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Abstract: Software defect prediction is a critical task in software engineering that aims to identify and mitigate 

potential defects in software systems. In recent years, numerous techniques and approaches have been developed 

to improve the accuracy and efficiency of the defect prediction model. In this research paper, we proposed a 

comprehensive approach that addresses class imbalance by utilizing stratified splitting, explainable AI techniques, 

and a hybrid machine learning algorithm. To mitigate the impact of class imbalance, we employed stratified 

splitting during the training and evaluation phases. This method ensures that the class distribution is maintained 

in both the training and testing sets, enabling the model to learn from and generalize to the minority class examples 

effectively. Furthermore, we leveraged explainable AI methods, Lime and Shap, to enhance interpretability in the 

machine learning models. To improve prediction accuracy, we propose a hybrid machine learning algorithm that 

combines the strength of multiple models. This hybridization allows us to exploit the strength of each model, 

resulting in improved overall performance.  The experiment is evaluated using the NASA-MD datasets. The result 

revealed that handling the class imbalanced data using stratify splitting approach achieves a better overall 

performance than the SMOTE approach in SDD (Software Defect Detection). 
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1. Introduction 

Software defect prediction plays a vital role in the software development life cycle, aiming to identify 

and mitigate potential defects early in the process. In recent years, the increasing complexity of software 

systems and the demand for higher reliability have led researchers and practitioners to explore the 

application of machine learning techniques to enhance defect prediction accuracy. Software defects can be 

expensive and time-consuming to repair, causing substantial delays in software development initiatives. 

Researchers and practitioners have been exploring different methods for predicting and avoiding software 

defects recently [1]. Machine learning algorithms have gained popularity in software defect prediction. 

Techniques such as decision trees and random forests have been applied to classify software modules as 

defective or non-defective based on historical data. These algorithms learn from past defect data and extract 

relevant features to make predictions [2]. In recent years, research efforts have been focused on enhancing 

the accuracy and applicability of defect prediction models [3]. Feature selection techniques have been 

introduced to identify the most informative and relevant software metrics, reducing the dimensionality of 

prediction models and improving their interpretability [4]. Data pre-processing techniques, such as 
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handling class imbalance and addressing the missing data have been utilized to ensure the reliability of the 

prediction process. 

1.1. Literature Review 

In Menzies et al. proposed a data mining approach for predicting defects using static code attributes. 

Their study showed promising results in accurately identifying defect-prone modules. However, the study 

focused on small-scale systems, limiting its generalization to larger and more complex software projects 

[5]. We explored the application of support vector machines (SVM) for defect prediction in open-source 

software. Their findings demonstrated the effectiveness of SVM in accurately classifying defective and non-

defective modules [6]. However, the study did not consider the impact of software metrics selection, which 

could potentially affect the prediction performance. In [7], Nagappan et al. investigated the relationship 

between code churn and software defects. The study did not consider other relevant software metrics, 

limiting the comprehensiveness of the prediction model. Using evolution algorithms, in [8], Turhan et al. 

developed a prediction model to estimate the likelihood of defects in software modules. While their study 

provided insights into the application of evolutionary algorithms for defect prediction, the model’s 

performance was highly dependent on the chosen evolutionary algorithm parameters. In [9], Yang et al. 

proposed an ensemble approach for software defect prediction combining multiple classifiers to improve 

prediction accuracy. Although their approach achieved better results compared to individual classifiers, 

the study did not thoroughly analyze the impact of different ensemble configurations. Inspired by the 

concept of transfer learning, in [10], Tantithamthavorn et al. proposed a defect prediction model that 

leverages knowledge from related projects to improve prediction performance. However, the study did not 

thoroughly investigate the transferability in diverse software projects. In [11], introduced a hybrid model 

that combines learning and rule-based approaches for defect prediction. While their study showcased the 

benefits of combining different techniques, the model’s performance heavily relied on the quality and 

effectiveness of the predefined rules. In [12], Umer et al. proposed a deep-learning-based approach for 

defect prediction using code change history and static code attributes. The study demonstrated the 

potential of deep learning techniques in capturing complex patterns. However, the model’s performance 

may be affected by the availability and quality of historical data. In [13], Amir et al. explored the 

effectiveness of software metrics extracted from both source code and issue-tracking systems for defect 

prediction. The findings revealed that integrating metrics from multiple sources improved the prediction 

and accuracy. However, the study did not investigate the impact of different weighting schemes for 

combining the metrics. In [14], proposed a hybrid feature selection approach based on genetic algorithms 

and principal component analysis for software defect prediction. While their approach showed promise in 

reducing the dimensionality of the feature space, the study did not evaluate the impact of different 

parameter settings on the performance of the feature selection algorithm. Leveraging ensemble learning, 

in [15], Tarunim et al. developed a prediction model that combines multiple machine learning algorithms 

for defect prediction. The study demonstrated improved performance compared to individual algorithms. 

However, the model’s performance may vary depending on the choice and configuration of the ensemble 

methods. In [16], Hale et al. investigated the use of time series analysis techniques for defect prediction, 

considering the temporal nature of software metrics. While their study provided insights into the potential 

benefits of time series analysis, the applicability of the approach may be limited to projects with sufficient 

historical data. 

In [17], Mehta et al. compared the performance of different machine learning models for software 

defect prediction under different data imbalance conditions. They used four machine learning models: 

logistic regression, decision tree, random forest, and support vector machine. They also use three data 

imbalance conditions: 1:1, 1:10, and 1:100. Their results show that the models are more sensitive to the class 

imbalance problem when the number of defect-prone instances is small. For example, the accuracy of the 
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logistic regression model decreases from 80% to 60% when the data imbalance condition changes from 1:1 

to 1:100.  

Table 1. Contributions and limitations of different studies in the literature 
Ref. Contributions Limitations 

[20] a data mining approach for 
predicting defects using static code 

attributes was explored; they showed 
promising results in accurately 

identifying defect-prone modules. 

This study was limited to only small-scale systems. It was 
not exposed to larger and more complex software. 

[21] The author introduced support 
vector machine (SVM) for defect 

prediction purposes in an open-source 
software perform a great effect in 

accurately classifying defective and non-
defective modules. 

However, the study did not consider the impact of 
software metrics selection, which could potentially affect 
the prediction performance 

[22] In this state-of-the-art an 
investigation was conducted to check 
relationship between code churn and 

software defects. 

There was lack of software metrics, thereby limiting the 
comprehension of the predictive model. 

[23] proposed an ensemble approach for 
software defect prediction combining 

multiple classifiers to improve prediction 
accuracy, approach achieved better 

results compared to individual classifiers. 

 The study did not thoroughly analyze the impact of 
different ensemble configurations. 

[24]  By concept of transfer learning, 
proposed a defect prediction model that 

leverages knowledge from related 
projects to improve prediction 

performance. 

The study did not thoroughly investigate the 
transferability in diverse software projects. 

[25]  In this study, a hybrid model was 
explored to combine learning and rule-
based approaches for defect prediction. 

While their study showcased the benefits 
of combining different techniques. 

The model’s limitations, the performance was heavily 
relied on the quality and effectiveness of the predefined 
rules. 

[26]  proposed a deep-learning-based 
approach for defect prediction using code 
change history and static code attributes 

The model’s performance may be affected as a result the 
kind of quality of historical data. 

[27] The author explores software metrics 
extracted from both source code and 

issue-tracking systems for defect 
prediction. The findings revealed that 

integrating metrics from multiple sources 
improved the prediction and accuracy. 

The study did not investigate the impact of different 
weighting schemes for combining the metrics. 

[30] Through a comprehensive analysis 
with non-transformation, time series 
forecasting method and conventional 
SGRMs, it has been shown that linear 

regression with Box-Cox (L_Box- Cox_T) 
could work well to predict the software 

fault in short time prediction. 

The limitation encountered from the study is SGRM’s can 
only be efficient when there is an increase in the input 
testing days for software fault prediction.  

[31] The authors applied explainable AI 
techniques to analyze the machine 

learning models. 

The limitations of the paper are they did not evaluate the 
results with explainable AI extracted features. 

In [18], Sanchita et al. discussed the different techniques that have been proposed to address the class 

imbalance problem, including sampling, cost-sensitive learning, and ensemble learning. Sampling 

techniques involve changing the distribution of the data to make it more balanced. Cost-sensitive learning 

techniques assign different costs to misclassifying different types of instances. Ensemble learning 

techniques combine the predictions of multiple models to improve the overall performance. in [19], 

Alsaeedi et al. investigated the use of oversampling to address the class imbalance problem in software 

defect prediction. The paper utilised deep learning and two imbalance data condition 1:1 and 1:10. The 
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result shows that oversampling can improve the performance of the deep learning model for software 

defect prediction. For example, the accuracy of the model increases from 70% to 80% when the data 

imbalanced conditions change from 1:1 to 1:10. The authors also find that oversampling is more effective 

than under-sampling for improving the performance of the deep learning model.  

In this paper, we focused on addressing the class imbalance in machine learning in software defect 

predication tasks thereby employing stratified splitting, explainable AI techniques, and hybrid machine 

learning algorithms, we advantageously attenuate the impart of class imbalance, thereby enhanced 

interpretability, and improved prediction accuracy. The stratified splitting during training and evaluation 

ensures that the class allocation is maintained in both the training and testing sets, enabling the model to 

learn from generalize to the minority class precedent successful. To enhance interpretability in the machine 

learning models in software defect prediction, we employ explainable AI methods like Lime and Shap. In 

which lime focused on local interpretability by inducing an explanation for individual predictions, 

allowing us to understand the reasoning behind the model’s decisions., explaining individual predictions, 

while Shap provide both local and global interpretability and attributed the contribution of each feature, 

providing productive insights into the value and impart of different features on the model predictions. The 

hybrid allows to explore the strength of each model, thereby resulting in the overall performance and 

various and relationships in the data, enhanced predictive power. 

1.2. Contributions 

  In this paper, we focused on the contributions of the proposed method are summarized as follows:  

1. It employed a stratified splitting method to address class imbalance during the training and 

evaluation phase of a machine learning model. This technique ensured that the class 

distribution was maintained in both the training and testing sets, mitigating the impact of 

class imbalance on model performance.  

2. Leveraging explainable AI techniques (Lime and Shap) to provide interpretability to the 

machine learning model. Lime allowed for local interpretability by generating explanations 

for individual predictions, while Shap utilized game theory concepts to attribute the 

contribution of each feature towards the model's output, enhancing transparency and trust 

in the decision-making process. 

3. Five machine learning models were applied to the software fault dataset to evaluate the 

performance. Details results of the machine learning models are reported in this draft along 

with Shap and Lime explainable AI.  

The remaining is organized as follows. Section II discusses related work briefly. Section III discusses 

the methodology. Section IV discusses the result and analysis. Section V discusses the conclusion.  

2. Methodology 

The first step in the methodology involves collecting the relevant data which is the foundational step 

in defect prediction. To identify software defects, we need historical data that includes information about 

past defects, code changes, and other relevant factors. Once the data is collected, the second step is to 

preprocess the data which involves removing noise from the data, such as missing values, duplicates, 

standardizing the format, etc. The need for data preprocessing is essential for cleaning and preparing the 

data for analysis to enhance the reliability and integrity of the dataset, reducing noise and inconsistencies 

that can impact the model performance [28]. Feature selection technique comes as the step to identify the 

most relevant features suitable for SDD. Selecting informative features can lead to a more interpretable 

model, reducing complexity, shorter training times, and enhancing the model’s prediction power. The next 

step is to develop a suitable model using the final preprocessed data for SDD. After the model 

development, the final step is to evaluate and validate the model performance with metrics such as 
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precision, recall, f1 score, accuracy, and ROC curve. The evaluation step also incorporates explainable AI 

techniques such as Lime and SHAP to provide interpretability and transparency to the model’s prediction 

output [29]. The importance of model evaluation and validation lies in ensuring that the developed model 

is reliable, effective, and capable of accurately detecting defective software.  

Figure 1 demonstrates the experiment design that aims to investigate the comparative analysis of the 

different ways of modeling the class imbalance dataset fitted to several machine learning algorithms to 

identify the method that will yield the best performance in SDD.  

 
Figure 1. Experiment Design 

The five ML algorithms (XG, RF, GNB, LGBM, LR) were trained on each of the data models E1 and E2 

as the base performance model in a train-test-split of 90:10, where 90% of the data was used for training 

and 10% was used for evaluating the model performance. E1 represents the experiment that treated the 

class imbalance by applying stratify splitting method and E2 represents the experiment that treated the 

imbalance dataset by applying SMOTE method to oversample the minority class. The two best-performing 

model algorithms in each data model were further optimized through hyperparameter tuning using 

GridSearch CV to improve the model performance and compare across the different data models. A third 

method was also introduced to further improve the model's overall performance. Table 1 summarises the 

three methods and the different algorithms used in each step for better analysis. 

Table 2. Algorithms used in each method 
Method 1 Base Models 

E1 XG, RF, LGBM, LR, GNB 

E1 XG, RF, LGBM, LR, GNB 

Method 2 Hyperparameter tuning(GridSearch) 

E1 XG, RF 

E2 XG, RF 

Method 3 Hybrid Algorithm 

E1 XG, RF, LGBM, LR, DT 

E2 XG, RF, LGBM, LR, DT 
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2.1. Dataset Description 

The data for this study was downloaded from Figshare [20], which is a zipped file containing two file 

directories D` and D``. In each directory contains 13 files namely: CM1, JM1, KC1, KC3, KC4, MC1, MC2, 

MW1, PC1, PC3, and PC4 with all provided in arff format. I also observed that KC4 has no record in both 

directories and JM1 in the record had the dependent feature “Defective” entered in as “Label”. As part of 

my preprocessing step, I had the KC4 file removed and renamed the dependent feature in the JM1 record 

to the appropriate value ‘Defective”. The dataset contains a total of 61147 records combined, with 40 

features (39 numeric features and one categorical feature). The description of the dataset is provided in 

Figure 2. 

 

Figure 2. Dataset features and their datatype 

2.2. Feature Selection and Engineering 

In this section, the following methods were adapted for feature selection and engineering:  

2.2.1. label Encoding 

The data was transformed by converting the categorical feature to a numeric feature before developing 

the model. This is a standard practice to always convert all categorical features to numeric since machine 

learning algorithms cannot abstract labels but rather numeric values.  

2.2.2. Feature Scaling 

To normalize the features, the MinMax scaler was utilized. The choice to use the MinMax scaler here 

over the Standard scaler was because the dataset was heavily skewed i.e. they are not normally distributed 

(not perfectly Gaussian)       
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2.2.3. Correlation 

This is a way to determine the correlated features between the dependent and independent features. 

In this case, these features were identified using a heatmap. 

 
Figure 3. Dataset features and their level of impact on SDP 

2.2.4. Feature Selection with Logistic Regression Technique 

This method utilized interpretability fitted to logistic regression to sort the features according to how 

they impact positively or negatively on the dependent variable in ascending order as seen in Figure 3. This 

is to understand the features the model is basing its predictions on, especially since a logistic regression 

classifier is easy to decode using the coefficients it has assigned, in this case, to each feature. This enabled 

the selection of only the significant features that have a high tendency to contribute to the model’s 

performance, unlike “GLOBAL_DATA_COMPLEXITY”, “BRANC_COUNT”, and “DECISION_COUNT” 

features which were dropped during model training as they had very little or no impact. 

2.3. Machine Learning Algorithms 

For this study, seven (7) machine learning algorithms were developed for analysis and comparison, 

which are presented in the following sub-sections. 

2.3.1. Random Forest 

Random Forest is a popular machine-learning algorithm used for both regression and classification 

tasks. It is an ensemble learning method that combines multiple decision trees to make a prediction. In the 

random forest model, each tree is constructed by randomly selecting a subset of the features and a subset 

of the training data. They are mostly known for their high accuracy, ability to handle large datasets and 

resistance to overfitting. 
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2.3.2. Extreme Gradient Boosting Algorithm 

Extreme Gradient Boosting is a popular machine learning algorithm that belongs to the family of 

gradient boosting methods. It is designed to boost the performance of tree-based models by iteratively 

learning from the errors of previous models. XGBoost is a powerful algorithm that can be used for a wide 

range of applications and provides robust and accurate predictions with feature importance measures. Its 

ability to handle missing values and its regularized approach makes it a popular choice for many machine-

learning tasks. 

2.3.3. Light Gradient Boosting Machine (LightGBM) 

LightGBM is a popular machine learning algorithm that belongs to the family of gradient boosting 

methods. It is designed to boost the performance of tree-based models by improving the efficiency and 

accuracy of existing algorithms, such as XGBoost performance of tree-based models by improving the 

efficiency and accuracy of existing algorithms, such as XGBoost. LightGBM is a powerful algorithm that 

can be used for a wide range of applications and provides robust and accurate predictions with high 

efficiency. Its leaf-wise tree growth and histogram-based algorithm make it a highly efficient algorithm, 

while its support for categorical features and early stopping make it a flexible and powerful tool for many 

machine-learning tasks. Leaf-wise tree growth and histogram-based algorithm make it a highly efficient 

algorithm, while its support for categorical features and early stopping make it a flexible and powerful tool 

for many machine-learning tasks.  

2.3.4. Gaussian Naive Bayes (GNB)  

Gaussian Naive Bayes is a simple and widely used probabilistic algorithm for classification tasks. It is 

based on the Bayes theorem and the assumption that the features are conditionally independent given the 

class. It is a simple yet effective algorithm for classification tasks, especially when the number of features 

is large compared to the number of samples. Its probabilistic nature, fast training, and easy implementation 

make it a popular choice for many machine-learning applications. However, it may not perform well when 

the independence assumption does not hold or when the data has a non-Gaussian distribution.  

2.3.5. Logistic Regression 

This is a commonly used algorithm for binary classification tasks, which involves predicting one of 

two possible outcomes. It uses a logistic function to model the probability of a binary outcome as a function 

of one or more predictor variables. Logistic Regression is a simple yet effective algorithm for binary 

classification tasks, especially when the relationship between the input features and the outcome is linear 

or can be approximated by a linear function. Its probabilistic nature, fast training, and easy interpretation 

make it a popular choice for many machine-learning applications. However, it may not perform well when 

the relationship between the input features and the outcomes is non-linear or when the input features are 

highly correlated. 

2.3.6. Decision Tree 

A Decision Tree is a popular algorithm for classification and regression tasks. It uses a tree-like model 

to represent decisions and their possible consequences. Each internal node of the tree represents a test on 

an attribute, each branch represents the outcome of the test, and each leaf node represents a class label or a 

numerical value. Decision Tree is a versatile and powerful algorithm for both classification and regression 

tasks, especially when the underlying relationship between the input features and the output is non-linear 

or complex. Its non-parametric nature, easy interpretation, and feature selection capability make it a 

popular choice for many machine learning applications. However, it may not perform well when the data 

is noisy or when the tree structure becomes too complex. These concepts and calculations are essential for 

understanding and building decision tree classifiers. The following few equations provide the foundation 

for the construction and evaluation of decision trees. 
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2.3.7. Stacking Algorithm 

Stacking is an ensemble learning technique that combines multiple base models to improve the 

predictive performance of the model. It involves training several base models on the training set and then 

using their predictions as input to a meta-model that combines them to make the final prediction. This is a 

robust technique that can handle outliers and missing data by using the predictions of the base models. 

Stacking is a powerful and flexible technique for improving the predictive performance of machine learning 

models, especially when dealing with complex and noisy data. Its ability to combine different types of 

models and leverage their strengths makes it a popular choice for many machine-learning applications. 

However, it may require more computational resources and training time compared to single models and 

may be prone to overfitting if not carefully designed and validated. 

3. Experimental Result and Analysis 

For this study, the following metrics were used to evaluate the performance of the models: accuracy 

(5), recall (6), precision (7), AUC which shows the tradeoff between TP rate and FP rate, and f-measure (8) 

[22]. The metric values were all computed using the statistical values of True Positive (TP), True Negative 

(TN), False Positive (FP), and False Negative (FN). 

Accuracy =
TP + TN

TP +FP+FN+TN
                                                                                                                                                    (1) 

Recall =
TP

TP + FN
                                                                                                                                                                      (2) 

Precision =  
TP

TP + FP
                                                                                                                                                               (3) 

Fmeasure =  
2×Precision×Recall

Precision + Recall
                                                                                                                                            (4) 

XAI Shap and Lime were applied to each algorithm to analyze the feature impact in the model output 

and model interpretability respectively. In Figure 5 and Figure 6, it is observed that random forest and 

XGboost used all the features for prediction. This explained why they both came out as the best-performing 

base models. It can be observed in Figures 5(a)-(c), that the red and blue colours occupy half of the 

horizontal rectangles for each class. This means each feature has an equal impact on the classification of 

defective software. Also, the upper features indicate features with the most predicting power while the 

lower features do not contribute as much. 

Table 3. Showing the base model results evaluated on E1 data model 
Name Precision Accuracy F1_score Recall Auc Train Test 

RF 0.97 0.98 0.94 0.91 0.95 0.10 0.99 

LR 0.51 0.89 0.10 0.06 0.52 0.89 0.89 

LGBM 0.81 0.92 0.35 0.22 0.61 0.93 0.92 

XGB 0.89 0.93 0.54 0.38 0.69 0.95 0.93 

NB 0.37 0.88 0.26 0.21 0.58 0.88 0.88 

Table 4. Showing base model results evaluated on E2 data model 
Name Precision Accuracy F1_score Recall Auc Train Test 

RF 0.904 0.98 0.91 0.91 0.95 0.10 0.98 

LR 0.24 0.71 0.36 0.80 0.75 0.74 0.71 

LGBM 0.39 0.86 0.48 0.63 0.76 0.90 0.86 

XGB 0.50 0.90 0.57 0.65 0.79 0.95 0.90 

NB 0.37 0.88 0.26 0.21 0.58 0.58 0.88 

Table 5. Stack algorithm results on E1 and E2 data model 

Data-model Accuracy Auc F1_score Recall Train Test 

E1 0.990 0.985 0.953 0.979 0.991 0.990 

E2 0.981 0.948 0.909 0.905 0.993 0.982 
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Figure 4. Hybrid algorithm model results in comparison of E1 and E2 data model 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5. SHAP summary prediction performance showing for (a) Random Forest, (b) LightGbm, (c) XGboost, (d) 

Decision Tree 

Figure 6 shows a lime explanation for each of the models for the top six features. Random Forest model 

predicted defective software with 59% confidence based on features like 

Normalized_cyclomatic_complexity, multiple_condition_count, and decision density. While XGboost 

predicted non-defective with 96% confidence based on features like design_density, parameter_count, 

global_bank_density, and loc_bank. These five algorithms were fitted on E1 and E2 as the base model, it 
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was observed that RandomForest and XGBoost came out with the best accuracy, where RF had an AUC 

score of 95% and XG with 69% using the E1 approach as seen in Table 2.  

 
Figure 6. Showing prediction assessment using XAI-lime for the individual models 

On the E2 data model with the same five algorithms fitted, XG and RF still came out as the best two 

models with AUC of 79% and 95% respectively. Given the result on E1 and E2 for the base model. It clearly 

showed that RF was performing better than XG on both approaches, but when their confusion metrics were 

compared, surprisingly XG on E1 was doing better in terms of classifying defective software as True 

Negative (TN). XG on E1 classified a total of 570 as True Negative while RF on E1 classified 568 as True 

Negative. Then for E2, both XG and RF classified 569 as True Negative. Optimizing the two best-performing 

models (XG and RF) using GridSearchCV did not show any significant improvement in the model's 

performance. The overall best model in this study came out as the Stacking Algorithm Classifier, as seen in 

Table 4, which had five different models with different strengths combined as one single model [23]. All 

the evaluation metrics used for validating the performance like accuracy, f1 score, recall, and AUC all had 

above 90% on both E1 and E2. A closer look at the comparison with their confusion matrices showed that 

the stacking classifier was performing better with the E1 approach than with E2.  The confusion matrix for 

the Stacking algorithm model compared when tested for E1 and E2 revealed that the stacking algorithm on 

E1 was able to classify 5468+575 as the correct prediction and 23+49 as the incorrect prediction. In contrast, 

the algorithm on E2 classified 5439+564 as correct prediction and 53+59 as incorrect prediction. This, 

therefore, shows that the stack algorithm on E1 was able to classify a total of 575 as defective software 

compared to all other models, placing it as the overall best-performing model. Also, each of the models 

developed in this study was tested for any chances of over-fitting as this is a common challenge 
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encountered during model training or optimization. There was no sign of over-fitting throughout the stage 

of training these models as revealed in all the result tables given by the difference between the training and 

test scores. 

4. Conclusion  

In this paper, we have presented a comprehensive approach to address the class imbalance in machine 

learning tasks. By utilizing stratified splitting, explainable AI techniques (Lime and Shape), and a hybrid 

machine learning algorithm, we successfully mitigated the impact of class imbalance, enhanced 

interpretability, and improved prediction accuracy. The implementation of stratified splitting ensured that 

class distribution was maintained, enabling the model to effectively learn from minority class examples, 

thereby reducing bias towards the majority class. Incorporating XAI such as Lime and Shap, provided 

interpretability to machine learning models. Lime offered local interpretability by generating explanations 

for individual predictions, allowing us to understand the reasoning behind the model’s decisions. Shap on 

the other hand attributed the contribution of each feature, offering valuable insights into the importance 

and impact of different features on the model prediction. The proposed hybrid algorithm allowed us to 

capture diverse patterns and relationships in the data, leading to enhanced predictive capabilities. 
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