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Abstract: The increased use of software applications has resulted in a surge in energy demand, particularly in data 

centers and IT infrastructures. As global energy consumption is projected to surpass supply by 2030, the need to 

optimize energy consumption in programming has become imperative. Our study explores the energy efficiency of 

various coding patterns and techniques in Python, with the objective of guiding programmers to a more informed 

and energy-conscious coding practices. The research investigates the energy consumption of a comprehensive range 

of topics, including data initialization, access patterns, structures, string formatting, sorting algorithms, dynamic 

programming and performance comparisons between NumPy and Pandas, and personal computers versus cloud 

computing. The major findings of our research include the advantages of using efficient data structures, the benefits 

of dynamic programming in certain scenarios that saves up to 0.128J of energy, and the energy efficiency of NumPy 

over Pandas for numerical calculations. Additionally, the study also shows that assignment operator, sequential 

read, sequential write and string concatenation are 2.2 times, 1.05 times, 1.3 times and 1.01 times more energy-

efficient choices, respectively, compared to their alternatives for data initialization, data access patterns, and string 

formatting. Our findings offer guidance for developers to optimize code for energy efficiency and inspire 

sustainable software development practices, contributing to a greener computing industry. 

 

Keywords: Algorithmic Efficiency; Cloud; Comparison; Energy Consumption; Performance Analysis; Python 
 

1. Introduction 

In the modern world, we are all inextricably surrounded by digital technology. Programming is on its 

way to becoming a day-to-day activity soon. Currently, where there is increasing demand for energy-

efficient computing systems, we must address the energy consumption issues of computers, especially in 

the programming and developer sector. As of 2023, around 62 percent of the global population has access 

to the internet, where many use computers. If a single computer is turned on round the clock, it would 

release 341kg of carbon dioxide in a year [1]. The field of bringing energy efficiency in computer engineering 

has been growing recently, though it has been tough to pinpoint exact areas where efficiency can be 

improved due to the complex structure of computers that we have today. Researchers have sought to 

identify the problems [2, 3], such as distinct programming languages, to find out how they perform against 

one another in terms of energy efficiency [4-6]. The utilization of Cloud computing has brought about a 

significant change in the management and use of data centers in recent years [7]. Nevertheless, cloud data 

centers’ energy consumption leads to elevated operating expenses and carbon dioxide (CO2) discharge to 

the atmosphere [8]. 

In recent years, there have been numerous studies [11-23] that focused on energy efficiency in software 

development. These studies have investigated various aspects of programming languages, tools, and 
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techniques, as well as hardware and software components to optimize energy consumption. However, 

despite these efforts, no study has specifically focused on energy efficiency monitoring in Python, which is 

a popular and widely used programming language. The use of Python is prevalent in diverse aspects of 

computing including web development, data science, machine learning, and scientific computing [9]. 

According to a recent survey conducted by Stack Overflow, Python has become the most popular 

programming language, surpassing languages like Java, C, and C++. It is the 4th most used language in 

GitHub, and the 5th largest Stack Overflow community [10]. However, like any other programming 

language, Python has its own energy consumption issues that need to be addressed to improve energy 

efficiency in computing. 

Various studies have been conducted in recent years to explore energy efficiency in software 

development. In [11], researchers investigated the energy efficiency of programs run in 27 different 

programming languages, revealing key misconceptions and correlations between memory usage, execution 

times, and energy consumption. EnSights, a tool developed in [12], aimed to increase the efficiency of 

Android Studio IDE for mobile applications using matrix methods and coefficient and correlation 

techniques. In [13], a comprehensive review has been done of energy-aware software engineering research, 

summarizing techniques and approaches for reducing energy consumption, including optimization of 

algorithms, data structures, and employing dynamic voltage and frequency scaling. However, these 

techniques have primarily focused on mobile applications, leaving a gap in energy efficiency research for 

other software applications. In a related study [14], researchers explored application-level energy 

management in Java, identifying strategies that resulted in significant improvements in energy 

consumption. Meanwhile, in [15], the energy consumption of two key blockchain algorithms, Merkel Tree 

(MT) root calculation and Proof of Work (PoW), was measured in Python using pyRAPL. Our paper aims 

to address the gap in the existing literature by focusing on Python, a popular and widely used programming 

language. The major contributions of this paper are summarized below: 

1. We have identified specific programming practices that can be used to optimize energy 

consumption in Python, such as minimizing unnecessary computations and utilizing efficient data 

access and structure patterns. 

2. We have developed a set of energy-efficient best practices and guidelines for Python 

programming, helping developers create more environmentally friendly and sustainable 

applications. 

3. We have provided valuable insights into the energy consumption patterns and trends of Python, 

which can inform future research in this field and guide developers toward more energy-efficient 

coding practices. 

4. We have addressed the energy consumption issues of Python and best practices through a series 

of case studies, providing quantitative evidence of the potential energy savings achieved by 

adopting our proposed methods. 

2. Literature Review 

In [11], the researchers have studied the energy efficiency of programs run in 27 different programming 

languages, using a performance-oriented source, Computer Language Benchmarks Game (CLBG)1 and an 

educational source, Rosetta. They have brought to light some key misconceptions and correlations, as to if 

and how memory usage and fast execution times correlate with energy consumption. 

In the previous year, a tool named ’EnSights’ was proposed to make efficient mobile applications with 

increasing the efficiency of Android Studio IDE. They used matrix methods to make energy-efficient code 

and applied their ’EnSights’ method to the previous code and observed the comparison of previous matrices 

of the code and currently prepared matrices with the coefficient and correlation techniques [12]. 

A related study, Eder et al. [13] has stated that energy consumption should be considered as a design 

constraint in addition to traditional constraints such as functionality, reliability, and maintainability. It is a 

literature review and survey of the existing research on energy-aware software engineering and provides 

an overview of the various techniques and approaches that can be implemented to decrease energy 
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consumption in software systems, such as optimizing algorithms and data structures, reducing 

computation and communication overheads, and employing dynamic voltage and frequency scaling. Eder 

et al. have made a well-defined framework to assess and mark energy consumptions of processes at different 

levels of a computer, such as the hardware as well as instruction set architecture, intermediate languages 

and source code. However, they have not based their work on a single programming language, or how a 

certain language could be improved. 

Liu et al. [14] has contributed some work in the application-level energy management in Java language, 

where different strategies have been shown to bring noticeable results in energy consumption. It proposed 

a data-oriented approach to characterize the energy consumption of software applications. They used a 

combination of static and dynamic analysis techniques to extract energy-related metrics from the source 

code. The key areas of work include data access patterns, data representation strategies, data organization, 

data precision choices, and data I/O configurations. A unified attempt had also been made to manage these 

application-level strategies with the hardware to meet a sweet spot between energy efficiency and fast 

execution time. The results showed that their approach was effective in identifying energy inefficiencies in 

software applications. 

Escobar et al. [15] used pyRAPL to measure the energy consumption of two algorithms - the Merkel 

Tree (MT) root calculation and the Proof of Work (PoW) algorithm - which are key in the blockchain. They 

implemented both the original and the optimized algorithm and found significant results. The optimized 

version was implemented after the use of the Energy Complexity Model and hashing, which helped 

reengineer the algorithms to get reduced energy complexity.  

Garus2 worked to build an extension that measures energy consumption among the different 

components of a computer both on the server side and the notebook side when programmers program in 

Jupyter Notebooks. They have conducted both internal (Running Average Power Limit, RAPL) and external 

measurements (MCP) which gave an insight into how hardware also plays a big role in energy 

consumption. However, the number of programs tested was small. More programs could have been tested 

in order to provide a more rigid conclusion about the viability of programming in different ways with 

Python. 

As Abdulsalam et al. [16] and Fog [17] mentioned, there aren’t a lot of easy-to-use and available tools 

to measure energy consumption, and programmers often rely on upgrades to hardware so that their 

programs consume less energy. The requirements of optimizing the software for speed or size conflict with 

the importance of structured and object-oriented programming, modularity, reusability, and 

systematization of the software development process. 

The selected applications on which the experiment was conducted by Abdulsalam et al. [16] were Fast 

Fourier Transform (FFT), Linked List insertion/deletion (LL), and Quick Sort (QS). Quick Sort was the only 

application where Abdussalam et al. used Python. They compared C, C++ (using array), C++ using vector, 

Java, and Python. From the perspective of the compiler, the C and C++ implementations had optimization 

techniques applied to them, which led to better results. Additionally, they studied the impact of different 

implementation choices such as alloc, new, vector, and array on program energy efficiency. In all, based on 

their conclusion, C performed best when no optimization was used, whereas C++ came out on top with 

optimization techniques applied. Java performed badly mostly due to the running of the Java Virtual 

Machine, though in Java, for large data, linked list implementation performed better. Abdulsalam et al., 

however, did not optimize the Python programs or apply different ways to implement the Python 

programs. 

Fog [17] also considers C++ to be the fastest executable language due to the availability of good 

compilers and optimized function libraries. C++ also includes the low-level C language as a subset, giving 

access to low-level improvements. The majority of C++ compilers produce assembly language output, which 

can be used to assess how well a piece of code was optimized. However, Fog [17] also concluded that the 

best-performing programming language would be one with a mix of a compiled language, which would 

help in code optimization, and a high-level framework to ensure portability and ease of development. 

Pereira et al. [18] measure the energy consumption of 10 programs in 27 programming languages, using 

The Computer Language Benchmarks Game. They also measure the execution time and memory usage of 
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these programs and analyze the correlations between the use of memory, energy, and execution time. While 

these studies have made significant contributions to the field of energy efficiency in software development, 

they have some limitations. Even though Pereira et al. [18] have made a significant contribution in 

identifying which programming language to use based on some benchmark programs, they have not 

focused on how a specific language, such as Python, could be used in a different manner so that energy can 

be saved. 

Bree et al. [19] has conducted an assessment on the impact of two popular design-level refactoring on 

energy consumption in the Java programming language. Specifically, they focused on the refactoring 

techniques of replacing Inheritance with Delegation and vice versa. The researchers assessed the energy 

consumption by running code snippets for both refactoring and measuring average power consumption 

and energy consumption. The study revealed that Inheritance proved to be more efficient than Delegation. 

It exhibited a 77% reduction in runtime and a 4% decrease in average power consumption when compared 

to Delegation. However, a significant limitation of the study was the experiments were conducted in an 

Interpreted mode, which does not accurately reflect real-life scenarios where Just-in-Time (JIT) enabled 

compilers are commonly utilized. 

Pereira et al. [20] proposed novel and language-independent methodology called SPELL (SPectrum-

based Energy Leak Localization) to identify energy inefficient sections in software. This technique, 

implemented within a dedicated tool, enables the simultaneous detection of abnormalities in energy 

consumption during program execution and the identification of faults in program execution. By adapting 

Spectrum-based Fault Localization (SFL) techniques, the researchers establish a correlation between energy 

consumption and the software's source code. They attribute varying degrees of responsibility for energy 

consumption to different components of the underlying system. To put their SPELL concept into practice, 

they have developed an analysis tool in Java and utilized Intel's RAPL for precise energy measurement. 

Moreover, an empirical study was conducted involving programmers to assess the effectiveness of the 

technique. Remarkably, programmers who followed SPELL recommendations achieved an average energy 

optimization of 43%, as demonstrated by the study's findings.  

Rahaman et al. [21] have made a similar approach to how we have implemented our methodology. 

They used tools to measure certain parameters, and equations to calculate energy consumption. They 

implemented several programs and reshaped them after applying code transformations to optimize them. 

One crucial concept of theirs was that they integrated the requirement for energy efficient software in the 

SDLC model by including a new step called Energy Efficiency Analysis. After testing the transformed 

programs, they found that their model performed better than the agile method after implementing EE 

Analysis. However, the types of programs and the kind of transformation they used were not clear in the 

paper. The choice of programming language (Java, in this case) was also not justified, and there was 

discrepancy between the chosen language and the sample programs. 

Mancebo et al. [22] developed a methodology where they tested a full software to evaluate and identify 

the areas of high energy consumption. They based their evaluation on maintainability of a software, which 

included number of lines used, comments and repetitive code, among other criteria. The comparison was 

made among different versions of a single software after certain tests were conducted on them, based on 

which they concluded, for every criterion, whether or not energy consumption changed while following a 

pattern. However, it is obvious that the results are not generalizable, as different software will have different 

changes in their versions, leading to different patterns, and also because the programming languages used 

in the software itself could be multiple. In Table 1, the summary of the literature review is given.  

Table 1. Summary of the Literature Review 
Authors Study Description Limitations Method Adopted 

Alvi et al. [12] Proposed efficient applications with 

less wastage of battery. Matrix 

methods have been used to make 

energy-efficient code. 

A single case study of mobile 

applications developed on the 

Android platform. No work to 

evaluate effectiveness in various 

contexts and compare 

performance. 

The tool identifies the energy 

inefficiency to lower the software's 

energy consumption by up to 22% 

using code restructuring, loop 

unrolling, and caching. 

Liu et al. [14] A data-oriented approach to 

characterize the energy consumption 

of software. They used a combination 

Only focused on Java language. 

Due to the measurement of 

energy consumption in 

fragments of code, the proposed 

Combination of static and dynamic 

analysis techniques to observe energy-

related metrics. 
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of static and dynamic analysis 

techniques. 

good habits of programmers are 

too general. 

Escobar et al. 

[15] 

Applied algorithm re-engineering 

techniques to improve energy 

efficiency of blockchain without 

compromising system quality and 

security. 

Only applicable for blockchain 

and not much focus on 

programming languages. 

Used the Energy Complexity Model 

along with re-engineering hash 

techniques on Merkle Tree and Proof 

of Work - two key elements of 

blockchain to increase efficiency. 

Eder et al. 

[13] 

Highlight various techniques and 

approaches to reduce energy 

consumption in software systems. 

Focuses on academic research 

rather than practical 

applications of energy-aware 

software engineering in the 

industry. 

A comprehensive analysis of the 

current state of research on energy-

aware software engineering. 

Pereira et al. 

[11] 

Compare 27 programming languages 

with respect to their efficiency and 

energy consumption and establish 

their rankings. 

The various ways to produce 

the same output within a 

specific programming language 

were absent. 

Well-defined algorithms were tested 

using Intel’s RAPL and validated 

using the repository from Rosetta 

Code. 

Garus3 Awareness of energy consumption in 

the Jupyter Notebooks. Analyze and 

compare the energy consumption of 

architecture. 

Access to Wi-Fi could not be 

abandoned, which incurred the 

use of more energy. 

Run benchmarks and record the 

energy consumption using multiple 

sources like the RAPL from software, 

and Microchip Power Monitor from 

the hardware. 

Abdulsalam 

et al. [16] 

Study the energy impact of the 

languages C, C++, Java, and Python 

based on the different 

implementations and optimizations. 

The number of applications or 

algorithms tested is too small 

and has little focus on Python. 

Intel Power Governor library 

measures the energy consumption of 

CPU and DRAM power when 

implementing a few algorithms. 

Pereira et al. 

[18] 

Uses benchmark problems of CBLG 

on programming languages, and 

measures the energy consumption 

using Intel's RAPL, which collects 

and analyzes resultant data on 

execution time and memory usage. 

Experiments are conducted on a 

single machine and operating 

system. The results of the study 

may not be generalized to all 

types of programs. 

Benchmark suite of programs 

provides guidance on which 

programming languages tend to be 

more energy efficient. For energy-

constrained environments, there is a 

trade-off between execution time and 

energy consumption. 

Bree et al. 

[19] 

Assessed the energy consumption of 

two popular refactoring approaches - 

replacing Inheritance with 

Delegation and vice-versa. 

Experiment conducted in 

interpreted mode, which does 

not reflect the real-life scenario.  

Investigated the energy measurement 

of by using Watts Up Pro tool on a few 

modified programs and analysed the 

result. 

Pereira et al. 

[20] 

Developed an energy leak 

localization tool for source code, 

which is language and approach 

independent. Located energy leak by 

SPELL matrix construction.  

Considered only energy 

consumption of CPU. 

Experiment conducted on same 

set of programs; the results may 

differ for other programs.  

Associated energy consumption of 

different software components with a 

percentage of responsibility, that 

pinpoints where improvement is 

needed.  

Rahaman et 

al. [21] 

Integrated a new step in the SDLC 

relating to Energy Efficiency and 

investigated the improvements. 

Discrepancy existed between 

the sample programs and lack 

of clarity on the code 

transformations. 

Applied code transformations and 

compared the energy consumptions 

between two versions of several 

programs before and after the 

modified SDLC models. 

Mancebo et 

al. [22] 

Developed a framework that 

evaluates a software application on 

certain aspects in terms of energy 

efficiency. 

Tested only a single application 

and multiple languages may 

have been used, so results may 

not be generalizable. 

Tested different versions of a single 

application and analyzed the patterns 

relating to energy and maintainability 

of the application. 

 

Table 2. Gap Analysis 
Authors Analyzation of Specific Language Optimization Energy Measurement Diverse Programs 

Alvi et al. [12] No No Yes No 

Liu et al. [14] Yes Yes Yes Yes 

Eder et al. [13] No Yes No No 

Pereira et al. [11] No No Yes Yes 

Garus3 Yes No Yes No 

Abdulsalam et al. [16] No Yes Yes No 

Pereira et al. [18] No No Yes No 

Bree et al. [19] Yes Yes Yes No 

Pereira et al. [20] No Yes Yes No 
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Rahaman et al. [21] Yes Yes Yes No 

Mancebo et al. [22] No No Yes Yes 

The main gap between other papers and our paper is the comparison of different ways to program 

within Python. What we observed mostly in the literature review is the findings on which language is more 

energy efficient, or just how energy can be measured in software programs. A major gap we found in the 

literature review is the lack of focus on Python and the measurement of energy consumptions among the 

different programs within Python. In our paper, we have chosen certain topics, similar to [14], [15] and [21], 

and measured the energy consumption among the different programs within each topic, after which we 

suggested which program is more energy efficient. The gap analyses based on the literature review is 

presented in Table 2. 

3. Methodology 

Although Python is a very inefficient language, it has become extremely popular among general 

programmers and researchers due to the extensive libraries available. Therefore, we will investigate the 

energy consumption of Python programs in PyCharm, an IDE used to run Python programs. 

To achieve our goal, the following methodology will be followed: 

Step 1: Selection a set of Python programs representative of typical workloads that users might run on 

these platforms (i.e., read/write a pattern, Quick Sort, etc.). Comparisons between various data structures 

as well as Python functions will be made. 

Step 2: Installation of Intel’s Power Gadget, which is a power usage monitoring tool enabled for Intel 

Core i5 processors. 

Step 3: Running each program with the energy consumption measured using Power Gadget. Each 

experiment will be repeated multiple times to obtain statistically significant results. 

Step 4: Calculate each program’s cumulative energy consumption and average power to identify 

significant differences. We will try to formulate the relationship between time duration and energy 

consumption. 

Step 5: Analysis of the results to identify the factors that contribute to the differences in energy 

consumption. These factors might include the hardware configuration, the software environment, and the 

workload characteristics. 

Step 6: Proposal of good programming practices that can help optimize programs’ energy 

consumption. Examples of such practices include using efficient algorithms, choosing the best functions, 

and libraries for computations, etc. 

Step 7: Discussion of the results’ implications for users concerned about energy consumption. 

The System Architecture in Figure 1 visualizes our methodology. 

 
Figure 1. System Architecture 

3.1. Energy Measurement Tool 

The choice of a tool to measure energy consumption was an important one as our study depends on 

comparing energy consumption. Intel’s Running Average Power Limit (RAPL) [10,14], seems to be the 

research standard. However, based on the literature review, researchers have used a variety of tools, such 

as data collector frameworks [1], Intel’s Power Governor [16], EnSights [12], or other versions of RAPL such 

as jRAPL [14] and pyRAPL [15].  

Due to the complexity of using RAPL, we have turned to Intel’s Power Gadget, which is simple yet 

equally competent at measuring energy consumption in terms of the parameters we are looking for. It is a 
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software-based tool for tracking power usage that is compatible with Intel Core i5 processors, which is 

capable of measuring processor energy, package power, CPU utilization, GPU utilization, and DRAM 

power among other parameters. We require only the processor energy and power; therefore, Power Gadget 

is a sufficient tool for our study. 

3.2. Experiment Environment 

The laptop used for the experiments in our research was equipped with an Intel Core i5 Processor, a 

total of 4 cores, and 8 threads with an 8 MB Intel Smart Cache. The processor graphics on the laptop is Intel 

Iris Xe Graphics. The laptop has 8GB of DDR4 memory running at a speed of 3200MHz, consisting of 2𝑥4 

GB modules. The maximum memory size supported is 64GB. 

3.3. Algorithm 

Algorithm 1 outlines the process for analyzing the energy consumption of different programs (P) 

running on various topics (T) for a given number of iterations (n). The algorithm works by iterating through 

each topic in T, then for each program in P, and subsequently running the program n times. During each 

run, it measures the start and end times and the power consumption. It then calculates the average power 

consumption and total energy consumption for each program run. After all iterations are completed for a 

given program, the algorithm stores the total energy consumption and average power consumption results. 

It then represents and analyzes the results, aiming to identify the factors that contribute to the energy 

consumption differences between different programs. 

The Flowchart based on the algorithm is given below in Figure 2.  

Algorithm 1. Energy Consumption Analysis of Python Programs 
Input: Topics T, Programs P, n. 
Output: 
1. Procedure: CalcEnergy(T, P, n) 
2.     for a topic in T do 
3.         for a program in P do 
4.             for i = 1 to n do 
5.                  start_measurement()   
6.                  start_time[i] = datetime.now() 
7.                  execute_program(program)  
8.                  end_time[i] = datetime.now() 
9.                  stop_measurement()   
10.                            energy_file = store_energy_consumption()  
11.                average_power_consumption[i] = calculate_average_power(energy_file, start_time,end_time)   
12.                total_energy_consumption[i] = sum_energy_consumption(energy_file, start_time,end_time)  
13.            end for 
14.            program_results[program] = {total_energy_consumption, average_power_consumption}  
15.         end for 
16.         represent_and_analyze(program_results) 
17.         propose_programming_practices()   
18.     end for 
19.     discuss_results_implications()   

 
Figure 2. Flowchart  
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4. Implementation, Results, and Comparative Analysis 

This section shows the results of the various implementations of the same program and provides a 

comparative analysis between those implementations.  

4.1. Assignment Operator Vs Append() 

A list is a heterogeneous built-in data structure in Python. It follows indexing, so it is ordered. To add 

elements to a list, we look at two ways- the Assignment operator (𝒍𝒊𝒔𝒕[𝒊] = 𝒙) and the 

𝒍𝒊𝒔𝒕. 𝒂𝒑𝒑𝒆𝒏𝒅() method. The assignment operator simply puts the desired value to that list index, while the 

append() method adds an item to the end of the list. 

To compare the two implementations, we initialized two lists of size 20 million with all zeroes. We then 

measured the energy consumption for the time duration of the program ran. The code snippets for List in 

Python are given below in Figure 3a and Figure 3b. 

 
 

 

 
Figure 4. Assignment Operator Vs Append Method Graph 

Figure 4 shows the graph for the energy consumption of the two implementations. We measured the 

cumulative processor energy and the average processor power. From the graph, we can clearly observe that 

the energy consumption is less (2.2 times more energy efficient) when the assignment operator (with prefix 

ETO) is used, and higher for the append() method (with prefix AM). This is expected, as the call to the 

append() method pushes an instance of a frame to its call stack and pops it when the function returns, which 

costs more memory and time, whereas the assignment operator has no such overheads. 

4.2. Sequentially Vs Random Read and Write 

We compared the energy consumption between sequential read and write versus random read and 

write. To conduct the reading part of the experiment, we initialized a list of size 20 million all with 0s, and 

then printed the list in a loop with sequential increments in indices versus random indices. For writing, the 

same process was followed, except that we initialized the list with 1s, then overwrote the indices with 0s. 

Figures 5a, 5b, 5c, and 5d show the sequential versus random access code segments for sequential and 

random read and write respectively, and Figure 6a and Figure 6b show the graphs for read and write 

respectively. 

From the read graph in Figure 6a, it is observed that random read (prefix RR) takes more energy and 

less power compared to sequential read (prefix SR). On average, the random read takes 1.05 times more 

energy. From our measurements, or by applying basic physics to the reader, it is observed that random 

reading takes more time to finish the program. This is clearly because of the cache locality. Accessing the 

list sequentially can keep a lot of future index addresses in the cache which would make more cache hits 

and reduce the time taken. Random access has a much greater chance to incur cache misses. 

Figure 3a. Assignment Operator     Figure 3b. List Append Method  
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Figure 6a. Sequential Vs Random Read  

 
Figure 6b. Sequential Vs Random Write  

For sequential write (prefix SW) and random write (prefix RW), the graphs are like read graphs. 

The energy consumption of random writing is higher (around 1.3 times) and takes slightly more power than 

sequential writing, the reason being the same as before, which is cache locality. By our calculations, we have 

seen that random writing takes more time as well than sequential writing. 

Figure 5a: Sequential Read                                              Figure 5b: Random Read 

Figure 5a. Sequential Read                                                 Figure 5b. Random Read  
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4.3. List Vs NumPy Array Vs Dictionary 

A list in Python is a heterogeneous data structure. It is one-dimensional, and the data inside can be 

modified. It is quite a flexible data structure of Python that can handle simple tasks very well, however, it 

is unable to perform some complicated operations, such as element-wise operations. 

NumPy Array is an extension in Python that allows for scientific computing in Python. NumPy Array 

is also a homogeneous data structure and is mostly used for numerical calculations. It can be 

multidimensional, although then the order of the matrix must be consistent. It has a wide variety of features 

and methods that can be used to easily implement complex algorithms, such as dot product and element-

wise operations. 

Dictionary in Python is another heterogeneous and changeable data structure. It, however, does not 

necessarily follow indexing, but follow the key-value pair to store values. 

To compare the three data structures, we have implemented algorithms to create two of each data 

structures, initialize them with all 1s and all 2s respectively, and store the addition of the values in another 

the variable of the same type. All the data structures were accessed sequentially. Figure 7a, Figure 7b, and 

Figure 7c below show the data structure comparison code segments for the list, NumPy array, and 

dictionary respectively, and Figure 8 shows the graph. 

 
Figure 7a. List  

 
Figure 7b. NumPy Array  

 
Figure 7c. Dictionary 

 
Figure 8. List Vs NumPy Vs Dictionary Graph 

From the Figure 8, it is observed that List performs the best with the lowest energy consumption 

(around 1.73 times better). The average CPU power is similar for both list and NumPy array, which is 
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surprising since the NumPy array is very efficient in terms of memory and time complexity. The 

discrepancy in energy consumption for the NumPy array could be the cause of the NumPy array method 

that creates the array in the first place, as we know function calls are stacked and cost energy and time. 

Without the methods, the NumPy array is expected to be faster and more energy efficient. More research is 

needed to verify this.  

It is clear from the Figure 8 that dictionary performed the worst in terms of sequential access 

and arithmetic operations. The same function calls to create the dictionaries can be blamed for the poor 

performance, but since a dictionary does not follow the typical indexing, the search for the key and 

retrieving the value must also have contributed to the time duration of the program. 

We can conclude that the list is very light-weight when it comes to creation and simple operations, 

however, the NumPy array is expected to be more efficient and capable of solving complex calculations 

much faster, whereas the dictionary also has its uses in specific applications where key-value pair is 

necessary but fails to perform well in simple creation and arithmetic operations. 

4.4. Different Ways to Print a String with Variables 

In this section, we have compared the four different ways to print a string with a variable. The f-string 

method is the most used [10] implementation to print strings with variables, however, the format() method 

and ‘,’ methods are also commonly used. f-string uses curly braces to print individual variables. format() 

does the same thing but breaks down the print statement into two distinct parts- string and variable(s). 

However, format() is soon losing popularity amid the arrival of f-strings in Python 3.6. The concatenation 

(+) method and comma (‘,’) methods are similar in structure as they can mix strings and variables in the 

same line, with the difference being that the comma method automatically adds a space before and after the 

variable. The Figure 9a, 9b, 9c, and 9d show the code segments. To compare the implementations, we have 

simply created a string variable and printed it 10 million times. Figures 9a, 9b, 9c, and 9d show the print 

string with variable code segments, and Figure 10 shows the graph. 

 
Figure 9a. f-String                                    Figure 9b.  format() 

 
Figure 9c. String Concatenate                        Figure 9d. Comma Method 

 
Figure 10. Different Prints Graph 
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From the Figure 10, it is observed that f-string (prefix P1), format() (prefix P2), and concatenation 

(prefix P3) all consume quite similar energy and power. format() costs a bit more energy, which may be due 

to the function call on the stack. String concatenation consumes the lowest energy (1.01 times more energy 

efficient than the next best implementation, f-strings), though the change is negligible. The most surprising 

result came from the comma (‘,’) implementation (prefix P4). It took the most time to run and hence the 

most energy. One reason could be that this implementation itself adds spaces before and after the variables, 

which takes time.  

From this experiment, we can conclude that string concatenation is the most energy-efficient, although 

it adds a layer of work to be done by the programmers in terms of adding spaces manually. 

4.5. Quick Vs Merge Sort 

In this section, we have compared Quick sort and Merge sort. These are two popular sorting algorithms 

that use the divide-and-conquer approach. Quick Sort has an average time complexity of 𝑶(𝒏𝒍𝒐𝒈𝒏) and a 

worst-case of 𝑶(𝒏𝟐), while Merge Sort has a worst-case time complexity of 𝑶(𝒏𝒍𝒐𝒈𝒏). We performed these 

two sorting algorithms on a file containing 10 million integers.  

The standard algorithms for the Quick Sort and Merge Sort algorithms have been used. Figure 11 

shows the graph. 

 
          Figure 11. Quick Sort Vs Merge Sort  

As we can see from the Figure 11, both sorting algorithms performed similarly in terms of energy 

consumption and power. This is expected since the average time complexity for both algorithms are 

𝑶(𝒏𝒍𝒐𝒈𝒏) . However, Merge Sort took slightly less energy. This could be because we know that Quick Sort 

doesn’t perform well on large datasets, especially when the worst case applies. This very well could be our 

case, which helped Merge Sort perform slightly better (0.96 times less energy) than Quick Sort, even though 

Merge Sort had a poorer cache locality than Quick Sort. When it comes to energy consumption analysis, 

both quick sort and merge sort can be evaluated based on the number of operations they perform. The 

number of operations, in turn, is related to the amount of energy consumed by the algorithms. The worst-

case scenario is when the pivot chosen is either the array's smallest or largest element, creating an array of 

size n-1 and an array of size 0 respectively. In this case, quick sort becomes inefficient and can result in 

higher energy consumption. On the other hand, merge sort always has a time complexity of 𝑶(𝒏𝒍𝒐𝒈𝒏) 

regardless of the input, making it a more predictable algorithm in terms of energy consumption. 
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Additionally, because it maintains the relative order of like elements in the input array, it is a stable sorting 

algorithm. 

4.6. Fibonacci Using Loop Vs Dynamic Programming 

Based on the experiment's findings, it can be concluded that dynamic programming using tabulation 

is a better approach in terms of energy consumption, as it consumes less energy compared to using a loop. 

On average, dynamic programming using tabulation consumed 0.24J of energy, while using a loop 

consumed 0.368J of energy. However, using loop is faster than dynamic programming using tabulation, as 

it takes only 0.0085 seconds to execute the program, while dynamic programming using tabulation takes 

0.017 seconds. However, looped implementation always has four operations every iteration, compared to 

the single addition and assignment in tabulation, which takes more energy, even though tabulation uses 

more space. If energy consumption is a crucial factor, then dynamic programming using tabulation is 

recommended. On the other hand, if time efficiency is more important, then dynamic programming using 

a loop can be a better choice. We have also implemented Fibonacci using plain recursion and memorization 

and found that they required much more time and energy. It is obvious since they incur a lot of function 

calls building up in the stack. Additionally, we found that these two implementations were unable to 

calculate values of N that were higher, further limiting their usability and efficiency. Therefore, we have 

chosen not to include the findings of these two approaches in our analysis. Figures 12a and 12b show the 

Fibonacci code segments and Figure 13 shows the graph.  

 
 

 
                                         Figure 12a. Tabulation                                        Figure 12b. Loop  

 
Figure 13. Loop Vs Tabulation Graph  

4.7. NumPy Vs Panda 

We have conducted a comparative analysis of the performance of two different Python libraries, 

NumPy and Pandas, which are commonly used for data analysis, machine learning, or scientific computing. 
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This experiment involves benchmarking the same set of tasks across the two libraries and comparing their 

runtime and memory usage. Such an analysis could provide valuable insights for researchers and 

practitioners in these fields, helping them to make informed decisions about which library to use for a given 

task, and how to optimize their code for maximum performance. 

4.7.1. Mean and Standard Deviation Calculation 

After analyzing the performance of NumPy and Pandas for calculating mean and standard deviation 

on a dataset of 10 million random numbers, we found that NumPy outperforms Pandas in terms of 

computation time. On average, NumPy takes 0.062 seconds to compute the mean and standard deviation, 

while Pandas takes 0.14 seconds. In terms of energy consumption, NumPy is also more efficient than 

Pandas. This is because NumPy is optimized for numerical calculations and is written in C, while Pandas 

is built on top of NumPy and uses more memory and CPU resources for data manipulation. Therefore, for 

large datasets and numerical calculations, it is recommended to use NumPy instead of Pandas to achieve 

better performance and energy efficiency. However, if the dataset requires complex data manipulation and 

analysis, Pandas may still be a better choice due to its more powerful data processing capabilities.   

Figures 14a and 14b show the mean standard deviation code segments and Figure 15 shows the graph.  

 
Figure 15. NumPy Vs Pandas Mean Standard Deviation Graph  

4.7.2. Data Cleaning and Manipulation 

In this experiment, we have used two libraries, NumPy and Pandas for cleaning, i.e., detecting and 

removing duplicates, filling missing values in a large dataset, containing 10 million rows and 5 columns. In 

the context of cleaning and manipulating large datasets, both Pandas and NumPy are commonly used 

libraries in Python. From the graph, it is observed that NumPy performs better than Pandas in the context 

of energy consumption for this program. In terms of performance, the analysis shows that NumPy 

outperforms Pandas for this task. For cleaning and manipulating a dataset of 10000000 rows and 5 columns, 

NumPy takes an average of 7.62 seconds while Pandas takes 12.42 seconds. However, for a smaller amount 

of data, for example, 10000 rows and 5 columns, Pandas performs better with a runtime of 0.0046 seconds 

compared to NumPy's 0.0052 seconds. The difference in performance is due to the fact that NumPy is 

optimized for numerical computations and is implemented in C, whereas Pandas is built on top of NumPy 

and is implemented in Python. Additionally, NumPy uses vectorization to perform operations on entire 

arrays rather than looping over individual elements, which makes it more efficient for large datasets. 

Figures 16a and 16b show the data cleaning and manipulation code segments and Figure 17 shows the 

graph.  

Figure 14a. NumPy Mean Standard Deviation        Figure 14b. Pandas Mean Standard Deviation 
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Figure 17. NumPy Vs Pandas Data Cleaning and Manipulation  

4.7.3. Sorting Dataset 

Based on the results, both Pandas and NumPy perform similarly, 1.48 seconds in terms of sorting a 

large dataset. Pandas uses the 𝑠𝑜𝑟𝑡_𝑣𝑎𝑙𝑢𝑒𝑠() method to sort the Data Frame based on a specified column, 

while NumPy uses the 𝑎𝑟𝑔𝑠𝑜𝑟𝑡() method to obtain the indices that would sort the array along a specified 

axis, and then uses those indices to sort the array. In terms of technical aspects, NumPy’s 𝑎𝑟𝑔𝑠𝑜𝑟𝑡() method 

is faster compared to Pandas' 𝑠𝑜𝑟𝑡_𝑣𝑎𝑙𝑢𝑒𝑠() method due to its use of an optimized C implementation. 

Additionally, NumPy’s sorting algorithm is more memory-efficient since it doesn't create a copy of the 

original array, whereas Pandas creates a copy of the Data Frame to perform the sorting operation. This can 

be especially important for very large datasets where memory usage is a concern. Regarding energy 

consumption, NumPy consumes less energy compared to Pandas since it uses a more memory-efficient 

algorithm. 

Figures 18a and 18b show the data cleaning and manipulation code segments and Figure 19 shows the 

graph. 

 
Figure 19. NumPy Vs Pandas Sorting Dataset 

    Figure 16a. NumPy Data Cleaning and Manipulation              Figure 16b. Pandas Data Cleaning and Manipulation 

Figure 18a. NumPy Sorting Dataset                      Figure 18b. Pandas Sorting Dataset 
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4.8. Personal Computer Vs Cloud Computing 

In this section, we compared the energy consumption and time required for running logistic regression 

on a personal computer using PyCharm and on Google Colaboratory, a cloud computing platform. The 

dataset used was the iris dataset which was split into training, validation, and test sets. The logistic 

regression algorithm was implemented using Python libraries such as NumPy and random. The training 

and validation sets were used to optimize the weights of the logistic regression model. The accuracy of the 

model was then evaluated using the test set. 

The results showed that PyCharm took 0.0112 minutes and 0.603 watt-minute energy consumption, 

while Google Colaboratory took 0.0184 minutes and 1.09 watt-minute energy consumption on average. The 

energy consumption was calculated by using Green algorithms tool4 [23]. In Table 3, the result of the energy 

consumption is shown. 

Table 3. Personal Device Vs Cloud Energy Comparison 
# PyCharm Time 

(Minutes) 

Energy (Watt-

minute) 

Colaboratory 

Time (Minutes) 

Energy 

(Watt-minute) 

1 0.013 7.02E-01 0.018 1.07E+00 

2 0.012 6.48E-01 0.020 1.19E+00 

3 0.011 5.92E-01 0.017 1.01E+00 

4 0.010 5.38E-01 0.021 1.25E+00 

5 0.014 7.56E-01 0.016 9.54E-01 

In terms of energy consumption and time, our findings show that PyCharm on a personal computer 

had a lower energy consumption and required less time compared to Google Colaboratory, represented in 

Figure 20. On average, PyCharm (represented by PC) takes only 0.012 seconds and consumes 0.647 

Watt/minute, while Google Colaboratory (represented by GC) takes 0.0184 seconds and consumes 1.09 

Watt/minute. This means that Google Colaboratory takes 1.6 times longer than PyCharm and consumes 1.8 

times more energy than PyCharm. It is important to note that the free version of Google Colaboratory was 

used, which may have contributed to higher energy consumption and longer running time. However, in 

the context of global energy consumption in programming and software development, cloud computing 

has the potential to be more energy-efficient compared to personal computers. This is because cloud 

providers can leverage economies of scale and use more energy-efficient hardware, such as specialized 

processors and servers, compared to individual personal computers. Additionally, cloud providers can also 

optimize their data centers for energy efficiency, such as using renewable energy sources and improving 

cooling systems. Along with that, the energy consumption of cloud computing also depends on factors such 

as the size of the workload, the type of application, and the location of the data center. It is important to 

note that this study only compared the energy consumption and time for logistic regression and may not 

be representative of all programming and software development tasks.  

 
        Figure 20. PC Vs Cloud graph 

                                                             
4 http://calculator.green-algorithms.org/  

http://calculator.green-algorithms.org/
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Based on the results obtained from the experiments conducted on seven different topics related to 

energy consumption in Python, we can conclude that the methodology used was effective in achieving the 

research objectives. The experiments were conducted using various Python functions, data initialization 

strategies, data access patterns, various data structures, string formatting, and Python libraries for data 

analysis and visualization. We also conducted an experiment to compare energy consumption between 

cloud computing and personal computer usage, in order to determine which approach is more efficient. 
The results obtained provided valuable insights into energy consumption patterns and trends and can be 

used to guide future research in this field and better coding practices. Overall, the methodology used in this 

study was robust and reliable and can be replicated and adapted for further studies on energy consumption 

in Python or other related fields. 
 

5. Limitations and Future Work  

Like any typical experiment, ours also has some limitations. The first comes in the use of our tool to 

measure energy consumption. Power Gadget is a lightweight tool. However, it didn't give us the DRAM 

Power in our device which would have helped us make a more reliable comparison. In our experiment, we 

used only one device to conduct the measurements. Multiple devices should be used to calculate the average 

and arrive at a conclusion. The limitations of our work also contain focusing on the energy consumption of 

Python programs, which might not be representative of the other programming languages. The lack of 

space-complexity calculation in our formula may also affect our results. Additionally, we have only 

considered a limited set of programs and workloads, which may not generalize to all the software 

applications.  

Researchers can bring space complexity into the formula for future work and see how it affects energy 

efficiency. We also found that programming in the cloud uses fewer resources on the programmer’s end, 

however, how much energy it consumes on the server side of the cloud can be a research area, which would 

properly conclude the better habit. Our first aim in the future would be to implement all the experiments 

using a renowned energy measurement tool such as RAPL. Along with that, some sort of hardware tool 

involvement in our experiment would add to our reliability and transparency. Our work initially involved 

measuring the energy discrepancies between different operating systems. Due to the processor-dependent 

property of Power Gadget, we were unable to perform the experiments on another operating system such 

as MacOS or Linux, as common devices supporting those operating systems do not have Intel 

microprocessors. We aim to continue our experiment to measure the impact of different operating systems 

on the same algorithms in terms of energy consumption. While working on the list vs NumPy array vs 

dictionary experiment, we explored a lot more features that could be compared and used to optimize 

algorithms. We aim to further delve into the depth of these data structures with possibly more of them to 

find out which data structure and its features would perform best in which scenarios. We may also explore 

other languages that have been identified in our literature review, such as C, C++ and Java. Finally, we 

would also like to identify some sort of relationship between time complexity, space complexity, and energy 

consumption to better propose smart programming habits and ranking of certain algorithms. 

6. Conclusion  

The demand for energy-efficient computing systems has never been more significant than now, with 

the increasing use of software applications in various sectors. In this paper, we have proposed a 

comparative study of the energy consumption of different implementations of the same problem in the 

Python programming language, using the Power Gadget tool. Our study has revealed that efficient 

programming practices can significantly decrease the energy use of software programs. We have proposed 

good programming practices that can be adopted by programmers to reduce energy loss in software 

applications. The novelty of our research work lies in the fact that we have compared the energy 

consumption of different aspects of the Python programming language. Our study has also contributed to 

the field of energy-efficient development by proposing energy-efficient coding practices. Our study has also 

highlighted the potential benefits of cloud computing in reducing energy consumption, especially in 

personal devices. In conclusion, our study has demonstrated the importance of energy-efficient software 

development in the context of the increasing demand for energy and the growing use of programming. The 
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proposed techniques can help programmers and general users to optimize energy consumption and 

contribute to a more efficient approach to programming. 
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