
Annals of Emerging Technologies in Computing (AETiC)

Vol. 8, No. 1, 2024

Agboeze Jude and Jia Uddin, “Explainable Software Defects Classification Using SMOTE and Machine Learning”, Annals of Emerging

Technologies in Computing (AETiC), Print ISSN: 2516-0281, Online ISSN: 2516-029X, pp. 35-49, Vol. 8, No. 1, 1st January 2024, Published

by International Association for Educators and Researchers (IAER), DOI: 10.33166/AETiC.2024.01.00, Available:

http://aetic.theiaer.org/archive/v8/v8n1/p4.html.

Research Article

Explainable Software Defects

Classification Using SMOTE and Machine

Learning
 Agboeze Jude and Jia Uddin*

Woosong University, Daejeon, South Korea
202280097@live.wsu.ac.kr; jia.uddin@wsu.ac.kr

*Correspondence: jia.uddin@wsu.ac.kr

Received: 5th July 2023; Accepted: 26th December 2023; Published: 1st January 2024

Abstract: Software defect prediction is a critical task in software engineering that aims to identify and mitigate

potential defects in software systems. In recent years, numerous techniques and approaches have been developed

to improve the accuracy and efficiency of the defect prediction model. In this research paper, we proposed a

comprehensive approach that addresses class imbalance by utilizing stratified splitting, explainable AI techniques,

and a hybrid machine learning algorithm. To mitigate the impact of class imbalance, we employed stratified

splitting during the training and evaluation phases. This method ensures that the class distribution is maintained

in both the training and testing sets, enabling the model to learn from and generalize to the minority class examples

effectively. Furthermore, we leveraged explainable AI methods, Lime and Shap, to enhance interpretability in the

machine learning models. To improve prediction accuracy, we propose a hybrid machine learning algorithm that

combines the strength of multiple models. This hybridization allows us to exploit the strength of each model,

resulting in improved overall performance. The experiment is evaluated using the NASA-MD datasets. The result

revealed that handling the class imbalanced data using stratify splitting approach achieves a better overall

performance than the SMOTE approach in SDD (Software Defect Detection).

Keywords: Classification; Detection; Explainable AI; Machine learning; Software Defect

1. Introduction

Software defect prediction plays a vital role in the software development life cycle, aiming to identify

and mitigate potential defects early in the process. In recent years, the increasing complexity of software

systems and the demand for higher reliability have led researchers and practitioners to explore the

application of machine learning techniques to enhance defect prediction accuracy. Software defects can be

expensive and time-consuming to repair, causing substantial delays in software development initiatives.

Researchers and practitioners have been exploring different methods for predicting and avoiding software

defects recently [1]. Machine learning algorithms have gained popularity in software defect prediction.

Techniques such as decision trees and random forests have been applied to classify software modules as

defective or non-defective based on historical data. These algorithms learn from past defect data and extract

relevant features to make predictions [2]. In recent years, research efforts have been focused on enhancing

the accuracy and applicability of defect prediction models [3]. Feature selection techniques have been

introduced to identify the most informative and relevant software metrics, reducing the dimensionality of

prediction models and improving their interpretability [4]. Data pre-processing techniques, such as

http://aetic.theiaer.org/
http://aetic.theiaer.org/
http://www.theiaer.org/index.htm
http://aetic.theiaer.org/archive/v8/v8n1/p4.html
mailto:202280097@live.wsu.ac.kr
mailto:jia.uddin@wsu.ac.kr

AETiC 2024, Vol. 8, No. 1 37

www.aetic.theiaer.org

handling class imbalance and addressing the missing data have been utilized to ensure the reliability of the

prediction process.

1.1. Literature Review

In Menzies et al. proposed a data mining approach for predicting defects using static code attributes.

Their study showed promising results in accurately identifying defect-prone modules. However, the study

focused on small-scale systems, limiting its generalization to larger and more complex software projects

[5]. We explored the application of support vector machines (SVM) for defect prediction in open-source

software. Their findings demonstrated the effectiveness of SVM in accurately classifying defective and non-

defective modules [6]. However, the study did not consider the impact of software metrics selection, which

could potentially affect the prediction performance. In [7], Nagappan et al. investigated the relationship

between code churn and software defects. The study did not consider other relevant software metrics,

limiting the comprehensiveness of the prediction model. Using evolution algorithms, in [8], Turhan et al.

developed a prediction model to estimate the likelihood of defects in software modules. While their study

provided insights into the application of evolutionary algorithms for defect prediction, the model’s

performance was highly dependent on the chosen evolutionary algorithm parameters. In [9], Yang et al.

proposed an ensemble approach for software defect prediction combining multiple classifiers to improve

prediction accuracy. Although their approach achieved better results compared to individual classifiers,

the study did not thoroughly analyze the impact of different ensemble configurations. Inspired by the

concept of transfer learning, in [10], Tantithamthavorn et al. proposed a defect prediction model that

leverages knowledge from related projects to improve prediction performance. However, the study did not

thoroughly investigate the transferability in diverse software projects. In [11], introduced a hybrid model

that combines learning and rule-based approaches for defect prediction. While their study showcased the

benefits of combining different techniques, the model’s performance heavily relied on the quality and

effectiveness of the predefined rules. In [12], Umer et al. proposed a deep-learning-based approach for

defect prediction using code change history and static code attributes. The study demonstrated the

potential of deep learning techniques in capturing complex patterns. However, the model’s performance

may be affected by the availability and quality of historical data. In [13], Amir et al. explored the

effectiveness of software metrics extracted from both source code and issue-tracking systems for defect

prediction. The findings revealed that integrating metrics from multiple sources improved the prediction

and accuracy. However, the study did not investigate the impact of different weighting schemes for

combining the metrics. In [14], proposed a hybrid feature selection approach based on genetic algorithms

and principal component analysis for software defect prediction. While their approach showed promise in

reducing the dimensionality of the feature space, the study did not evaluate the impact of different

parameter settings on the performance of the feature selection algorithm. Leveraging ensemble learning,

in [15], Tarunim et al. developed a prediction model that combines multiple machine learning algorithms

for defect prediction. The study demonstrated improved performance compared to individual algorithms.

However, the model’s performance may vary depending on the choice and configuration of the ensemble

methods. In [16], Hale et al. investigated the use of time series analysis techniques for defect prediction,

considering the temporal nature of software metrics. While their study provided insights into the potential

benefits of time series analysis, the applicability of the approach may be limited to projects with sufficient

historical data.

In [17], Mehta et al. compared the performance of different machine learning models for software

defect prediction under different data imbalance conditions. They used four machine learning models:

logistic regression, decision tree, random forest, and support vector machine. They also use three data

imbalance conditions: 1:1, 1:10, and 1:100. Their results show that the models are more sensitive to the class

imbalance problem when the number of defect-prone instances is small. For example, the accuracy of the

AETiC 2024, Vol. 8, No. 1 38

www.aetic.theiaer.org

logistic regression model decreases from 80% to 60% when the data imbalance condition changes from 1:1

to 1:100.

Table 1. Contributions and limitations of different studies in the literature
Ref. Contributions Limitations

[20] a data mining approach for
predicting defects using static code

attributes was explored; they showed
promising results in accurately

identifying defect-prone modules.

This study was limited to only small-scale systems. It was
not exposed to larger and more complex software.

[21] The author introduced support
vector machine (SVM) for defect

prediction purposes in an open-source
software perform a great effect in

accurately classifying defective and non-
defective modules.

However, the study did not consider the impact of
software metrics selection, which could potentially affect
the prediction performance

[22] In this state-of-the-art an
investigation was conducted to check
relationship between code churn and

software defects.

There was lack of software metrics, thereby limiting the
comprehension of the predictive model.

[23] proposed an ensemble approach for
software defect prediction combining

multiple classifiers to improve prediction
accuracy, approach achieved better

results compared to individual classifiers.

 The study did not thoroughly analyze the impact of
different ensemble configurations.

[24] By concept of transfer learning,
proposed a defect prediction model that

leverages knowledge from related
projects to improve prediction

performance.

The study did not thoroughly investigate the
transferability in diverse software projects.

[25] In this study, a hybrid model was
explored to combine learning and rule-
based approaches for defect prediction.

While their study showcased the benefits
of combining different techniques.

The model’s limitations, the performance was heavily
relied on the quality and effectiveness of the predefined
rules.

[26] proposed a deep-learning-based
approach for defect prediction using code
change history and static code attributes

The model’s performance may be affected as a result the
kind of quality of historical data.

[27] The author explores software metrics
extracted from both source code and

issue-tracking systems for defect
prediction. The findings revealed that

integrating metrics from multiple sources
improved the prediction and accuracy.

The study did not investigate the impact of different
weighting schemes for combining the metrics.

[30] Through a comprehensive analysis
with non-transformation, time series
forecasting method and conventional
SGRMs, it has been shown that linear

regression with Box-Cox (L_Box- Cox_T)
could work well to predict the software

fault in short time prediction.

The limitation encountered from the study is SGRM’s can
only be efficient when there is an increase in the input
testing days for software fault prediction.

[31] The authors applied explainable AI
techniques to analyze the machine

learning models.

The limitations of the paper are they did not evaluate the
results with explainable AI extracted features.

In [18], Sanchita et al. discussed the different techniques that have been proposed to address the class

imbalance problem, including sampling, cost-sensitive learning, and ensemble learning. Sampling

techniques involve changing the distribution of the data to make it more balanced. Cost-sensitive learning

techniques assign different costs to misclassifying different types of instances. Ensemble learning

techniques combine the predictions of multiple models to improve the overall performance. in [19],

Alsaeedi et al. investigated the use of oversampling to address the class imbalance problem in software

defect prediction. The paper utilised deep learning and two imbalance data condition 1:1 and 1:10. The

AETiC 2024, Vol. 8, No. 1 39

www.aetic.theiaer.org

result shows that oversampling can improve the performance of the deep learning model for software

defect prediction. For example, the accuracy of the model increases from 70% to 80% when the data

imbalanced conditions change from 1:1 to 1:10. The authors also find that oversampling is more effective

than under-sampling for improving the performance of the deep learning model.

In this paper, we focused on addressing the class imbalance in machine learning in software defect

predication tasks thereby employing stratified splitting, explainable AI techniques, and hybrid machine

learning algorithms, we advantageously attenuate the impart of class imbalance, thereby enhanced

interpretability, and improved prediction accuracy. The stratified splitting during training and evaluation

ensures that the class allocation is maintained in both the training and testing sets, enabling the model to

learn from generalize to the minority class precedent successful. To enhance interpretability in the machine

learning models in software defect prediction, we employ explainable AI methods like Lime and Shap. In

which lime focused on local interpretability by inducing an explanation for individual predictions,

allowing us to understand the reasoning behind the model’s decisions., explaining individual predictions,

while Shap provide both local and global interpretability and attributed the contribution of each feature,

providing productive insights into the value and impart of different features on the model predictions. The

hybrid allows to explore the strength of each model, thereby resulting in the overall performance and

various and relationships in the data, enhanced predictive power.

1.2. Contributions

 In this paper, we focused on the contributions of the proposed method are summarized as follows:

1. It employed a stratified splitting method to address class imbalance during the training and

evaluation phase of a machine learning model. This technique ensured that the class

distribution was maintained in both the training and testing sets, mitigating the impact of

class imbalance on model performance.

2. Leveraging explainable AI techniques (Lime and Shap) to provide interpretability to the

machine learning model. Lime allowed for local interpretability by generating explanations

for individual predictions, while Shap utilized game theory concepts to attribute the

contribution of each feature towards the model's output, enhancing transparency and trust

in the decision-making process.

3. Five machine learning models were applied to the software fault dataset to evaluate the

performance. Details results of the machine learning models are reported in this draft along

with Shap and Lime explainable AI.

The remaining is organized as follows. Section II discusses related work briefly. Section III discusses

the methodology. Section IV discusses the result and analysis. Section V discusses the conclusion.

2. Methodology

The first step in the methodology involves collecting the relevant data which is the foundational step

in defect prediction. To identify software defects, we need historical data that includes information about

past defects, code changes, and other relevant factors. Once the data is collected, the second step is to

preprocess the data which involves removing noise from the data, such as missing values, duplicates,

standardizing the format, etc. The need for data preprocessing is essential for cleaning and preparing the

data for analysis to enhance the reliability and integrity of the dataset, reducing noise and inconsistencies

that can impact the model performance [28]. Feature selection technique comes as the step to identify the

most relevant features suitable for SDD. Selecting informative features can lead to a more interpretable

model, reducing complexity, shorter training times, and enhancing the model’s prediction power. The next

step is to develop a suitable model using the final preprocessed data for SDD. After the model

development, the final step is to evaluate and validate the model performance with metrics such as

AETiC 2024, Vol. 8, No. 1 40

www.aetic.theiaer.org

precision, recall, f1 score, accuracy, and ROC curve. The evaluation step also incorporates explainable AI

techniques such as Lime and SHAP to provide interpretability and transparency to the model’s prediction

output [29]. The importance of model evaluation and validation lies in ensuring that the developed model

is reliable, effective, and capable of accurately detecting defective software.

Figure 1 demonstrates the experiment design that aims to investigate the comparative analysis of the

different ways of modeling the class imbalance dataset fitted to several machine learning algorithms to

identify the method that will yield the best performance in SDD.

Figure 1. Experiment Design

The five ML algorithms (XG, RF, GNB, LGBM, LR) were trained on each of the data models E1 and E2

as the base performance model in a train-test-split of 90:10, where 90% of the data was used for training

and 10% was used for evaluating the model performance. E1 represents the experiment that treated the

class imbalance by applying stratify splitting method and E2 represents the experiment that treated the

imbalance dataset by applying SMOTE method to oversample the minority class. The two best-performing

model algorithms in each data model were further optimized through hyperparameter tuning using

GridSearch CV to improve the model performance and compare across the different data models. A third

method was also introduced to further improve the model's overall performance. Table 1 summarises the

three methods and the different algorithms used in each step for better analysis.

Table 2. Algorithms used in each method
Method 1 Base Models

E1 XG, RF, LGBM, LR, GNB

E1 XG, RF, LGBM, LR, GNB

Method 2 Hyperparameter tuning(GridSearch)

E1 XG, RF

E2 XG, RF

Method 3 Hybrid Algorithm

E1 XG, RF, LGBM, LR, DT

E2 XG, RF, LGBM, LR, DT

AETiC 2024, Vol. 8, No. 1 41

www.aetic.theiaer.org

2.1. Dataset Description

The data for this study was downloaded from Figshare [20], which is a zipped file containing two file

directories D` and D``. In each directory contains 13 files namely: CM1, JM1, KC1, KC3, KC4, MC1, MC2,

MW1, PC1, PC3, and PC4 with all provided in arff format. I also observed that KC4 has no record in both

directories and JM1 in the record had the dependent feature “Defective” entered in as “Label”. As part of

my preprocessing step, I had the KC4 file removed and renamed the dependent feature in the JM1 record

to the appropriate value ‘Defective”. The dataset contains a total of 61147 records combined, with 40

features (39 numeric features and one categorical feature). The description of the dataset is provided in

Figure 2.

Figure 2. Dataset features and their datatype

2.2. Feature Selection and Engineering

In this section, the following methods were adapted for feature selection and engineering:

2.2.1. label Encoding

The data was transformed by converting the categorical feature to a numeric feature before developing

the model. This is a standard practice to always convert all categorical features to numeric since machine

learning algorithms cannot abstract labels but rather numeric values.

2.2.2. Feature Scaling

To normalize the features, the MinMax scaler was utilized. The choice to use the MinMax scaler here

over the Standard scaler was because the dataset was heavily skewed i.e. they are not normally distributed

(not perfectly Gaussian)

AETiC 2024, Vol. 8, No. 1 42

www.aetic.theiaer.org

2.2.3. Correlation

This is a way to determine the correlated features between the dependent and independent features.

In this case, these features were identified using a heatmap.

Figure 3. Dataset features and their level of impact on SDP

2.2.4. Feature Selection with Logistic Regression Technique

This method utilized interpretability fitted to logistic regression to sort the features according to how

they impact positively or negatively on the dependent variable in ascending order as seen in Figure 3. This

is to understand the features the model is basing its predictions on, especially since a logistic regression

classifier is easy to decode using the coefficients it has assigned, in this case, to each feature. This enabled

the selection of only the significant features that have a high tendency to contribute to the model’s

performance, unlike “GLOBAL_DATA_COMPLEXITY”, “BRANC_COUNT”, and “DECISION_COUNT”

features which were dropped during model training as they had very little or no impact.

2.3. Machine Learning Algorithms

For this study, seven (7) machine learning algorithms were developed for analysis and comparison,

which are presented in the following sub-sections.

2.3.1. Random Forest

Random Forest is a popular machine-learning algorithm used for both regression and classification

tasks. It is an ensemble learning method that combines multiple decision trees to make a prediction. In the

random forest model, each tree is constructed by randomly selecting a subset of the features and a subset

of the training data. They are mostly known for their high accuracy, ability to handle large datasets and

resistance to overfitting.

AETiC 2024, Vol. 8, No. 1 43

www.aetic.theiaer.org

2.3.2. Extreme Gradient Boosting Algorithm

Extreme Gradient Boosting is a popular machine learning algorithm that belongs to the family of

gradient boosting methods. It is designed to boost the performance of tree-based models by iteratively

learning from the errors of previous models. XGBoost is a powerful algorithm that can be used for a wide

range of applications and provides robust and accurate predictions with feature importance measures. Its

ability to handle missing values and its regularized approach makes it a popular choice for many machine-

learning tasks.

2.3.3. Light Gradient Boosting Machine (LightGBM)

LightGBM is a popular machine learning algorithm that belongs to the family of gradient boosting

methods. It is designed to boost the performance of tree-based models by improving the efficiency and

accuracy of existing algorithms, such as XGBoost performance of tree-based models by improving the

efficiency and accuracy of existing algorithms, such as XGBoost. LightGBM is a powerful algorithm that

can be used for a wide range of applications and provides robust and accurate predictions with high

efficiency. Its leaf-wise tree growth and histogram-based algorithm make it a highly efficient algorithm,

while its support for categorical features and early stopping make it a flexible and powerful tool for many

machine-learning tasks. Leaf-wise tree growth and histogram-based algorithm make it a highly efficient

algorithm, while its support for categorical features and early stopping make it a flexible and powerful tool

for many machine-learning tasks.

2.3.4. Gaussian Naive Bayes (GNB)

Gaussian Naive Bayes is a simple and widely used probabilistic algorithm for classification tasks. It is

based on the Bayes theorem and the assumption that the features are conditionally independent given the

class. It is a simple yet effective algorithm for classification tasks, especially when the number of features

is large compared to the number of samples. Its probabilistic nature, fast training, and easy implementation

make it a popular choice for many machine-learning applications. However, it may not perform well when

the independence assumption does not hold or when the data has a non-Gaussian distribution.

2.3.5. Logistic Regression

This is a commonly used algorithm for binary classification tasks, which involves predicting one of

two possible outcomes. It uses a logistic function to model the probability of a binary outcome as a function

of one or more predictor variables. Logistic Regression is a simple yet effective algorithm for binary

classification tasks, especially when the relationship between the input features and the outcome is linear

or can be approximated by a linear function. Its probabilistic nature, fast training, and easy interpretation

make it a popular choice for many machine-learning applications. However, it may not perform well when

the relationship between the input features and the outcomes is non-linear or when the input features are

highly correlated.

2.3.6. Decision Tree

A Decision Tree is a popular algorithm for classification and regression tasks. It uses a tree-like model

to represent decisions and their possible consequences. Each internal node of the tree represents a test on

an attribute, each branch represents the outcome of the test, and each leaf node represents a class label or a

numerical value. Decision Tree is a versatile and powerful algorithm for both classification and regression

tasks, especially when the underlying relationship between the input features and the output is non-linear

or complex. Its non-parametric nature, easy interpretation, and feature selection capability make it a

popular choice for many machine learning applications. However, it may not perform well when the data

is noisy or when the tree structure becomes too complex. These concepts and calculations are essential for

understanding and building decision tree classifiers. The following few equations provide the foundation

for the construction and evaluation of decision trees.

AETiC 2024, Vol. 8, No. 1 44

www.aetic.theiaer.org

2.3.7. Stacking Algorithm

Stacking is an ensemble learning technique that combines multiple base models to improve the

predictive performance of the model. It involves training several base models on the training set and then

using their predictions as input to a meta-model that combines them to make the final prediction. This is a

robust technique that can handle outliers and missing data by using the predictions of the base models.

Stacking is a powerful and flexible technique for improving the predictive performance of machine learning

models, especially when dealing with complex and noisy data. Its ability to combine different types of

models and leverage their strengths makes it a popular choice for many machine-learning applications.

However, it may require more computational resources and training time compared to single models and

may be prone to overfitting if not carefully designed and validated.

3. Experimental Result and Analysis

For this study, the following metrics were used to evaluate the performance of the models: accuracy

(5), recall (6), precision (7), AUC which shows the tradeoff between TP rate and FP rate, and f-measure (8)

[22]. The metric values were all computed using the statistical values of True Positive (TP), True Negative

(TN), False Positive (FP), and False Negative (FN).

Accuracy =
TP + TN

TP +FP+FN+TN
 (1)

Recall =
TP

TP + FN
 (2)

Precision =
TP

TP + FP
 (3)

Fmeasure =
2×Precision×Recall

Precision + Recall
 (4)

XAI Shap and Lime were applied to each algorithm to analyze the feature impact in the model output

and model interpretability respectively. In Figure 5 and Figure 6, it is observed that random forest and

XGboost used all the features for prediction. This explained why they both came out as the best-performing

base models. It can be observed in Figures 5(a)-(c), that the red and blue colours occupy half of the

horizontal rectangles for each class. This means each feature has an equal impact on the classification of

defective software. Also, the upper features indicate features with the most predicting power while the

lower features do not contribute as much.

Table 3. Showing the base model results evaluated on E1 data model
Name Precision Accuracy F1_score Recall Auc Train Test

RF 0.97 0.98 0.94 0.91 0.95 0.10 0.99

LR 0.51 0.89 0.10 0.06 0.52 0.89 0.89

LGBM 0.81 0.92 0.35 0.22 0.61 0.93 0.92

XGB 0.89 0.93 0.54 0.38 0.69 0.95 0.93

NB 0.37 0.88 0.26 0.21 0.58 0.88 0.88

Table 4. Showing base model results evaluated on E2 data model
Name Precision Accuracy F1_score Recall Auc Train Test

RF 0.904 0.98 0.91 0.91 0.95 0.10 0.98

LR 0.24 0.71 0.36 0.80 0.75 0.74 0.71

LGBM 0.39 0.86 0.48 0.63 0.76 0.90 0.86

XGB 0.50 0.90 0.57 0.65 0.79 0.95 0.90

NB 0.37 0.88 0.26 0.21 0.58 0.58 0.88

Table 5. Stack algorithm results on E1 and E2 data model

Data-model Accuracy Auc F1_score Recall Train Test

E1 0.990 0.985 0.953 0.979 0.991 0.990

E2 0.981 0.948 0.909 0.905 0.993 0.982

AETiC 2024, Vol. 8, No. 1 45

www.aetic.theiaer.org

Figure 4. Hybrid algorithm model results in comparison of E1 and E2 data model

(a)

(b)

(c)

(d)

Figure 5. SHAP summary prediction performance showing for (a) Random Forest, (b) LightGbm, (c) XGboost, (d)

Decision Tree

Figure 6 shows a lime explanation for each of the models for the top six features. Random Forest model

predicted defective software with 59% confidence based on features like

Normalized_cyclomatic_complexity, multiple_condition_count, and decision density. While XGboost

predicted non-defective with 96% confidence based on features like design_density, parameter_count,

global_bank_density, and loc_bank. These five algorithms were fitted on E1 and E2 as the base model, it

AETiC 2024, Vol. 8, No. 1 46

www.aetic.theiaer.org

was observed that RandomForest and XGBoost came out with the best accuracy, where RF had an AUC

score of 95% and XG with 69% using the E1 approach as seen in Table 2.

Figure 6. Showing prediction assessment using XAI-lime for the individual models

On the E2 data model with the same five algorithms fitted, XG and RF still came out as the best two

models with AUC of 79% and 95% respectively. Given the result on E1 and E2 for the base model. It clearly

showed that RF was performing better than XG on both approaches, but when their confusion metrics were

compared, surprisingly XG on E1 was doing better in terms of classifying defective software as True

Negative (TN). XG on E1 classified a total of 570 as True Negative while RF on E1 classified 568 as True

Negative. Then for E2, both XG and RF classified 569 as True Negative. Optimizing the two best-performing

models (XG and RF) using GridSearchCV did not show any significant improvement in the model's

performance. The overall best model in this study came out as the Stacking Algorithm Classifier, as seen in

Table 4, which had five different models with different strengths combined as one single model [23]. All

the evaluation metrics used for validating the performance like accuracy, f1 score, recall, and AUC all had

above 90% on both E1 and E2. A closer look at the comparison with their confusion matrices showed that

the stacking classifier was performing better with the E1 approach than with E2. The confusion matrix for

the Stacking algorithm model compared when tested for E1 and E2 revealed that the stacking algorithm on

E1 was able to classify 5468+575 as the correct prediction and 23+49 as the incorrect prediction. In contrast,

the algorithm on E2 classified 5439+564 as correct prediction and 53+59 as incorrect prediction. This,

therefore, shows that the stack algorithm on E1 was able to classify a total of 575 as defective software

compared to all other models, placing it as the overall best-performing model. Also, each of the models

developed in this study was tested for any chances of over-fitting as this is a common challenge

AETiC 2024, Vol. 8, No. 1 47

www.aetic.theiaer.org

encountered during model training or optimization. There was no sign of over-fitting throughout the stage

of training these models as revealed in all the result tables given by the difference between the training and

test scores.

4. Conclusion

In this paper, we have presented a comprehensive approach to address the class imbalance in machine

learning tasks. By utilizing stratified splitting, explainable AI techniques (Lime and Shape), and a hybrid

machine learning algorithm, we successfully mitigated the impact of class imbalance, enhanced

interpretability, and improved prediction accuracy. The implementation of stratified splitting ensured that

class distribution was maintained, enabling the model to effectively learn from minority class examples,

thereby reducing bias towards the majority class. Incorporating XAI such as Lime and Shap, provided

interpretability to machine learning models. Lime offered local interpretability by generating explanations

for individual predictions, allowing us to understand the reasoning behind the model’s decisions. Shap on

the other hand attributed the contribution of each feature, offering valuable insights into the importance

and impact of different features on the model prediction. The proposed hybrid algorithm allowed us to

capture diverse patterns and relationships in the data, leading to enhanced predictive capabilities.

Acknowledgement

This research is funded by Woosong University Academic Research 2024.

References

[1] Kiran Maharana, Surajit Mondal and Bhushankumar Nemade, “A review: Data pre-processing and data

augmentation techniques”, in Global Transitions Proceedings, Vol. 3, No. 1, pp. 91-99, June 2022, ISSN: 2666-285X,

Published by Elsevier B.V., DOI: 10.1016/j.gltp.2022.04.020, Available:

https://www.sciencedirect.com/science/article/pii/S2666285X22000565.

[2] Anuradha Chug and Shafali Dhall, “Software defect prediction using supervised learning algorithm and

unsupervised learning algorithm”, In Proceedings of the 4th International Conference Confluence 2013: The Next

Generation Information Technology Summit, Noida, India, 26-27 September 2013, ISBN:978-1-84919-846-2, Published

by IEEE Xplore, DOI: 10.1049/cp.2013.2313, Available: https://ieeexplore.ieee.org/document/6832328.

[3] Zeyu Wang, Jian Liu, Yuanxin Zhang, Hongping Yuan, Ruixue Zhang et al., “Practical issues in implementing

machine-learning models for building energy efficiency: Moving beyond obstacles”, Renewable and Sustainable

Energy Reviews, ISSN: 1364-0321, pp. 110929, Vol. 143, June 2021, Published by Elsevier BV, DOI:

10.1016/j.rser.2021.110929, Available: http://www.sciencedirect.com/science/article/pii/S1364032121002227.

[4] Romi S. Wahono and Nanna Suryana, “Combining particle swarm optimization-based feature selection and

bagging technique for software defect prediction”, International Journal of Software Engineering and Its Applications,

ISSN: 1738-9984, Vol. 7, No. 5, pp. 153-166, 2013, DOI: 10.14257/ijseia.2013.7.5.16, Available: https://digital-

library.theiet.org/content/conferences/10.1049/cp.2013.2293.

[5] Tim Menzies, Jeremy Greenwald and Art Frank, “Data mining static code attributes to learn defect predictors”,

IEEE transactions on Software Engineering, ISSN: 0098-5589, Vol. 33, No. 1, pp. 2-13, 2006, DOI:

10.1109/TSE.2007.256941, Available: https://ieeexplore.ieee.org/abstract/document/4027145.

[6] Karim O. Elish and Mahmoud O. Elish, “Predicting defect-prone software modules using support vector

machines”, Journal of Systems and Software, Vol. 81, No. 5, pp. 649-660, 2008, DOI: 10.1016/j.jss.2007.07.040,

Available: https://www.sciencedirect.com/science/article/abs/pii/S016412120700235X.

[7] Nachiappan Nagappan, Brendan Murphy and Victor Basili, “The influence of organizational structure on software

quality: an empirical case study”, In Proceedings of the 30th International Conference on Software Engineering, Leipzig,

Germany, 10-18 May 2008, pp. 521-530, Published by ACM Digital Library, DOI: 10.1145/1368088.1368160,

Available: https://dl.acm.org/doi/10.1145/1368088.1368160.

https://www.sciencedirect.com/science/article/pii/S2666285X22000565
https://ieeexplore.ieee.org/document/6832328
http://www.sciencedirect.com/science/article/pii/S1364032121002227
https://digital-library.theiet.org/content/conferences/10.1049/cp.2013.2293
https://digital-library.theiet.org/content/conferences/10.1049/cp.2013.2293
https://ieeexplore.ieee.org/abstract/document/4027145
https://www.sciencedirect.com/science/article/abs/pii/S016412120700235X
https://dl.acm.org/doi/10.1145/1368088.1368160

AETiC 2024, Vol. 8, No. 1 48

www.aetic.theiaer.org

[8] Burak Turhan, Tim Menzies, Ayşe B. Bener and Justin Di Stefano, “On the relative value of cross-company and

within-company data for defect prediction”, Empirical Software Engineering, No. 14, pp. 540-578, January 2009, DOI:

10.1007/s10664-008-9103-7, Available: https://link.springer.com/article/10.1007/s10664-008-9103-7.

[9] Fei Wu, Xiao-Y. Jing, Shiguang Shan, Wangmeng Zuo and Jing-Y. Yang, “Multiset feature learning for highly

imbalanced data classification”, In Proceedings of the AAAI conference on artificial intelligence, Washington DC, USA,

4-9 February 2017, Vol. 31, No. 1, San Francisco, California USA, DOI: 10.1609/aaai.v31i1.10739,

https://ojs.aaai.org/index.php/AAAI/article/view/10739.

[10] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan and Kenichi Matsumoto, “The Impact of

Automated Parameter Optimization on Defect Prediction Models”, IEEE Transactions on Software Engineering, Print

ISSN: 0098-5589, Vol. 45, No. 7, pp. 683-711, July 2019, DOI: 10.1109/TSE.2018.2794977, Available:

https://ieeexplore.ieee.org/abstract/document/8263202.

[11] Diana-L. Miholca, “An Improved Approach to Software Defect Prediction using a Hybrid Machine Learning

Model”, In 2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC),

Timisoara, Romania, 20-23 September 2018, pp. 443-448, ISBN:978-1-7281-0626-7, DOI:

10.1109/SYNASC.2018.00074, Available: https://ieeexplore.ieee.org/document/8750697.

[12] Lei Qiao, Xuesong Li, Qasim Umer and Ping Guo, “Deep learning-based software defect prediction”,

Neurocomputing, Vol. 385, pp. 100-110, April 2020, ISSN: 0925-2312, Elsevier, DOI: 10.1016/j.neucom.2019.11.067,

Avialable: https://www.sciencedirect.com/science/article/abs/pii/S0925231219316698.

[13] Amir Elmishali and Meir Kalech, “Issues-Driven features for software fault prediction”, Information and Software

Technology, Vol. 155, March 2023, ISSN: 0950-5849, DOI: 10.1016/j.infsof.2022.107102, Available:

https://www.sciencedirect.com/science/article/abs/pii/S0950584922002117.

[14] Lina Jia, “A hybrid feature selection method for software defect prediction,” In IOP Conference Series: Materials

Science and Engineering, Vol. 394, pp. 032035, August 2018, IOP Publishing, ISSN: 1757-899X, DOI: 10.1088/1757-

899X/394/3/032035, Available: https://iopscience.iop.org/article/10.1088/1757-899X/394/3/032035.

[15] Sharma Tarunim, Aman Jatain, Shalini Bhaskar and Kavita Pabreja, “Ensemble Machine Learning Paradigms in

Software Defect Prediction,” In Procedia Computer Science, Vol. 218, pp. 199-209, 2023, ISSN: 1877-0509, DOI:

10.1016/j.procs.2023.01.002, Available: https://www.sciencedirect.com/science/article/pii/S1877050923000029.

[16] Uzma Raja, David P. Hale and Joanne E. Hale, “Modeling software evolution defects: a time series approach”,

Software Maintenance and Evolution: Research and Practice, Vol. 21, No. 1, pp. 49-71, December 2008, DOI:

10.1002/smr.398, Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.398.

[17] Sweta Mehta and Patnaik K. Sridhar, “Improved prediction of software defects using ensemble machine learning

techniques”, Neural Computing and Application, Vol. 33, pp. 10551-10562, March 2021, Print ISSN: 0941-0643, DOI:

10.1007/s00521-021-05811-3, Available: https://link.springer.com/article/10.1007/s00521-021-05811-3.

[18] Pandey Sanchita and Kuldeep Kumar, “Software Fault Prediction for Imbalanced Data: A Survey on Recent

Developments”, In Procedia Computer Science, ISSN: 1877-0509, Vol. 218, pp. 1815-1824, January 2023, DOI:

10.1016/j.procs.2023.01.159, Available: https://www.sciencedirect.com/science/article/pii/S187705092300159X.

[19] Alsaeedi Abdullah and Mohammad Z. Khan, “Software Defect Prediction Using Supervised Machine Learning

and Ensemble Techniques: A Comparative Study”, Journal of Software Engineering and Applications, ISSN Online:

1945-3124, Vol. 12, No. 5, pp. 85-100, 2019, Published by SCIRP, DOI: 10.4236/jss.2015.37034, Available:

https://www.scirp.org/journal/paperinformation?paperid=92522.

[20] Daniel Rodriguez, Roberto Ruiz, Jose C. Riquelme and Rachel Harrison, “A study of subgroup discovery

approaches for defect prediction”, Information and Software Technology, ISSN: 0950-5849, Vol. 55, No. 10, pp. 1810-

1822, October 2013, Published by Elservier, DOI: 10.1016/j.infsof.2023.05.002, Available:

https://www.sciencedirect.com/science/article/abs/pii/S0950584913001018.

[21] Thanh T. Khuat and My H. Le, “Evaluation of Sampling-Based Ensembles of Classifiers on Imbalanced Data for

Software Defect Prediction Problems”, SN Computer Science, No. 1, pp. 108, March 2020, Published by

springernature, DOI: 10.1007/s42979-020-0119, Available: https://link.springer.com/article/10.1007/s42979-020-

0119-4.

[22] Jinping Liu, Yuming Zhou, Yibiao Yang, Hongmin Lu and Baowen Xu, “Code Churn: A Neglected Metric in Effort-

Aware Just-in-Time Defect Prediction”, In 2017 ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM, 2017), Toronto, ON, Canada, pp. 11-19, ISBN:978-1-5090-4040-7, Published by

IEEE, DOI: 10.1109/ESEM.2017.8, Available: https://ieeexplore.ieee.org/document/8169980.

https://link.springer.com/article/10.1007/s10664-008-9103-7
https://ojs.aaai.org/index.php/AAAI/article/view/10739
https://ieeexplore.ieee.org/abstract/document/8263202
https://ieeexplore.ieee.org/document/8750697
https://www.sciencedirect.com/science/article/abs/pii/S0925231219316698
https://www.sciencedirect.com/science/article/abs/pii/S0950584922002117
https://iopscience.iop.org/article/10.1088/1757-899X/394/3/032035
https://www.sciencedirect.com/science/article/pii/S1877050923000029
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.398
https://link.springer.com/article/10.1007/s00521-021-05811-3
https://www.sciencedirect.com/science/article/pii/S187705092300159X
https://www.scirp.org/journal/paperinformation?paperid=92522
https://www.sciencedirect.com/science/article/abs/pii/S0950584913001018
https://link.springer.com/article/10.1007/s42979-020-0119-4
https://link.springer.com/article/10.1007/s42979-020-0119-4
https://ieeexplore.ieee.org/document/8169980

AETiC 2024, Vol. 8, No. 1 49

www.aetic.theiaer.org

[23] Issam H. Laradji, Mohammad Alshayeb and Lahouari Ghouti., “Software defect prediction using ensemble

learning on selected features”, Information and Software Technology, ISSN: 0950-5849, Vol. 58, pp. 388-402, February

2015, Published by Elsevier, DOI: 10.1016/j.infsof.2014.07.005, Available:

https://www.sciencedirect.com/science/article/abs/pii/S0950584914001591.

[24] Yang Liu, Yan Kang, Chaoping Xing, Tianjian Chen and Qiang Yang, “A Secure Federated Transfer Learning

Framework”, IEEE Intelligent Systems, Print ISSN: 1541-1672, Vol. 35, No. 4, pp. 70-82, Published by IEEE, DOI:

10.1109/MIS.2020.2988525, Available: https://ieeexplore.ieee.org/document/9076003.

[25] Abdullah A. Mamun, Md Sohel, Naeem Mohammad, Md Samiul H. Sunny, Debopriya R. Dipta et al., “A

Comprehensive Review of the Load Forecasting Techniques Using Single and Hybrid Predictive Models”, IEEE

Access, ISSN: 2169-3536, pp. 134911-134939, July 2020, Published by IEEE, DOI: 10.1109/ACCESS.2020.3010702,

Available: https://ieeexplore.ieee.org/document/9144528.

[26] Amirabbas Majd, Mojtaba V. Asl, Alireza Khalilian, Pooria P.-Tehrani and Hassan Haghighi, “SLDeep: Statement-

level software defect prediction using deep-learning model on static code features”, Expert Systems with

Applications, ISSN: 0957-4174, Vol. 147, June 2020, Published by Elsevier B.V., DOI: 10.1016/j.eswa.2019.113156,

Available: https://www.sciencedirect.com/science/article/abs/pii/S0957417419308735.

[27] Maram Assi, Safwat Hassan, Stefanos Georgiou and Ying Zou, “Predicting the Change Impact of Resolving Defects

by Leveraging the Topics of Issue Reports in Open Source Software Systems”, Software Engineering and

Methodology, ISSN: 1049-331X, Vol. 32, No. 6, pp. 1-34, September 2023, Published by ACM, DOI: 10.1145/3593802,

Available: https://dl.acm.org/doi/abs/10.1145/3593802.

[28] Kiran Maharana, Surajit Mondal and Bhushankumar Nemade, “A review: Data pre-processing and data

augmentation techniques”, In Global Transitions Proceedings, ISSN: 2666-285X, Vol. 1, No. 3, pp. 91-99, 2022, DOI:

10.1016/j.gltp.2022.04.020, Available: https://www.sciencedirect.com/science/article/pii/S2666285X22000565.

[29] Rudresh Dwivedi, Devam Dave, Het Naik, Smiti Singhal, Rana Omer et al. “Explainable AI (XAI): Core Ideas,

Techniques, and Solutions”, ACM Journals, ISSN: 0360-0300, Vol. 55, No. 9, pp. 1-33, Januray 2023, Published by

CSUR, DOI: 10.1145/3561048, Available: https://dl.acm.org/doi/10.1145/3561048.

[30] Momotaz Begum, Jahid H. Rony, Md R. Islam and Jia Uddin, “Long-Term Software Fault Prediction Model with

Linear Regression and Data Transformation”, Journal of Informatiom Systems and Telecommunication, ISSN: 2322-

1437, Vol. 11, No. 3, pp. 222-231, July-September 2023, Published by JIST, DOI: 10.61186/jist.36585.11.43.222,

Available: http://jist.ir/Article/36585/FullText.

[31] Momotaz Begum, Mehedi H. Shuvo, Imran Ashraf, Abdullah A. Mamun, Jia Uddin et al., “Software Defects

Identification: Results Using Machine Learning and Explainable Artificial Intelligence Techniques”, IEEE Access,

Vol. 11, pp. 132750-132765, 2023, DOI: 10.1109/ACCESS.2023.3329051, Available:

https://ieeexplore.ieee.org/abstract/document/10304128.

© 2024 by the author(s). Published by Annals of Emerging Technologies in Computing

(AETiC), under the terms and conditions of the Creative Commons Attribution (CC BY)

license which can be accessed at http://creativecommons.org/licenses/by/4.0.

https://www.sciencedirect.com/science/article/abs/pii/S0950584914001591
https://ieeexplore.ieee.org/document/9076003
https://ieeexplore.ieee.org/document/9144528
https://www.sciencedirect.com/science/article/abs/pii/S0957417419308735
https://dl.acm.org/doi/abs/10.1145/3593802
https://www.sciencedirect.com/science/article/pii/S2666285X22000565
https://dl.acm.org/doi/10.1145/3561048
https://doi.org/10.61186/jist.36585.11.43.222
http://jist.ir/Article/36585/FullText
https://ieeexplore.ieee.org/abstract/document/10304128

