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Abstract: Speech is essential to human communication; therefore, distinguishing it from noise is crucial. Speech 

separation becomes challenging in real-world circumstances with background noise and overlapping speech. 

Moreover, the speech separation using short-term Fourier transform (STFT) and discrete wavelet transform (DWT) 

addresses time and frequency resolution and time-variation issues, respectively. To solve the above issues, a new 

speech separation technique is presented based on the double-density dual-tree complex wavelet transform 

(DDDTCWT) and sparse non-negative matrix factorization (SNMF). The signal is separated into high-pass and low-

pass frequency components using DDDTCWT wavelet decomposition. For this analysis, we only considered the 

low-pass frequency components and zeroed out the high-pass ones. Subsequently, the STFT is then applied to each 

sub-band signal to generate a complex spectrogram. Therefore, we have used SNMF to factorize the joint form of 

magnitude and the absolute value of real and imaginary (RI) components that decompose the basis and weight 

matrices. Most researchers enhance the magnitude spectra only, ignore the phase spectra, and estimate the separated 

speech using noisy phase. As a result, some noise components are present in the estimated speech results. We are 

dealing with the signal's magnitude as well as the RI components and estimating the phase of the RI parts. Finally, 

separated speech signals can be achieved using the inverse STFT (ISTFT) and the inverse DDDTCWT 

(IDDDTCWT). Separation performance is improved for estimating the phase component and the shift-invariant, 

better direction selectivity, and scheme freedom properties of DDDTCWT. The speech separation efficiency of the 

proposed algorithm outperforms performance by 6.53–8.17 dB SDR gain, 7.37-9.87 dB SAR gain, and 14.92–17.21 dB 

SIR gain compared to the NMF method with masking on the TIMIT dataset.  

Keywords: Double Density Dual-Tree Complex Wavelet Transform; Speech Separation; Sparse Non-negative Matrix 

Factorization; Short-time Fourier Transform  
 

1. Introduction 

In recent years, single-channel speech separation has drawn significant scientific interest due to the 

continuously expanding number of voice-based solutions for real-world applications. A human can 

recognize individual speech from an interference signal, even in complicated and chaotic acoustical 

environments. Speech separation methods with better accuracy have not yet been developed. The main goal 

of the present digital world is to solve all problems digitally. That's why speech separation has attracted 

remarkable attention from researchers. The aim of speech separation (SS) is to estimate a target speech from 

noisy signals. It has many potential usages in real-life applications such as assisted living systems, hearing 

aid devices, local police investigations on recorded speech, automatic speech recognition (ASR), 

teleconferencing systems, and controlling humanoid robots [1, 2]. Depending on the variety of channels, 

speech separation concerns are categorized as single-channel, multichannel, or binaural. A single-channel 

SS (SCSS) method [3–5] is complicated because only a single recording is obtainable, and the description 

that may be retrieved is limited. 
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Most SCSS approaches can be divided into two types: those based on computational auditory scene 

analysis (CASA) and those based on models. The CASA-based algorithm separates speech by considering 

the human hearing mechanism [6]. Model-based SCSS algorithms mainly rely on the training data of the 

source signal. The training data models were generated using probabilistic models, specifically the Gaussian 

mixed model (GMM) [7] and the hidden Markov model (HMM) [8]. These representations are generally 

used in source separation processes. The supposition is that during the training and separation stages, the 

energy level of a mixed signal is equivalent to the energy level of source signals. Non-negative matrix 

factorization is an alternative training data model [9]. In both the training and separation phases, these 

models place no constraints on the magnitude of the energy disparity between the source signals. However, 

the number of speech signals is limited. In [10], the authors used sparse non-negative matrix factorization 

(SNMF). They learned the sparse representation of the data using SNMF to address the challenge of 

differentiating many speech sources from a single microphone recording. 

Most of these methods use the short-term Fourier transform STFT domain [11]. The STFT examines a 

time-domain signal in tiny segments or frames to evaluate whether it is stationary. It necessitates using a 

window function, which is significant in such circumstances. Despite the weak frequency resolution, we 

obtained a better time resolution and more stationery through a narrow window selection. Furthermore, 

selecting a wider window gives better frequency resolution and worse static estimates; however, time 

resolution is poor. Furthermore, STFT suffers from this time-frequency difficulty due to a lack of knowledge 

about which frequency exists at which moments. Because we do not know what frequency exists at what 

time instance, the STFT suffers from this time-frequency resolution problem. WT is a useful tool for 

modeling and examining non-stationary signals; for example, speech signals. These signals demonstrate 

slow temporal variations in low frequencies and sudden changes in high frequencies. 

Recently, wavelet-based separation methods [12-14] have emerged for researchers to overcome the 

abovementioned problems. In [12], the discrete wavelet transform (DWT) divides a signal into low-

frequency approximation and high-frequency details coefficients. This method has reduced separation time, 

but the separated sign seriously affects individual speakers' intelligibility. However, this method has 

redundancy difficulties and cannot take advantage of the sparseness of distinct speech signals. To use both 

transformations and get a higher level of resolution when processing the mixture, we presented an SS 

approach based on the DTCWT and STFT [14]. To overwhelm the above-revealed problems, we recommend 

an SCSS method by considering the properties of speech signals. To overwhelm the above-revealed 

problems, we recommend an SCSS method by considering the sequential use of DDDTCWT and STFT 

makes the signal more stationary, resulting in a better transformation. 

We suggest an SCSS technique that uses the dual-domain transform and sparse representation to 

overcome the aforementioned issues. The following is a synopsis of the paper's contribution: 

1. Many other approaches merely enhance the magnitude spectra while ignoring the phase 

spectra and estimating the separated speech using noisy phases. These techniques do not fully 

exploit all the information contained in the waveforms of the signals. We calculate the phase 

spectrum from the real and imaginary (RI) components and then mix it with the magnitude 

spectrum in our proposed strategy. The enhanced phase increases separation performance 

while decreasing noise, artifacts, and interference. 

2. We enhanced only the low-pass frequency components; the high-pass frequency signals were 

set to zero. Due to ignoring the high-frequency components, the model's time complexity is 

reduced. For approximate shift-invariant, better direction selectivity, and perfect reconstruction 

properties, the use of DDDTCWT improves the model's separation capability. 

2. Literature Review  

Humans are remarkably efficient at differentiating speech from mixed or noisy speech by nature. 

Although they have not yet reached their full potential, researchers are working to develop SS systems that 

can function similarly to the human auditory system. However, several strategies have been devised to 

discriminate between single-channel speech signals by taking into account learning techniques, power 

levels, frequency components, auditory processes, and more. 
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The authors used a dictionary learning (DL) algorithm to develop the model-based SCSS [15-16]. They 

believe speech signals with sparse exposure from different speakers have specific distinguishing 

characteristics. In [15], sequential discriminative dictionary learning (SDDL) measures unique and similar 

sections of varied voice waveforms. The Discriminative Dictionary Learning (DDL) technique [16] posits 

that each speaker's speech signal has distinct components. However, the dictionary is constructed from 

various sources, and there is no guarantee that each atom comes from a single source rather than a mix of 

them. An over-complete dictionary that allows for sparse signal representation can be built by changing its 

content to fit a set of signal instances, or it can be selected as a predetermined set of functions. Usually 

speaking, a joint dictionary, on the other hand, is a redundant dictionary. Although sparse constraints are 

used to train the dictionaries, one source signal replies to the categorized sub-dictionaries with more sources 

that cannot be avoided. 

The authors of [17] demonstrate the establishment of Principal Component Analysis (PCA) and 

Independent Component Analysis (ICA) for voice recognition and speech separation. They showed the 

PCA as a great tool for voice recognition, and ICA can separate the signal near about original signal. A 

singing voice separation method using Robust PCA is presented [3]. The repetition structure of music 

accompaniment can be regarded as a low-rank subspace, and singing voices can be considered sparse inside 

the songs. Another ICA-based method is suggested in [18], where the frequency domain representation of 

the noisy signal is used. This method can reduce the background noise of two-source systems, but it is not 

relevant where more than two sources exist. These above-mentioned SS algorithms require prior 

information about the source and mixed signals. Former information about the predicted mean and 

variance is required for ICA and PCA. 

NMF-based algorithms are used iteratively to optimize the cost function [9]. In Bayesian NMF (BNMF), 

researchers executed numerous preceding structures [19] above the probabilistic model of NMF. In some 

circumstances, they show an increase in the rate of source detection. Still, extra development in mixed SS is 

required. Discriminative learning of NMF [20] is used to optimize all basis vectors jointly that reconstruct 

both clean and mixed-signal. To extract the speeches from the music signal, a SCSS algorithm based on 

NMF and the combination of cost functions is presented [14]. In the training stage for music, Itakura-Saito 

(IS) divergence is applied as the NMF cost function, and KL divergence is used as the NMF cost function in 

the speech training stage. A linear combination of two divergences and a regularization term are used for 

decomposition. The authors proposed a three-stage hybrid model that can distinguish between two 

speakers from a single-channel speech mixture in an unsupervised situation [21]. They employed three 

methods: masking, nonnegative matrix factorization (NMF), and voice segmentation. The authors 

employed traditional techniques such as NMF, which could lead to overfitting by capturing irrelevant 

information. However, this paper suggests a novel way to separate speech signals. 

In recent years, deep learning has become a popular machine learning technique. In the SS community, 

deep learning has also received a lot of attention. A deep neural network-based post-processing approach 

is presented for reconstructing the masked frequency components [22]. They developed a regression from 

the dependable frequency components to the masked components. After the masked-based isolation, the 

consistent components are retained unchanged, and the masked components are recovered according to 

the outcomes of DNN. In [23], the authors present an end-to-end source separation platform that enables 

us to predict the isolated speech waveform by directly working on the mixture's raw waveform. A large 

variety of deep learning-based SS methods have been successfully implemented, with excellent results in 

improving the desired signal from the mixed signal. Furthermore, it is unsuitable for handling limited 

features, constrained sources inside the cognitive process, and a higher level of computational complexity. 

To address the mixed speech problem, this paper proposes a new approach based on DDDTCWT and sparse 

SNMF. The proposed strategy performs better than the earlier approaches described in this work when 

measured using a variety of objective metrics, including SDR, SIR, and SAR. 

3. Proposed Speech Separation (SS) Algorithm  

This part represents the recently proposed SCSS approach of the connected substance associated with 

the proposed technique. Most speech separation algorithms concentrate on the speech signal's STFT, which 

only examines the magnitude spectrum and ignores the phase spectrum. This paper uses DDDTCWT and 



AETiC 2024, Vol. 8, No. 1 4 

www.aetic.theiaer.org 

STFT sequentially with a sparse non-negative matrix factorization considering the magnitude, real, and 

imaginary components. The STFT typically separates a time domain input signal into discrete frames that 

are individually considered as stationary. However, we don't distinguish what frequency occurs at what 

instant of existence; the fragment may not be more static. Therefore, we adopt DDDTCWT in our suggested 

technique, which decomposes the input signal into small segments to extract low- and high-frequency 

components. Then, for each sub-band signal, STFT is applied to make the signal appear more stationary, 

leading to a more effective transformation. Finally, the SNMF algorithm is employed to jointly learn the 

MRI components of the signal after applying DDDTCWT and STFT consecutively. The complete block 

illustration of the suggested SS algorithm is depicted in detail in Fig. 1. The proposed technique is isolated 

into two phases: the training phase and the testing phase. 

 
Figure 1. Block diagram of the proposed approach for SS technique 

3.1. Double-density Dual-tree Complex Wavelet Transform (DDDTCWT) 

Since the Fourier transform does not preserve the time characteristics of a signal; it cannot be used to 

analyse non-stationary and nonlinear signals. The wavelet transform and its variants are useful for handling 

non-stationary signals. Double-density dual-tree combined with DWT, each having unique properties and 

benefits, is known as DDDTCWT [24]. As a result, each of these transforms has its own advantages; 

however, combining the two creates a superb tool for signal processing applications. Additionally, the 

double-density DWT provides double the freedom of the system. As a result, we can apply complex and 

directional wavelet transforms. 

 

Figure 2. The second level block diagram of DDDTCWT 
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The DDDTCWT scheme flow is depicted in Fig. 2. We used a two-level decomposition method in this 

study. It has two distinct filter banks, indicated by the symbols hi(n) and gi(n), where i = 0, 1, 2.  

3.2. Sparse Non-negative Matrix Factorization (SNMF) 

The NMF is an investigation algorithm in which the matrix 𝐒 ∈ ℝF×T is disintegrated as a linear product of its 

bases 𝐖 ∈ ℝF×R and its weights 𝐇 ∈ ℝR×T, where the inner dimension R is much less than the matrix S's multiplication 

of F and T. 

𝐒 ≈ 𝐖𝐇                                                                                                                                                                                       (1) 

The regulation over sparse output representation can be extended by incorporating sparseness constraints into 

NMF. When the Euclidean distance and KL divergence cost functions are compared in the sound source partition, the 

KL cost function shows an outstanding fit [25]. The following is a description of the KL divergence cost function: 

CKL = min 𝐷(𝐒||𝐖𝐇) + μ||𝐇||1 = ∑ (𝐒i,jlog
𝐒i,j

(𝐖𝐇)i,j
i,j − 𝐒i,j + (𝐖𝐇)i,j) + μ ∑ |𝐇i,ji,j |                                                            (2) 

The matrices W and H are expressed by their corresponding Equation (3) and (4), where μ represents the sparsity 

constant. 

𝐖 ← 𝐖 ⊗  
𝐒

𝐖𝐇
𝐇T+𝐖⊗(𝟏v(∑(𝐖⊗1m𝐇T)))

𝟏m𝐇T+𝐖⊗(𝟏v(∑(𝐖⊗(
𝐒

𝐖𝐇
𝐇T))))

                                                                                                                                   (3) 

𝐇 ← 𝐇 ⊗  
𝐖T 𝐒

𝐖𝐇

𝐖T1m+μ
                                                                                                                                                                      (4) 

Where 𝟏𝑚 is one's matrix, 𝟏v is a column vector of ones, and all divisions are element-wise. 

3.3. Training Phase 

We considered two different speech sources delivering signals 𝐱(t) and 𝐲(t) during the training phase. When 

applied to a speech signal in the time domain, the DDDTCWT separates it into its component high-frequency and low-

frequency sub-band signals. Low-frequency components of a signal contain a significant quantity of information, 

whereas high-frequency components contain almost no information. In this study, we only consider the approximation 

coefficients corresponding to low-frequency sub-band signals and substitute the detailed coefficients with zero, which 

are high-frequency sub-band signals to reduce the time complexity. The approximate coefficient is provided by the low 

pass filter, whereas the high pass filter includes a detail coefficient from the signal 𝐱(t). Each approximate coefficient is 

subjected to the STFT, which yields the complex forms 𝐗a,tl(τ, f) that is represented in Equation (5).  

𝐗a,tl(τ, f) = 𝐗𝐑a,tl(τ, f) + 𝑖 𝐗𝐈a,tl(τ, f)                                                                                                                                       (5) 

Where a, f, and τ indicate the approximation coefficients, frequency, and time bin indices correspondingly. 

Nowadays, complex spectrums are divided into three parts: the magnitude, the real, and the imaginary. To concatenate 

the absolute values of the real and imaginary parts with a magnitude part, we use Equation (6). 

𝐗𝐌𝐑𝐈a,tl
Train = [

|𝐗𝐌a,tl(τ, f)|

|𝐗𝐑a,tl(τ, f)|

|𝐗𝐈a,tl(τ, f)|

]                                                                                                                                                            (6) 

The combined form of the magnitude spectrum and absolute value of an RI component 𝐗𝐌𝐑𝐈a,tl
Train is forwarded to 

the SNMF. The SNMF decomposes 𝐗𝐌𝐑𝐈a,tl
Train into the basis and weight matrices using Equation (7). 

𝐗𝐌𝐑𝐈a,tl
Train ≈ 𝐗𝐌𝐑𝐈𝐖a,tl𝐗𝐇a,tl + μ|𝐗𝐇a,tl|1

                                                                                                                            (7) 

where 𝐗𝐌𝐑𝐈𝐖a,tl presents basic signal, 𝐗𝐇a,tl indicate the weight matrices of the signal, and μ represents the 

sparsity constant. Initially, the basis and weight matrices are assigned by random values. The basis matrices 𝐗𝐌𝐑𝐈𝐖a,tl 

can be created by decreasing the distance between 𝐗𝐌𝐑𝐈a,tl
Train and 𝐗𝐌𝐑𝐈𝐖a,tl𝐗𝐇a,tl + μ|𝐗𝐇a,tl|1

 using Equation (2) with 

the assistance of Equation (3) and Equation (4). Likewise, for the source signal 𝐲(t), the basis matrix 𝐘𝐌𝐑𝐈𝐖a,tl is created 

and concatenated with 𝐗𝐌𝐑𝐈𝐖a,tl like as 𝐗𝐘𝐌𝐑𝐈𝐖a,tl = [𝐗𝐌𝐑𝐈𝐖a,tl 𝐘𝐌𝐑𝐈𝐖a,tl]. 

3.4. Testing Phase 

In the testing phase, the mixed speech signal 𝐳(t) is decayed by using DDDTCWT and takes only approximation 

coefficients 𝐳a,tl, while the detail coefficients are replaced with zero. After applying the STFT to each approximation 

coefficient sub-band of a mixed signal, the complex spectrum 𝐙a,tl(τ, f)  is obtained and preserves sign values of RI parts. 

The magnitude spectrum and the absolute value of RI components are concatenated to generate 𝐙𝐌𝐑𝐈a,tl
Test which are 

decomposed by using SNMF. The goal is to use SNMF to decompose these spectrums into basis and weight matrices as 

follows in Equation (8). 

𝐙𝐌𝐑𝐈a,tl
Test ≈ 𝐗𝐘𝐌𝐑𝐈𝐖a,tl𝐗𝐘𝐇b,tl + μ|𝐗𝐘𝐇a,tl|1

= [𝐗𝐌𝐑𝐈𝐖a,tl 𝐘𝐌𝐑𝐈𝐖a,tl] [
𝐗𝐇a,tl

𝐘𝐇a,tl
] + μ|[𝐗𝐇a,tl𝐘𝐇a,tl]|

1
                          (8) 
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Where 𝐗𝐘𝐇b,tl, 𝐗𝐇b,tl and 𝐘𝐇b,tl  specify the mixed signal's weight matrices, source signal 𝐱(t), and source signal 

𝐲(t), separately. The weight matrix 𝐗𝐘𝐇a,tl can be obtained via SNMF by reducing the distance between 𝐙𝐌𝐑𝐈a,tl
Test and 

𝐗𝐘𝐌𝐑𝐈𝐖a,tl 𝐗𝐘𝐇a,tl + μ|𝐗𝐘𝐇a,tl|1
 using Equation (2) with the assistance of Equation (4), where the preliminary value of  

𝐗𝐘𝐇a,tl are assigned by the arbitrary positive numbers, and the values of 𝐗𝐘𝐌𝐑𝐈𝐖b,tl are fixed from the training stage. 

The first predictable MRI components𝐗𝐌a,tl, 𝐗𝐑a,tl, and 𝐗𝐈a,tl, respectively, obtained by the following Equations (9-11)  

for one source signal and similarly obtain 𝐘𝐌a,tl, 𝐘𝐑a,tl, and 𝐘𝐈a,tl  for another source signal. 

𝐗𝐌a,tl = 𝐗𝐌𝐖a,tl𝐗𝐇a,tl                                                                                                                                                              (9) 

𝐗𝐑a,tl = 𝐗𝐑𝐖a,tl𝐗𝐇a,tl                                               (10) 

𝐗𝐈a,tl = 𝐗𝐈𝐖a,tl𝐗𝐇a,tl                    (11) 

The magnitude spectrum  𝐙𝐌𝐛,𝐭𝐥 is not equal to the sum of the preliminary approximation 𝐗𝐌𝐚,𝐭𝐥 and 𝐘𝐌𝐚,𝐭𝐥. To 

avoid errors, we compute the SBRM using Equation (12) and Equation (13). 

𝐗𝐌̅̅̅̅̅
𝐚,𝐭𝐥 =  

(𝐗𝐌𝐚,𝐭𝐥)
𝟐

(𝐗𝐌𝐚,t𝐥)
𝟐+(𝐘𝐌𝐚,𝐭𝐥)

𝟐
⨂𝐙𝐌𝐚,𝐭𝐥                                                          (12) 

𝐘𝐌̅̅̅̅̅
𝐚,𝐭𝐥 =  

(𝐘𝐌𝐚,𝐭𝐥)
𝟐

(𝐗𝐌𝐚,𝐭𝐥)
𝟐+(𝐘𝐌𝐚,𝐭𝐥)

𝟐
⨂𝐙𝐌𝐚,𝐭𝐥                                                                   (13)                                 

       We also calculate SBRM for RI components. After using the previously saved sign, we multiply it by RI signal 

estimates. Now, we calculate the phase spectrum. 𝐗𝐏𝐚,𝐭𝐥  from the RI component of one source signal and similarly 

calculate 𝐘𝐏𝐚,𝐭𝐥. Now, we recombine the estimated phase spectrum 𝐗𝐏𝐚,𝐭𝐥 and 𝐘𝐏𝐚,𝐭𝐥 with an estimated magnitude 

spectrum 𝐗𝐌̅̅̅̅̅
𝐚,𝐭𝐥 and 𝐘𝐌̅̅̅̅̅

𝐚,𝐭𝐥 to get the modified complex speeches spectrum �̃�𝐚,𝐭𝐥(𝛕, 𝐟) and 𝐘𝐚,𝐭𝐥(𝛕, 𝐟) by Equation (14) and 

Equation (15).  

�̃�𝐚,𝐭𝐥(𝛕, 𝐟) = 𝐗𝐌̅̅̅̅̅
𝐚,𝐭𝐥 𝐞

𝐢𝐗𝐏𝐚,𝐭𝐥                                                                                                       (14) 

𝐘𝐚,𝐭𝐥(𝛕, 𝐟) = 𝐘𝐌̅̅̅̅̅
𝐚,𝐭𝐥 𝐞

𝐢𝐘𝐏𝐚,𝐭𝐥                                                                                     (15)                      

The ISTFT is used to convert the altered complex source signals spectrum �̃�a,tl(τ, f) and 𝐘a,tl(τ, f) to the modified 

sub-band signals �̃�a,tl  and �̃�a,tl . Finally, by applying the IDDDTCWT to the sub-band signals �̃�a,tl and �̃�a,tl, the expected 

source speech signals  �̃�(t) and �̃�(t) are obtained. Algorithms 1 and Algorithm 2 depict the proposed training and testing 

phases of this system.  

Algorithm 1. Training stages for the proposed algorithm 

Input: Decomposition level (dl), the number of iterations (k), tree-level (tl), and training sets  𝐱(𝐭) and 𝐲(𝐭). 

Output: 𝐗𝐘𝐖p,q. 

Step 1 : Set p=1,  q=1 to tl 

Step 2 : Compute the wavelet coefficients using DDDTCWT and take only approximation coefficients. 

𝐱p,q = 𝑫𝑫𝑫𝑻𝑪𝑾𝑻(𝐱(𝐭)) and  𝐲p,q = 𝑫𝑫𝑫𝑻𝑪𝑾𝑻(𝐲(𝐭)). 

Step 3 : Obtain a complex spectrum by applying STFT.  𝐗p,q = 𝑺𝑻𝑭𝑻(𝐱p,q) and  𝐘p,q = 𝑺𝑻𝑭𝑻(𝐲p,q). 

Step 4 : Concatenate the magnitude spectrum and absolute value of the RI component to generate  𝐗𝐌𝐑𝐈p,q 

and 𝐘𝐌𝐑𝐈p,q. 

Step 5 : Determine the basis matrices.  

For: k=1 to number of iteration 

𝐗𝐖p,q
k+1 = 𝑺𝑵𝑴𝑭(𝐗𝐌𝐑𝐈p,q, 𝐗𝐇p,q) and 𝐘𝐖p,q

k+1 = 𝑺𝑵𝑴𝑭(𝐘𝐌𝐑𝐈p,q,  𝐘𝐇p,q). 

End for.  

Step 6 : Combine these basis matrices and make  𝐗𝐘𝐖p,q = [𝐗𝐖p,q 𝐘𝐖p,q]. 

Step 7  j=j+1, go to step 1. 
 

 

Algorithm 2. Testing stages for the proposed algorithm 

Input: Decomposition level (dl), the number of iterations (k), tree-level (tl), mixed-signal (𝐳(𝐭)), combine basis matrices (𝐗𝐘𝐖p,q) 

learned from the training phase,  

Output: Separation of estimated signals  �̃�(𝐭)  and  �̃�(𝐭). 

Step 1 : Set p=1, q=1 to tl, 

Step 2 : Decomposed DDDTCWT and take approximation coefficients, 𝐳p,q = 𝑫𝑫𝑫𝑻𝑪𝑾𝑻(𝐳(𝐭)). 

Step 3 : Obtain a complex spectrum, 𝐙p,q = 𝑺𝑻𝑭𝑻(𝐳p,q). 

Step 4 : Compute magnitude, phase, absolute value, and the sign of RI components from 𝐙p,q using and concatenating 

them to prepare 𝐙𝐌𝐑𝐈p,q. 

Step 5 : Obtain the weight matrices according to (4). 

For: k=1 to test iteration. 

        H𝐙p,q
𝐤+𝟏  = 𝑺𝑵𝑴𝑭(𝐙𝐌𝐑𝐈p,q,  𝐗𝐘𝐖p,q). 

End for 

Step 6 : Estimate the initial magnitude and RI components by using Equation (7-9). 

Step 7 : Calculate the sub-band binary ratio masks magnitude, RI components. 
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Step 8 : Multiply the sign with RI components and obtain the phase spectrum 𝐗𝐏p,q and 𝐘𝐏p,q 

Step 9 : Apply the phase spectrum 𝐗𝐏p,q and 𝐘𝐏p,q with the estimated source signals magnitude spectrum  to obtain the 

complex spectrum 𝐗p,q(𝛕, 𝐟) and 𝐘p,q(𝛕, 𝐟)    

Step 10 : Compute the modified sub-band signals. 

�̃�p,q = 𝑰𝑺𝑻𝑭𝑻 (𝐗p,q(𝐭, 𝐟)) and  �̃�p,q = 𝑰𝑺𝑻𝑭𝑻 (�̃�p,q(𝐭, 𝐟)). 

Step 11 : q=q+1, go to step 1. 

Step 12 : Get predictable source signals  �̃�(𝐭) and �̃�(𝐭)  using IDDDTCWT. 
 

4. Evaluation and Results 

4.1. Dataset Description 

In this simulation, we extracted speech signals as training and test data from GRID Audio-Visual 

Corpus [26]. A total of 1000 utterances were made by 34 speakers (18 male and 16 female). For each speaker, 

we investigate all the sentences. We have used two types of speech signal splitting in this simulation: the 

first is in the same-gender SS (two cases have male-male and female-female SS), and the second is the 

opposite-gender SS (one case has male-female SS). In addition, we considered the utterances of eight same-

gender speakers to be an experimental group, while the other group had the same utterances of every eight 

same-gender speakers. We chose thirty-two speakers from the database, including sixteen males and sixteen 

females. For each speaker, 80% of the sentences in the database were used for training, while the remaining 

sentences were evaluated for testing. By utilizing a sample rate of 8000 Hz and employing a 512-point STFT 

with a 50% overlap, the speech signal is transformed into a time-frequency domain. Table 1 represents the 

specific parameters for the experimental setting. 

Table 1. Specific parameters for the experimental setting. 
Parameters Value 

Sampling Frequency 8000 Hz 

STFT Length 512 

Basis Length 70 

Wavelet Level 2 

Mother Wavelet dtf2 

Training Iteration 70 

Testing Iteration 30 

Sparsity Level 0.15 

4.2. Performance Metrics 

The SIR [27], SDR [27], and SAR [27] evaluate the performances of the separated speeaches. The SDR 

value provides an approximate assessment of the speech quality. The signal is divided according to its input 

strength, which is determined by the disparity between the input and the replicated signal. Nevertheless, 

recuperation efficacy is controlled by elevated high SDR scores. Additionally to the SDR, the SIR indicates 

errors affected by the failure to eliminate the interfering signal throughout the separation process. A higher 

value of the SIR is associated with an enhanced separation value. The signal-to-artifact ratio (SAR) is a 

measure of predictable signal quality. The SDR, SIR, and SAR are calculated using Equation (16-18). 

i. Source to Distortion Ratio 

        SDR = 10log10
‖xtarget‖

2

‖einterf+enoise+eartif‖2                                                                            (16)                       

ii. Source to Interference Ratio  

        SIR = 10log10
‖xtarget‖

2

‖einterf‖2                                                                                                                    (17)                                                                                                                 

iii. Source to Artifact Ratio 

         SAR = 10log10

‖xtarget+einterf+enoise
‖

2

‖eartif‖2                                                                                                (18)                                                                                                                                               

where xtarget, einterf, enoise, and, eartif represent the targeted source, interference error, perturbation 

noise, and artifacts error. 
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4.3. Overall performance of the proposed method 

First, the comparison of the proposed algorithm with different models in terms of SDR is shown in Fig. 

3. Based on this bar chart, it seems that the offered method outperforms some other current techniques in 

all cases. For example, when compared to the DTCWT-Noisy_phase method, our approach improves the 

SDR score of 8.75% for the M1 signal, 11.64% for the M2 signal, 10.05% for the F1 signal, 14.70% for F2 signal, 

and 9.32% for M signal, 8.88% for the F signal due to different SS scenarios. The majority of speech 

separation algorithms concentrate on the speech signal's STFT, which only inspects the magnitude spectrum 

and ignores the phase spectrum. This study takes into account the MRI components and uses DDDTCWT 

and STFT consecutively with SNMF. Hence, both magnitude, real, and imaginary components were utilized 

in our proposed method, and the separation performance was improved. 

 
Figure 3. SDR scores of the eight approaches are assessed for cases of the same and opposite gender 

Second, we show the examination of the recommended model with the current models regarding SIR 

in Fig. 4. The figure shows that the proposed algorithm is enhanced for all cases than the other existing 

methods, specifically STFT-Noisy_phase, and DTCWT-Noisy_phase. The proposed model's SIR values are 

more advanced for all separation cases than the current models. SIR is improved from 9.32 dB to 9.93 dB for 

the M1 signal, 9.16 dB to 9.97 dB for the M2 signal, 10.01 dB to 10.64 dB for F1 signal, 9.87 dB to 10.73 dB for 

F2 signal, 14.57 dB to 15.82 dB for M signal and 13.35 dB to 14.73 dB for F signal using the offered models 

over DTCWT-Noisy_phase. The STFT typically separates a time domain input signal into discrete frames 

that are individually considered as stationary. However, we can’t distinguish what frequency occurs at 

what moment of existence, the fragment may not be more stationary. Our proposed technique divides the 

input signal into small pieces using DDDTCWT, which isolates low and high-frequency components that 

seem to be more stationary. Separation performance is also improved for the shift-invariant, better direction 

selectivity, and scheme freedom properties of DDDTCWT. 

 
Figure 4. Performance comparison of existing models with the proposed SIR model for same and opposite-gender 

cases  
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Third, Fig. 5 depicts a comparative performance analysis of SAR using the recommended method and 

other existing approaches. We have observed that our recommended DDDTCWT-Estimated_phase can 

enhance the SAR by 5.70% [= (8.34-7.89)/7.89] for the M1 signal, 7.44% [= (8.52-7.93)/7.93] for the M2 signal, 

8.79% [= (8.66-7.96)/7.96] for the F1 signal, 9.60% [= (8.67-7. 91)/7. 91] for the F2 signal, 11.22% [= (10.61-

9.54)/9.54] for the M signal, and 13.63% [= (10.75-9.46)/9.46]  for the F signal compared to DTCWT-

Noisy_phase technique in both same and opposite gender cases. The speech SAR values are improved in 

every case, implying that the DDDTCWT-Estimated_phase takes care of the speech signal distortion matter 

after the SS processing. 

 
Figure 5. Evaluation of the relative performance of existing models and the proposed SAR model for three different 

instances   

Fig. 6 shows the time-domain waveforms of the ten speech signals, the top two of which are clean 

speech signals. The rest are estimated speech signals via the STFT-Noisy-phase method, DTCWT-Noisy-

phase method, DDDTCWT-Noisy-phase method, and DDDTCWT-Estimated-phase method, respectively. 

Due to applying the noisy phase introducing some undesired constituents to the predictable speech signals, 

the SS excellence of existing methods is degraded, as shown in Fig. 6, from the graphs, we see that the 

proposed method recuperates male and female speech. 

 
Figure 6. A time-domain waveform of speech, with the x-axis indicating time in seconds and the y-axis indicating 

amplitude in decibels  
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Finally, we used the TIMIT database1 for a mixed speech separation experiment to further confirm the 

supremacy of advances. The TIMIT database was used to pick 24 speakers (12 male and 12 female) for our 

study. Each speaker, totalling 240 sentences, says ten sentences. The first eight sentences of ten separate 

speakers are chosen for training, while the remaining two are selected for testing. We use SDR, SAR, and 

SIR scores to evaluate the performance of our recommended techniques. The suggested scheme performs 

superior to the supplementary five techniques that rely on the SDR, SAR, and SIR at opposite gender 

separation, as shown in Fig. 7. 

 
Figure 7. Relative performance assessment of the four models of SDR, SAR, and SIR for the opposite gender case 

4. Conclusion  

This study proposed a novel technique for separating speech based on double-density dual-transform 

with join-learning MRI signal portions. In contrast to the usual learning strategy, which only considers the 

magnitude component, the main goal is to learn the basic vectors while considering the MRI parts together. 

The DDDTCWT breaks down a time-domain speech signal into high- and low-frequency sub-band sounds. 

The high-frequency sub-band signal is replaced with zero, and only the low-frequency signal is used. Since 

high-frequency signal components contain less signal energy, getting rid of high-frequency parts of the 

input data makes it smaller and faster to use matrix factorization. Consequently, phase information can be 

considered when utilizing complex domain training targets. 

Most researchers merely increase the magnitude spectra, ignoring the phase spectra, and estimating 

separated speech with noisy phases. We are dealing with the signal's magnitude in addition to its real and 

imaginary components and are attempting to calculate the phase of the real and imaginary components. 

The experimental findings utilizing several assessment measures demonstrate that the presented algorithm 

significantly outperformed the earlier methods from this perspective. We intend to investigate alternative 

deep neural network-based training and testing algorithms in the future. 
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