necessitates sequential training or fine-tuning [2,36]. During training, this means that users 

cannot simultaneously train in both stages but must first prepare for the feature extraction part. This can be 

a resource-intensive and time-consuming process. As a result, several research efforts have emerged to 

develop end-to-end models to reduce training costs and capture hidden representations for output 

generation [1,37,38]. The performance of these end-to-end models has been steadily improving [39]. 

Notably, the natural speech model achieved remarkable results, demonstrating no statistically significant 

difference between human recordings and the generated ones by incorporating a variational autoencoder 

at the waveform generation stage [40].  

2.3. Problem of DeepFake Voice Detection 

In summary, the rapid development of TTS technology has outpaced the capabilities of conventional 

detection methods. Competing with this advancement solely based on waveform analysis is nearly 

impossible. Consequently, we propose a novel detection framework that considers both waveform 

characteristics and speech content. 

Table 2 summarizes the research we introduced in this article, with contributions, limitations, and 

concerns.  

Table 2. Contributions and limitations of studies in the literature. 

Ref. Contributions Limitations and concerns 

[14,15,17] ASVspoof is the largest project that focuses on 

identifying voice spoofing. 

The situation is spoofing for biometrics, not social media, by 

2019.  

[16] ASVspoof 2021 added a new scenario for 

DeepFakes (DFs) in social media 

In all voice-read newspaper articles in Scotland, there is no 

misinformation 

[29] RawNet2 had the best score in the baselines of 

ASVspoof DF. 

The test set's score decreased, including spoofing produced by 

newer models. 

[39] VITS produces a more natural voice with the 

conditional variational autoencoder. 

There is a concern that attackers are making more natural DF 

spoofs with the model. 
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3. Framework of DeepFake Voice Detection 

In this section, we present the framework for the automatic detection of DeepFake voices 

disseminating false claims. Our model incorporates two distinct processing components, one for analysing 

the waveform and the other for evaluating speech content. 

Figure 2 shows the structure of our proposed model. We explain each part in detail. 

 
Figure 2. The structure of generating dataset and proposed model. 

3.1. Speech Waveform 

For classifying DeepFake voices, we employed RawNet2 [41] and RawBoost [42].  

3.1.1. RawNet2 

We employed the RawNet2 [41] model to consider waveform. This model serves as a baseline in the 

ASVspoof 2021 DF task [29]. We adopted the model because it is accessible online, and it produced the best 

scores among the baselines in the task. 

RawNet2 is an enhanced version of the RawNet model [43]. Both models operate as end-to-end 

classifiers, integrating the extracting of utterance-level features and a feature enhancement phase [43]. For 

a detailed framework of RawNet2, please refer to Table 3. The first layer in the RawNet2 framework utilizes 

a sinc-convolution layer, as introduced in SincNet [44,45]. SincNet employs a convolutional neural network 

(CNN) architecture to filter raw waveforms using bank-pass filter shapes resembling sinc functions. The 

second layer consists of a residual block, which includes batch normalization (BN), LeakyReLU [46], a 

convolutional layer, max-pooling, and feature map scaling (FMS). FMS, proposed in [39], functions akin to 

an attention layer with a sigmoid activation [41]. The output layer is designed for binary classification, 

distinguishing between DeepFake voices and bona fide (real) voices. The model utilizes weighted 

categorical cross-entropy as its loss function, following the ASVspoof’s baseline setup in the GitHub 

repository4. Given that this is a binary classification task for distinguishing between real and fake voices, 

the loss LRN is determined by the following equation: 

𝐿𝑅𝑁(𝑦, �̂�) =  −0.1 ∗ 𝑦 log �̂�  − 0.9 ∗ (1 − 𝑦) log(1 − �̂�)                                                                   (1) 

In the equation, y represents the label values, where 𝑦 =  0 corresponds to real voices, and 𝑦 =  1 

corresponds to fake voices.  �̂�  represents the predicted values generated by RawNet2, which undergo 

processing through the softmax function followed by the log function.  The constants 0.1 and 0.9 are derived 

from the label distribution observed in the ASVspoof training set [16]. These values are applied to 

appropriately weight the loss function. 

 
4 https://github.com/asvspoof-challenge/2021/tree/main/DF/Baseline-RawNet2 

https://github.com/asvspoof-challenge/2021/tree/main/DF/Baseline-RawNet2
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Table 3. The RawNet2 architecture which is applied for ASVspoof 2019 [29] and 2021 [16]. 

Layer Input Output shape 

Fixed Sinc filters 

Conv(129, 1, 128) 

Maxpooling(3) 

BN & LeakyReLU 

(21290, 128) 

Res block 

BN & LeakyReLU 

Conv(3, 1, 128) 

BN & LeakyReLU 

Conv(3, 1, 128) 

Maxpooling(3) 

FMS 

(2365, 128) 

Res block 

BN & LeakyReLU 

Conv(3, 1, 128) 

BN & LeakyReLU 

Conv(3, 1, 128) 

Maxpooling(3) 

FMS 

(29, 512) 

GRU GRU(1024) (1024) 

FC 1024 (1024) 

Output 1024 2 

3.1.2. RawBoost 

Additionally, in our preliminary experiment, we employed the RawBoost model [42]. RawBoost is a 

data boosting and augmentation technique that operates at the raw waveform level [42]. We used this model 

because it scored better than the baselines, including RawNet2 in [42]. It incorporates noise addition as a 

data augmentation technique in three distinct forms: (1) linear and nonlinear convolutive noise, which 

replicates noise introduced during encoding, compression, and transmission processes, (2) impulsive 

signal-dependent additive noise, such as clipping and nonoptimal operation of devices (e.g., microphones 

and amplifiers), and (3) stationary signal-independent additive noise achieved by applying a single finite 

impulse response filter [42]. Furthermore, we employed the same weighted cross-entropy loss as the loss 

function during training, following the specifications provided in its GitHub repository5. 

3.2. Speech Content: Tweet Embedding 

To consider the content of the voice, we leverage tweet embedding, which can be obtained from the 

MuMiN dataset [47]. We used this because it is ready to use as a text feature.  This embedding is generated 

using the BART-large-CNN transformer [48]. We employed XGBoost [49] as the classifier for the tweet 

embedding. Our plans include incorporating a Deep Neural Network model. Additionally, we intend to 

integrate an automatic speech recognition model to provide a comprehensive approach for detecting 

DeepFake voices within the context of social media. The loss 𝐿𝑒𝑚𝑏 is computed as the mean of the weighted 

squared loss, as elaborated in Chen T et al. [49] and is defined as follows: 

𝐿𝑒𝑚𝑏 = ∑ 𝑙(𝑦�̂�, 𝑦𝑖)

𝑖

+ ∑ Ω(𝑓𝑘)

𝑘

where Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆‖𝑤‖2

                                                                                                              (2) 

In the equation, 𝑦𝑖 denotes the label values, and Ω serves to penalize the model's complexity, which 

encompasses the number of leaf nodes (𝑇) and the L2 norm of weights (‖𝑤‖2), as described in Chen and 

Guestrin [49].  The values of 𝛾  and 𝜆  are both set to 0 because we employed this model with default 

parameters, as detailed in the documentation6. Consequently, the loss is computed simply as the mean of 

the weighted squared loss. It is worth emphasizing that the proposed structure offers opportunities for 

enhancement through parameter tuning. This aspect is among the topics we plan to explore in the future. 

 
5 https://github.com/TakHemlata/RawBoost-antispoofing  
6 https://xgboost.readthedocs.io/en/stable/parameter.html  

https://github.com/TakHemlata/RawBoost-antispoofing
https://xgboost.readthedocs.io/en/stable/parameter.html
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3.3. Integration of Waveform and Content 

Figure 2 illustrates the structure of our proposed framework. After obtaining the credibility scores for 

waveforms (from RawNet2) and content (from XGBoost), we calculate the final output credibility score 𝑐𝑓  

by averaging these scores, as shown in the following equation: 

𝑐𝑓  = 𝛼 𝑐𝑤  +  (1 − 𝛼) 𝑐emb                                                                                                                      (3) 

Where the parameter 𝛼 falls within the range [0,1] and serves as a weight that determines the balance 

between the contributions of the credibility score of waveforms 𝑐𝑤 and text embedding 𝑐emb to the final 

credibility score 𝑐𝑓. The 𝑐𝑤 is normalized into [0,1] range. When we exclusively consider the waveform, 𝛼 

is set to 1. In our proposed framework, during the main experiment, we configured 𝛼 to be 0.5 to treat 

credibility scores equally. This choice aligns with our primary objective, which is to present a novel 

approach for detecting fake voices in social media. There exists an alternative approach to integrating the 

mean scores of RawNet2 and text embedding through fully connected layers. However, this method 

demands substantial computational resources and time. Considering real-life scenarios in social media, we 

place a high priority on efficiency, which is why we calculate the loss solely based on the mean of the 

weighted squared loss. 

4. Preliminary Experiment 

In this study, we assessed the performance of anti-spoofing models to determine their ability to detect 

DeepFake voices generated by the latest voice generation (TTS) models. We conducted a preliminary 

experiment to evaluate the accuracy of these detection models in classifying voices. Additionally, we 

explored a new classification framework that considers both waveform and speech content in a main 

experiment. Here, we provide an overview of the preliminary experimental procedures, including data 

acquisition and classification. Table 4 shows environments of experiments in the article. 

Table 4. Computing environments for experiments. 

Term Detail 

CPUs Intel® Xeon® CPU E5-2698 v4 @ 2.20GHz 

GPUs TeslaV100-PCIE-32GB x8 

RAM 503GB 

Storage 7TB 

CUDA Version 11.4 

Tools Python 3.10.8, PyTorch 2.1.0 

4.1. Dataset 

We had to generate our DeepFake voices using the latest TTS model based on fake news content. We 

utilized news tweets from the MuMiN dataset [47], which comprises multilingual tweets from Twitter 

containing both fake and real news. The MuMiN dataset covers a wide range of news topics: politics, gossip, 

military, sports, and COVID-19. The dataset comes in three sizes: small, medium, and large. For the 

preliminary experiment, we employed the MuMiN small. Table 3 provides statistics on the dataset used in 

the preliminary experiment, which comprised 465 news tweets in English. Some of the tweets obtained were 

confirmed as fake news, while others appeared to be factual. This dataset may require a larger volume of 

tweets to effectively fine-tune the models. Therefore, we are actively considering the inclusion of additional 

fake and factual news tweets from other datasets. Additionally, we are exploring the possibility of 

incorporating not only the news articles themselves but also the tweets that propagate these articles. To 

maintain manageable audio durations, we have imposed a word limit of 480 words for longer tweets, 

ensuring that the resulting audio clips do not become excessively lengthy, refer to Table 5. The generated 

voice used in our study was produced using the VITS model, as referenced in [39]. We employed a 

pretrained model from the LJ Speech dataset, which is a publicly available speech dataset comprising 13,100 

short audio clips featuring a single speaker reading passages from 7 nonfiction books, as documented in the 

providers page7. Each audio clip is accompanied by a corresponding transcription, with clip durations 

 
7 Ito K, Johnson L.: The LJ Speech Dataset. https://keithito.com/LJ-Speech-Dataset/. 
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ranging from 1 to 10 s, totalling approximately 24 hr of speech data. We obtained the synthesized voices 

based on official instructions8. 

Table 5. Statistics of our dataset for a preliminary experiment. 

Statistics Value 

Number of news tweets 465 

The upper limit of words 480 

Average num. of words 342 

Ave. duration of voice [s] 118.7 

4.2. Classification Settings 

In the ASVspoof 2021 DF dataset, the organizers opted to utilize speech production models, including 

TTS and voice conversion techniques, which were proposed before 2019, as noted in [16]. Notably, starting 

in 2020, these older models were deliberately excluded from the training datasets. The motivation behind 

this decision was to assess the generalization performance of the models. The report on the ASVspoof 2021 

DF dataset highlights that the participants faced challenges in achieving satisfactory generalization 

performance with their models. However, it is worth mentioning that the report provided only a limited 

analysis of the classification results for each voice generation model. To further investigate the effectiveness 

of these models, we conducted a preliminary experiment in which we exclusively utilized waveform data. 

The primary objective of this experiment was to determine whether the models could accurately discern 

synthesized voices generated by the latest TTS models. We generated the voice dataset from MuMiN. 

Subsequently, we employed this dataset for evaluation with two detection models: RawNet2 and RawBoost. 

Both models underwent training using the ASVspoof 2021 DF dataset. [29,42] describe the detailed training 

processes. We obtained the pretrained model from GitHub 9,10. To establish a threshold for these models, 

we leveraged the equal error rate (EER) metric, which represents the point at which the false rejection rate 

(FRR) equals the false acceptance rate (FAR). The EER, a pivotal evaluation criterion, is calculated using the 

following formula: 

𝐹𝑅𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
                                                                                                                                         (4) 

𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
                                                                                                                                         (5) 

In this context, TP (True Positive) signifies instances where the models correctly classify synthesized 

(fake) voices as fake. FN (False Negative) represents situations where the model erroneously classifies fake 

voices as real or authentic. FP (False Positive) denotes occurrences where the model incorrectly categorizes 

authentic voices as fake. These definitions are essential for assessing the accuracy and effectiveness of the 

detection models in distinguishing between real and synthesized voices. This formula allows us to 

determine the threshold that optimally balances the FRR and FAR for our detection models. 

Following that, we checked the remaining outputs of the models using our dataset. We assessed the 

number of outputs from our proposed dataset that surpassed the thresholds established based on the EER 

criterion as defined by the ASVspoof dataset. Given that our proposed dataset exclusively consists of 

synthesized voices, the proportion of instances that exceeded these thresholds represents the recall rate for 

synthesized voices. It is worth noting that this experiment has been described in the ICMECE 2022 article 

[19]. 

4.3. Results 

Table 6, Table 7, and Figure 3 show the result of the preliminary experiment. Table 6 illustrates the EER 

values of the models and the thresholds that are used for detection. The output of the models plays a crucial 

role in determining the suspicion levels. When the model’s output surpasses a certain threshold, it indicates 

that the model has identified the target voice as fake. Adjusting the threshold value has a significant impact 

on the model’s performance. If we set the threshold to a low value, the model becomes more sensitive and 

 
8 https://github.com/jaywalnut310/vits/blob/main/inference.ipynb 
9 https://github.com/asvspoof-challenge/2021/tree/main/DF/Baseline-RawNet2 
10 https://github.com/TakHemlata/RawBoost-antispoofing 
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can detect more fake voices. However, this may lead to more false positives, where real voices are 

incorrectly classified as fake. Conversely, setting a high threshold makes the model less sensitive, reducing 

the chances of false positives. However, it can also make the model more susceptible to spoofing, where 

fake voices are not detected. To determine the optimal threshold values, we utilized the ASVspoof 2021 DF 

dataset. We selected the threshold that minimizes the EER within this dataset. It is important to note that 

the threshold for RawNet2 is a negative value. This is because the output of RawNet2 is always zero or 

negative, which is a result of the model’s specification that applies the LogSoftmax function. In the case of 

RawNet2, its performance closely aligns with the results reported in the ASVspoof 2021 article by [16]. 

However, when it comes to RawBoost, its performance on the ASVspoof DF task was inferior to that of 

RawNet2. This trend might be attributed to the fact that RawBoost was not initially designed for this specific 

task. To standardize the application of the output values from our proposed dataset, we employed the 

threshold derived from the EER of the ASVspoof DF dataset. This approach allowed us to make consistent 

and meaningful comparisons between different models and datasets. 

Table 6. The EER and thresholds of the classification models for the ASVspoof 2021 DF dataset  

Model Name RawNet2 RawBoost 

Equal Error Rate (EER) [%] 25.5 81.0 

Threshold in EER −5.74 2.77 ∗ 10−6 

* These are crucial aspects of our analysis. The output of RawNet2 is generated using the LogSoftmax function, resulting in output 

values within the range of (−∞, 0]. A higher output value indicates a greater likelihood that the input speech is fake. To determine 

whether the input is fake, it is necessary to establish a threshold value. 

Table 7. The statistics of output values, derived from two voice datasets 

Dataset Name Index RawNet2 RawBoost 

 Min. −9.11 2.77 ∗ 10−7 

ASVspoof 2021 DF 
Max. 0.00 1.00 

Ave. −6.31 0.06 

 Med. −7.57 1.02 ∗ 10−6 

 Min. −8.67 1.5 ∗ 10−7 

DeepFake voices from fake news in MuMiN 
Max. 0.00 1.00 

Ave. −7.88 2.3 ∗ 10−3 

 Med. −8.05 1.05 ∗ 10−6 

* The statistics of output values, also known as “suspiciousness”, derived from two voice datasets: the DF scenario of ASVspoof 2021 

and fake news from MuMiN with VITS. 

Table 8. The number of DeepFake voices for which the output value exceeds the threshold value 

Model Name RawNet2 RawBoost 

Greater than the threshold 5 32 

Percentage of total [%] 1.08 6.88 

* These threshold values correspond to those determined during the calculation of the EER. 

Table 7 depicts the output values of the models. The common feature of both models is that the output 

values reflect the level of suspicion associated with the voice. Based on the findings from the ASVspoof 

dataset, we interpret values exceeding the threshold established within the ASVspoof dataset’s EER as 

indicative of DeepFake voices. In comparison to the ASVspoof dataset, as illustrated in Figure 3, our 

provided voices exhibit a substantially lower rate of DeepFake voice detection. This outcome presents a 

significant concern, given that our dataset primarily consists of authentic voices, with only one authentic 

voice included. A similar trend is evident when examining the mean and median values in the Table 7, 

where the average and median values for our provided voices are notably smaller than those observed in 

the ASVspoof 2021 DF task. To provide further insight, Table 8 displays the count of DeepFake voices with 

outputs exceeding the threshold. The ASVspoof dataset sets the threshold, and if the output value surpasses 

this threshold, the voice is identified as a DeepFake. RawNet2 detects five voices as DeepFake, while 

RawBoost detects 32 voices as DeepFake. However, it is important to note that the reliability of RawBoost’s 

results is questionable due to its low EER. This outcome indicates that both models identified fewer than 

10% of the total samples in our provided dataset as DeepFakes. Furthermore, our thorough audio 

examination did not reveal any glaring artifacts that would classify any samples as obvious DeepFakes. In 

summary, while there are differences in the range of output values, both models exhibit a high degree of 

confidence in their classification of our dataset’s voices as genuine, with little doubt regarding their 

authenticity as opposed to being DeepFakes. 
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Figure 3. The histogram of output values by (a) RawNet2 for ASVspoof 2021 DF, (b) RawNet2 for our provided fake 

voices, (c) RawBoost for the ASVspoof, and (d) RawBoost for the provided dataset. The red lines represent the 

threshold value aligned with the EER situation within the ASVspoof dataset. 

5. Main Experiment 

We examined the newly proposed framework, taking into account waveform and speech content in 

the main experiment. The environment has the same conditions as the preliminary experiment, as Table 3 

shows. 

5.1. Dataset for Proposal Model 

In the main experiment, we have curated a separate dataset that includes synthesized voices delivering 

both factual and fake claims in the proposed model. This new dataset employs binary labels, categorizing 

the synthesized voices into two classes: “factual and misinformation.” In this context, the “factual” label is 

assigned to synthesized voices conveying genuine news, while the “misinformation” label is attributed to 

synthesized voices disseminating fake news. One notable distinction between preliminary and main 

experiments is the ratio of factual to fake claims within the dataset. In the MuMiN-large dataset, comprising 

8,013 English tweets. To address this imbalance, we have deliberately reduced the number of fakes to align 

more closely with the quantity of factual claims. The number of whole tweets is 723, 357 factual and 365 

misinformation tweets. In addition, we removed URLs and emojis from every tweet for formatting for the 

voice generation. The synthesized voices used in this main experiment were obtained from the dataset 

under the same conditions as in the preliminary experiment, utilizing the VITS model. To facilitate 

experimentation and evaluation, we have divided this dataset into training, validation, and test sets in a 

ratio of 0.7/0.1/0.2 for testing. 
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5.2. Classification Settings 

In this experiment, we assessed the credibility of the claims. We evaluated our novel framework, which 

considers both waveform and voice content. Furthermore, we introduced an additional dataset that 

includes synthesized voices associated with factual and fabricated claim. 

In the waveform section of our proposed framework model, we employed RawNet2. We maintained 

the model’s settings and input the voice waveform data without any fine-tuning. Subsequently, we 

normalized the waveform outputs to a range of zero to one, representing the suspiciousness of the 

waveform. For the content aspect, we utilized tweet embeddings sourced from the MuMiN dataset. We 

trained the XGBoost classifier using the training dataset. Finally, we computed the average of the outputs 

from both the waveform and content components of our proposed framework. It is important to note that 

the output scores indicate the degree of suspiciousness associated with the voice.  

We compared the proposed framework model with single-unit models, including waveform-only and 

content-only models, based on EER and accuracy.  We also checked the performance of RawNet2 on the 

ASVspoof 2019 LA set, intending to prove that the model could accurately detect DeepFake voices using 

previous methods.  We used EER because this is one of the metrics in ASVspoof 2021 DF.  We adopted 

accuracy to compare with the results of the MuMiN voice set and ASVspoof 2019 LA set because the 

ASVspoof 2019 LA set only contains only factual news text. It means we cannot get the EER of the ASVspoof 

dataset in content only due to a lack of the required values, True Positive and False Negative. Therefore, we 

set another metric, accuracy. 

We also checked the performance of the SSL antispoofing model [50]. This model performs best among 

the participants of ASVspoof 2021 DF post-challenge [51] with the same data augmentation process as the 

RawBoost. We employed a pretrained model on GitHub11. 

5.3. Results 

In the experiment, we examined whether the models could identify DeepFake voices associated with 

false claims. The results of this main experiment are presented in Table 9.  

For the waveform-only model, the EER is 44%, and accuracy is close to 50%, akin to random chance. 

This outcome underscores the model’s limited ability to generalize and detect DeepFake voices 

automatically. The most promising performance was observed in the proposed model that considered 

waveform and content. Intriguingly, our proposed framework model was demonstrated as the best. We 

also confirmed that the RawNet2 was classified accurately for the ASVspoof 2019 LA set. This result 

supports Tak et al.’s report [42]. The results of the SSL antispoofing show improvements from the other 

models in the ASVspoof results. This outcome supports the result of the challenge. However, the EER is 

54% and still has room for improvement, akin to random chance. This result is worse than the result of 

RawNet2 only. This part also suggests that detecting DeepFakes by waveform only is not sufficient for the 

latest voice generation models. 

Based on the average of those two datasets, the proposed method also showed the best performance 

in accuracy among the models, including SSL antispoofing. The other models showed better performance 

on only one hand, while the other has improvements. This outcome implies that our proposed framework 

can compete effectively with the latest voice generation models. 

Table 9. The classification results for synthesized voices that make claims regarding both factual and fake content 

 EER in datasets [%] Accuracy [%] 

Model framework MuMiN voices ASVspoof 2019 LA MuMiN ASVspoof Average 

Waveform only w/ RawNet2 44.6 5.6 52.7 99.7 76.2 

Waveform only w/ SSL antispoofing 54.1 2.9 46.3 99.8 73.1 

Content (Embedding & XGBoost) only 32.4 
N/A# 

86.8 11.5 49.2 

Proposed: waveform and content 17.6 81.7 81.6 81.7 

* The # shows the value is uncalculatable because the dataset does not contain fake news article. 

 
11 https://github.com/TakHemlata/SSL_Anti-spoofing 
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6. Discussion  

6.1. Competing the Speed of Advancing in Voice Generation 

According to Table 6 pertaining to the preliminary experiment, the rate of progress in voice generation 

emerges as a critical issue. RawNet2, which ranks averagely in ASVspoof, fails to detect the most recent TTS 

fabricated voices, as does RawBoost. This outcome signifies that the model trained with the dataset 

incorporating TTS and VC models predating 2019 is unable to rival the models developed from 2020 

onward. Notably, the generalization performance issue has been previously acknowledged in the ASVspoof 

2021 report [16]. However, this study represents a significant step forward as it provides similar results 

specific to post-2020 methodologies. Importantly, we lack the means to evaluate the performance of the top-

rated models from ASVspoof 2021. While the best-performing model may indeed excel in detecting the 

latest DeepFake voices, it remains uncertain whether it can effectively adapt to future developments when 

developers introduce entirely new voice-generation frameworks. In the main experiment, this study further 

examined the matter by employing synthesized voices generated by the latest TTS model. As outlined in 

Table 9, taking content into account can enhance the detection process, particularly if the model faces 

challenges in competing with the latest audio synthesis models. In the subsequent section, we delve into 

the enhancements introduced within the proposed framework, considering their applicability in real-life 

scenarios. 

The result of the main experiment shows that the proposed method is the best in the performance 

ranking for each dataset in Table 9.  This experiment aims to confirm the improvements by adopting part 

of the speech content consideration.  Therefore, the results prove the positive effect of our concept because 

the proposed score was superior to the individual models in waveform and content. 

6.2. Improvements of Proposed Framework 

Our proposed framework model demonstrates remarkable improvements when applied to real-life 

scenarios. In particular, we are exploring the scenario where we deploy the target voices sourced from social 

media to our models. In this context, it is important to note that we face the challenge of not being able to 

use tweet embeddings directly. To overcome this limitation, we must employ automatic speech recognition 

(ASR) model to transcribe the voice content into text. Consequently, we need to ensure that our framework 

can effectively classify voices accurately, even when the input content consists solely of waveform data, as 

this may become a crucial consideration in the future. 

Furthermore, there is a need to create an additional dataset that encompasses both synthesized voices 

and those recorded by human beings, with a focus on individuals reading fake news. It is worth mentioning 

that we did not incorporate the recorded voices in this article as our primary objective was to assess the 

proposed model’s capability to detect fake claims. However, we are contemplating a separate experiment 

that involves 4-class classification, considering two perspectives: recorded versus synthesis voices and 

factual versus fake content. 

7. Conclusion 

The development of speech-processing technologies offers the advantage of acquiring natural-

sounding voices. However, it also necessitates caution to distinguish between factual and DeepFake voices. 

Several efforts have been made to identify the DeepFake voices by analysing speech waveforms. 

Nevertheless, discerning DeepFake voices generated by the latest models remains a challenge for models 

trained on older voice-generation technologies. If this trend persists, detection within the current 

framework will continue to be fraught with risks and uncertainties. Hence, it is imperative to explore 

alternative detection scenarios. We proposed a model to build upon a fresh framework that considers 

waveform and speech content. In the experiment, we compared models that only use one perspective in 

voice waveform or speech content. Based on the results, our investigations prove that this model yields 

superior outcomes compared to waveform-only models with scores of equal error rate.   This result showed 

the importance of incorporating speech content into the detection process.  In the future, we have to assess 

the model’s performance with a broader array of voice types than those included in the current experiment. 

Notably, our dataset exclusively comprises synthesized voices. Consequently, it becomes crucial to examine 
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scenarios involving genuine speakers delivering false content and synthesized voices conveying factual 

claims. 
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