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Abstract: Recently, researchers have proposed a lot of deep convolutional neural network (CNN) approaches with 

obvious flaws to tackle the difficult semantic classification (SC) task of remote sensing images (RSI). In this paper, 

the author proposes a simple method that aims to provide a leading but efficient solution by using a lightweight 

EfficientNet-B0. First, this paper concluded the drawbacks with an analysis of mathematical theory and then 

proposed a qualitative conclusion on the previous methods’ theoretical performance based on theoretical 

derivation and experiments. Following that, the paper designs a novel method named LS-EfficientNet, consisting 

only of a single CNN and a concise training algorithm called SC-CNN. Far different from previous complex and 

hardware-extensive ones, the proposed method mainly focuses on tackling the long-neglected problems, including 

overfitting, data distribution shift by DA, improper use of training tricks, and other incorrect operations on a pre-

trained CNN. Compared to previous studies, the proposed method is easy to reproduce because all the models, 

training tricks, and hyperparameter settings are open-sourced. Extensive experiments on two benchmark datasets 

show that the proposed method can easily surpass all the previous state-of-the-art ones, with an outstanding 

accuracy lead of 0.5% to 1.2% and a remarkable parameter decrease of 78% if compared to the best prior one in 

2022. In addition, ablation test results also prove that the proposed effective combination of training tricks, 

including OLS and CutMix, can clearly boost a CNN's performance for RSI-SC, with an increase in accuracy of 

1.0%. All the results reveal that a single lightweight CNN can well tackle the routine task of classifying RSI. 
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1. Introduction 

Remote sensing (RS) is an important technique for Earth observations, and the imaging picture is big 

data, containing spatial, spectral, and graphic information. Machine learning (ML) plays a central role in 

interpreting RSI to meet the domain-specific requirements for real-time and automation. Recently, with 

the rise of deep learning (DL), deep CNNs have dominated the recognition tasks of RSI. Among all the 

applications, SC is the foundation of all the others. As a hotspot, researchers have proposed different 

algorithms to improve the method’s performance, though most of them are suboptimal. 

At the beginning, CNNs were only used as fixed feature extractors without effective training on RSI 

datasets [1, 2]. Therefore, the method’s performance is poor. Then, with improved training on RSI, the 

fusion strategy consisting of deep and human-engineered features [3, 4], as well as the one by redesigning 

loss functions [5, 6], were proposed. These two roadmaps do show a clear advance on the fixed extractor 

because of the different training. Following that, researchers tend to employ more and more complicated 

and hardware-extensive technical pipelines to seek better performance [7], though the final benefit is very 

limited. As the vision transformer (VT) arose [8], more and more methods turned to employing this new 

architecture without considering the larger parameter size of VT. Based on the rich application scenarios, 

the larger volume of VT is acceptable for natural images. However, RS applications are basically focusing 

on the public's welfare, and more importantly, many tasks are using embedded systems, which have strict 
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hardware limitations. Hence, compared to the VT, a CNN with fewer parameters is optimal if its 

performance can surpass the VT. 

Generally, CNNs are more discriminative if their representation consists of more invariant features. 

Currently, CNN-based techniques for RSI-SC commonly employ pre-trained models on ImageNet-1K 

from natural images. The inherent difference in RSI requires a fine-tuning process for feature extraction. 

However, according to the author’s knowledge, all the previous methods went in the wrong direction. 

First, some methods ignore or inappropriately implement a fine-tuning process. Natural images have 

common invariant features with RSI, although an inherent difference also exists. But many previous 

methods employed improper training strategies, e.g., an oversized learning rate (LR). It has made the pre-

trained model totally discard valuable general features and overfit on the small RSI dataset. Second, some 

previous methods made modifications to a pre-trained model’s structure without retraining it on 

ImageNet-1K. It will face performance degradation or overfitting problems too. Third, currently, many 

training tricks developed on ImageNet-1K can greatly boost CNN’s performance. But most of the 

previous methods proposed for RSI-SC simply copied the training trick without rechecking its usability. 

Fourth, data augmentation (DA) does improve a model’s performance with finite training samples. But 

datasets processed by DA have a clear shift in data distribution compared to the original ones. In other 

words, a model will achieve suboptimal performance if the shifting problem is not well handled [9]. 

However, to the author’s best knowledge, the problem has been totally ignored in previous studies. More 

importantly, all the arbitrary training algorithms that have long existed in the literature have made us 

encounter a dilemma. Too much randomness is correlating with the findings of previous studies. It is hard 

to tell what is really meaningful without an appropriate training procedure. 

To solve this problem, at the beginning of this study, the author makes a deep analysis of all the 

previous methods and proves in mathematical theory that many of the complicated and hardware-

extensive methods are much more difficult to achieve better performance because of improper algorithm 

choices. In the subsequent sections, the study proposes a novel CNN-based method for RSI-SC. Different 

from previous ones, the proposed method, called the leading and simple EfficientNet (LS-EfficientNet), 

only has a single EfficientNet-B0 with a much smaller number of 5.3 million (M) parameters [10]. The 

method still employs transfer learning but handles the above problems well through a concise training 

algorithm. Extensive experiments on two benchmark datasets show that LS-EfficientNet outperforms all 

the previous methods remarkably. The author summarizes the study’s contributions as below: 

First, the author proposes a leading but efficient method for RSI-SC. It outperforms all the previous 

CNN-based methods before 2023 with the fewest parameters but excludes complicated architecture 

modifications. It can be easy to reproduce because the model is off-the-shelf. 

Second, the author rechecked the availability of two training tricks developed on ImageNet-1K and 

redesigned their usage to boost the CNN’s performance for RSI-SC. The rebuilt tricks can lift the model’s 

accuracy by approximately 1.0%, and the hyperparameter settings are open source. 

Third, the study reveals some fundamental mistakes in the CNN-based methods for RSI-SC. Taking 

all these findings together, we can see that all the previous CNN-based methods may have had 

suboptimal performance compared to their potential capabilities. 

2. Related Works 

With add-in attention modules, a CNN model can obtain better performance on ImageNet-1K. Based 

on this effective but hardware-cheap technique, researchers have proposed different methods by adding 

attention modules to pre-trained CNNs for RSI-SC. E.g., Tong et al. [11], Guo et al. [12], and Guo et al. [13] 

designed spatial or channel attention modules to boost a single pre-trained CNN's performance. Li et al. 

[14] employed attention maps to guide a pre-trained CNN to learn so-called discriminative 

representation. Alhichri et al. [15] also proposed another method by using a pre-trained EfficientNet-B3 

model with built-in attention modules. With the help of the attention mechanism, all these methods using 

a single CNN show obvious improvements over the ones using feature fusion or modified loss functions.  

Following that, more and more complicated and hardware-extensive methods emerge, though the 

advance is not obvious. E.g., Tang et al. [16] employed two CNNs with attention modules in a parallel 

pipeline and trained the models using a concatenate loss function. Sun et al. [17] designed a cascaded 
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method consisting of a CNN, a gated bidirectional network, and a classifying module. Zhang et al. [18] 

combined a CNN with a CapsNet in a series-connected method. Li et al. [19] proposed a multi-process 

method by first extracting deep features with a pre-trained CNN, then refining the extracted features with 

attention modules, and finally feeding the refined features to deep-gated recurrent units. Chen et al. [20] 

fused five so-called context modeling blocks with a DesenNet-121. Putting the limited improvements 

aside, we can find that all these methods consist of multiple models or complex modifications to the 

model’s architecture. It has an obvious larger hardware budget or is hard to reproduce due to a lack of 

open source.  

As another effective and well-known technique, an ensemble of CNNs is also tested for RSI-SC. E.g., 

Minetto et al. [21] proposed a CNN ensemble consisting of twelve independent CNNs. Zhao et al. [22] 

proposed a compact ensemble consisting of a CNN backbone with multiple attention module branches. 

These two methods both have different classifiers in the ensemble, but the individual members of the 

models or modules are improperly trained on RSI or not retrained on ImageNet-1K. In theory, an 

ensemble is more effective only when each individual classifier in the ensemble is accurate and diverse. 

Therefore, the two ensembles’ performances have shown a temporary lead over the single CNN-based 

method but are still suboptimal. 

Speaking from another viewpoint, the training algorithm is also crucial for CNN’s performance. E.g., 

He et al. [23] conclude that a set of training tricks, including label smoothing [24], Mixup [25], and so on, 

are very meaningful to the CNN’s performance. These tricks were employed in [11, 13, 20] and 

demonstrated to be effective for RSI-SC. However, in the previous methods, the trick’s usage was simply 

copied from ImageNet-1K without any modification. In fact, label smoothing is commonly used in CNN’s 

training as regularization, but it sets an equal value for all subclasses, with the difference in similarity 

ignored. Despite the smaller category similarity in natural images, an alternative online label smoothing 

(OLS) technique proposed by Zhang et al. [26] clearly improved CNN’s performance on ImageNet-1K by 

dynamically updating the subclass soft label. Similarly, as regularization in CNN’s training, Mixup 

overlays different image patches on a training sample unnaturally without moving the original 

overlapped part of the original image. Yun et al. [27] proposed an alternative algorithm called CutMix that 

shows improved training efficiency. Hence, taking the inherent difference between RSI and the advance 

shown by updated training tricks into account, it is reasonable and meaningful to make a thorough 

analysis of the usability of tricks before applying them to RSI-SC. 

In addition, CNN’s training process commonly uses DA to boost a model’s performance, but it also 

comes with a data distribution shift to the original datasets. Touvron et al. [9] demonstrate a fine-tuning or 

empirically correcting solution for ImageNet-1K. This compromised method is considerable for large-scale 

datasets but costly for RSI. Tan et al. [28] also propose a progressive learning method by employing more 

intensive regularization as the training goes deeper. Similarly, this optional plan is practicable if 

computing resources are sufficient. Previous studies for RSI-SC commonly employed DA in training; 

however, no work has mentioned handling the shifting problem. E.g., Zhang et al. [29] proposed an 

optimized training strategy by using multi-size images with triplet loss for RSI-SC, but with the shifting 

problem uncorrected, the method’s accuracy showed litter improvement. Therefore, based on the above 

problems, the authors propose a novel training algorithm named shifting corrected CNN (SC-CNN), and 

its uniqueness is presented as follows: 

First, the training procedure consists of a continuous pipeline but can be viewed as two steps based 

on the different DAs and regularizations in training. Second, both steps have similar routine geometric 

transformations but with different regularizations. Third, based on the inherent difference in RSI, the 

usage of training tricks in SC-CNN is rechecked first and then set for different hyperparameters compared 

to the ones developed on ImageNet-1K. Last, SC-CNN does not include the ideas proposed in [9, 28], and 

it is totally different from the other previous methods. 

3. Methodologies 

3.1. Mathematical Basis 

Let 𝑥𝑖  be an RS image and 𝑦𝑖 be its category label, then a RSI set 𝑆 can be described as the form: 

𝑆 =  { (𝑥1, 𝑦1), ⋯ , (𝑥𝑛 , 𝑦𝑛)}                                                                                                                  (1) 
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Using this notation, the relationship between 𝑥𝑖 and 𝑦𝑖 can be defined as follows: 

𝑦 = 𝑓(𝑥)                                                                                                                                                             (2) 

Since different CNN architectures can be used in the classification, we can treat each CNN model as a 

hypothesis of the true function 𝑓. In training, we employ the back-propagation algorithm to minimize the 

loss of a CNN prediction. In such cases, we can treat the training algorithm as a search program for the 

optimal solution to a certain hypothesis.  

In ML, we commonly use finite iteration steps to fit the training dataset. As the dataset gets much 

larger in DL, we employ a mini-batch of samples and take the batch’s mean value to optimize the training 

model. Therefore, unlike the shallow model used in ML, we always achieve many local optimal solutions 

for CNNs due to a lack of exhaustion.  

Currently, deep CNN architectures commonly consist of a cascade of convolution layers. In each 

layer, it has different convolution kernels, and the assigned values for these kernels are the main 

parameters of a CNN. Let us suppose that the value of the kernel parameter, in the simplest case, can only 

be set to 0 or 1. If a layer has a certain number of 𝑛 kernels, then the total number of all kernel states 𝑁 can 

be described as follows: 

𝑁 =  2𝑛                                                                                                                                                                 (3) 

Let us suppose that a CNN has a number of 𝑚 layers, and in the simplest case, all the layers have the 

same structure. Then, the 𝑁 in this CNN can be described as follows: 

𝑁 = 2𝑛 × 𝑚                                                                                                                                                           (4) 

In fact, at each iteration step, we can only change all the parameter states of a CNN for a certain 

permutation. Hence, we can see that the searching space for the training algorithm is linearly correlated 

with the 𝑁 in a CNN. As a CNN’s size grows, e.g., the number of layers gets larger, then, according to Eq. 

(4), we can see that the searching space for the training algorithm to get local optimal solutions will show 

an exponential growth. To tackle this problem, we generally have two choices. First, we choose a pre-

trained model, and then we will get a good starting point for searching. Second, we choose a larger LR, 

and then we will get a fast but salutatory searching process. It may make the search miss out on lots of 

optimal solutions. Recently, attention modules have been widely used for CNNs. Taking the famous 

channel attention, i.e., squeeze-and-excitation (SE) module [30], as an example, it works in this way.  

Let 𝑈𝑜 ∈  ℝ𝐶 × 𝐻 ×𝑊 be the original feature map of a certain layer, with a number of 𝐶 channels, a 

height of 𝐻, and a width of 𝑊. Let 𝑈𝑡 ∈  ℝ𝐶 × 𝐻 ×𝑊 be the transformed feature map by SE modules. Let 𝐹𝑠𝑞 

be the squeeze operation and 𝐹𝑒𝑥  be the excitation operation. Then, the SE working pipeline can be 

described as follows: 

𝑈𝑡  =  𝐹𝑒𝑥  (𝐹𝑠𝑞(𝑈𝑜)) ×  𝑈𝑜                                                                                                                              (5) 

In detail, the 𝐹𝑠𝑞 makes a squeeze on the 𝑈𝑜, and its output 𝑈′ ∈ ℝ𝐶 × 1 ×1 will have the same height 

and width as 1 × 1. Afterwards, the 𝐹𝑒𝑥 makes an excitation to the 𝑈′, and its output, 𝑈′′ ∈ ℝ𝐶 × 𝐻 ×𝑊, will 

have the same shape as 𝑈𝑜. In training, the 𝑈′′ will be a weighted feature map with larger and smaller 

values. We can see that, according to Eq. (5), the 𝑈0 will also be weighted by the multiplication. In the 

back-propagation process, a value of features close to zero means less important information. In other 

words, the SE module makes the input feature map partially meaningful for a CNN. Under this condition, 

according to Eq. (4), we can see that the searching space of a CNN with built-in attention modules is pre-

marked through pre-training. Therefore, with finite training steps, a CNN with attention modules can be 

more discriminative only if the dataset has significant features.  

Based on this explanation, however, if the attention modules have no pre-training and are initialized 

at random, we can see that the searching space will be the same as the CNN without attention. Hence, 

looking at previous studies in [11–15], we can see that the methods without pre-training on ImageNet-1K 

will probably be suboptimal. Taking previous studies [16–20] into account, according to Eq. (4), we can 

see that these methods commonly get a much larger searching space when multiple models are combined 

in series. More importantly, these methods commonly train the combined models with a single loss 

function simultaneously, resulting in a poor probability of getting optimal solutions. Hence, based on 

mathematical theory, we can find that these hardware-extensive strategies are unnecessary if the single 

model works well.    
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CNN’s classification ability relies on the various patterns in datasets. If we choose a model, then its 

capacity for patterns is fixed. Let the probability of a sample belonging to a subclass be 𝑃 ∈  [0,1], and then 

we can describe the model’s prediction P as follows: 

𝑃 = ∑ 𝑊𝑖 × 𝑃𝑎𝑡𝑖  𝑛
𝑖=1                                                                                                                                           (6) 

where 𝑃𝑎𝑡𝑖 denotes all the learned patterns contained in a model and 𝑊𝑖 ∈ [0,1] is the weight of a pattern 

to determine its contribution to a certain subclass. 

CNN recognizes different patterns through a combination of parameters. That is, the parameters of 

the convolution kernels control the extraction of features. Let us use the same 𝑃𝑎𝑡𝑖 as Eq. (6), and then we 

can describe the feature extraction as follows: 

𝑃𝑎𝑡𝑖 = ∑ 𝐹𝑐𝑜𝑛𝑣(𝑂𝑢𝑡𝑝𝑢𝑡𝑗−1)
𝑚
𝑗=1                                                                                                                           (7) 

where  𝑂𝑢𝑡𝑝𝑢𝑡𝑗  denotes the previous layer’s output, 𝐹𝑐𝑜𝑛𝑣  denotes the convolutional operation of the 

current layer, and 𝑗 corresponds to the number of layers.  

Let us use the same 𝑃, 𝐹𝑐𝑜𝑛𝑣, and 𝑂𝑢𝑡𝑝𝑢𝑡𝑗  in Eqs. (6) and (7), then we can describe the changing 

process of a model’s prediction during training as follows:  

𝑃 = ∑ ∑ 𝑊𝑖 × 𝐹𝑐𝑜𝑛𝑣(𝑂𝑢𝑡𝑝𝑢𝑡𝑗−1)
𝑚
𝑗=1

𝑛
𝑖=1                                                                                                             (8) 

As the training algorithm updates the kernel’s parameter, CNNs can extract more local invariant 

features from an RSI dataset and gradually replace the ones learned through pre-training on ImageNet-

1K. As the fitting process goes further, a CNN’s prediction is more accurate only if the local feature is 

more general and discriminative. However, if the training and testing datasets have very different 

distributions, overfitting occurs.  

Currently, CNN-based methods completely leverage the pre-trained weights of ImageNet-1K to 

conduct RSI-SC. The reason lies in two facts. First, the feature of large-scale datasets is more general. 

Second, the RS domain lacks large-scale datasets. Compared to the one million samples in ImageNet-1K, 

the two benchmark RSI datasets, including the Aerial Image dataset (AID) and the Northwestern 

Polytechnic University Remote Sensing Image Scene Classification 45 dataset (NWPU), only have 10,000 

and 31,500 samples, respectively [31]. Therefore, a good training algorithm should avoid overfitting on the 

smaller RSI datasets. In addition, some viewpoints believe that the feature from ImageNet-1K has a great 

domain gap with RSI. Nonetheless, we can easily evaluate the pre-trained model’s ability for RSI-SC with 

a fast test. The experiment just includes a layer-frozen operation for a CNN model of EfficientNet-B0, 

including all convolution layers frozen except the classifier. Then it trains the model on the RIS datasets at 

a fixed training ratio (TR) to find OA results. As shown in Figure 1, the evaluation results on AID and 

NWPU, including four different TRs, prove that the pre-trained model on ImageNet-1K has an acceptable 

accuracy of approximately 75% for RSI-SC. 

 
Figure 1. Layer-frozen experiments on AID and NWPU. 

Therefore, based on all the above explanations in mathematical theory, the author designed a concise 

and simple method consisting of a lightweight EfficientNet-B0 model with built-in attention modules and 

two modified training tricks as regularization in training to avoid overfitting problems.  
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3.2. Method’s Framework 

 
Figure 2. The proposed method's framework 

The proposed method’s framework is illustrated in Figure 2. The algorithm’s whole pipeline, as 

shown in Figure 2, consists of continuous procedures of 300 training epochs in total, but can be viewed as 

two successive steps according to the different DA and regularizations used in training. In detail, the 

training process starts with the red arrows corresponding to Step 1, called coarse training, and then, at 

epoch 61, the training procedures start with the green arrows corresponding to Step 2, named fine 

training. In Step 1, the pre-trained EfficientNet-B0 is coarsely trained on RSI datasets for 60 epochs, and 

successively, in Step 2, the model inherits the weights related to the best OA of Step 1 and keeps training 

on RSI datasets for another 240 epochs. The biggest difference between Step 1 and Step 2 is the training 

epochs, DA, and regularizations, which are presented in subsequent sections.  

3.3. DA Strategies 

The proposed method employs four kinds of routine transformations in a cascaded combination, and 

all the transformations are implemented via the PyTorch libraries. In Step 1, it consists of the color jitter, 

horizontal flip, vertical flip, and rotation in turn. In Step 2, it only consists of the horizontal flips, vertical 

flips, and rotation.  

3.4. Regularization 

The proposed method employs the modified OLS and modified CutMix as regularization, while the 

former exists throughout the whole pipeline but the latter is only in Step 2. 

3.4.1. OLS Settings 

The OLS quantifies the difference in similarity among subclasses by dynamically updating the soft 

label in training. The algorithm, as shown in [26], initializes the learnable soft labels at zero. Hence, the 

training loss still needs a traditional hard label to improve the speed of convergence. Let 𝐿𝑜𝑠𝑠 denote the 

final loss in training, then it can be described as follows:  

𝐿𝑜𝑠𝑠 = (1 − 𝛼) × 𝐿𝑜𝑠𝑠ℎ𝑎𝑟𝑑 + 𝛼 × 𝐿𝑜𝑠𝑠𝑠𝑜𝑓𝑡                                                                                                (9) 

where 𝛼 is the hyperparameter to balance the hard and soft losses. Zhang et al. [26] proposed an empirical 

value of 0.5 for 𝛼. Here, taking the larger similarity in categories of RSI and also based on extensive 

experiments, the author sets 𝛼 at an empirical value of 0.9.  

3.4.2. CutMix Settings 

The CutMix algorithm, as shown in [27], first randomly cuts an A-class image patch and then 

replaces an equal area of another B-class image with the cut patch. Let 𝐿𝑎𝑏𝑒𝑙𝑐𝑚 denote the cut-and-mixed 

image’s label, then it can be described as follows:  
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𝐿𝑎𝑏𝑒𝑙𝑐𝑚 = {
(1 − 𝛽) × 𝐿𝑎𝑏𝑒𝑙𝐴 + 𝛽 × 𝐿𝑎𝑏𝑒𝑙𝐵,          𝑖𝑓 𝑃𝑟𝑜𝑏 ≥ 𝛾
 𝛽 × 𝐿𝑎𝑏𝑒𝑙𝐵 ,                                                  𝑒𝑙𝑠𝑒            

                                                          (10) 

where 𝛽 is a hyperparameter equal to the ratio of the cropped area to the original one, and 𝛾 is another 

hyperparameter that controls the occurrence probability of a cut-and-mix operation. Yun et al., as shown 

in [27], proposed the beta distribution function to obtain the value of 𝛽 and an empirical value of 0.9 for 𝛾. 

In this paper, however, the author uses the same method to obtain β but sets the value of 𝛾 at 0.1. The 

reason can be simply explained as follows: 

 
Figure 3: The cut-and-mixed samples 

The cut-and-mixed samples, as shown in Figure 3, show a larger difference between RSI and 

ImageNet-1K. Looking at the top of Figure 3, the algorithm randomly cuts a bee-class patch and mixes it 

with an image of ants, and then, according to Eq. (10), the label of the cut-and-mixed image is 0.2 bees and 

0.8 ants, which may be fine. Speaking of the bottom of Figure 3, however, the confidence level is obviously 

lower if the label of the cut-and-mixed image is 0.2 of beach. Extensive experiments prove that the model 

will be suboptimal if we use a larger occurrence probability for the cut-and-mix operation. 

4. Experiments 

4.1. Model Architecture 

The proposed method employs the EfficientNet-B0 as the single model, which is the smallest of the 

EfficientNets with significantly fewer parameters (5.3 M). The architecture of EfficientNet-B0, as shown in 

[10], has built-in SE blocks. In this paper, the model’s default settings, including architecture, dropout, and 

stochastic depth, are unchanged. Given the pre-trained EfficientNet-B0, only its last classifier is reset 

according to the subclass number of the RSI datasets.  

4.2. Training Algorithm 

Algorithm 1. The procedures of the proposed SC-CNN 

 

Definition: training dataset 𝑆𝑡𝑟𝑎𝑖𝑛 = {(𝑥𝑖, 𝑦𝑖)} , testing dataset 𝑆𝑡𝑒𝑠𝑡 = {(𝑥𝑖, 𝑦𝑖)} , EfficientNet-B0 model 𝑓 , 

transformations in Step1 𝑇𝑟𝑠1, transformations in Step2 𝑇𝑟𝑠2, OLS algorithm 𝑓𝑂𝐿𝑆, CutMix transformation 𝑓𝑐𝑚 , 

cross-entropy error function 𝑓𝑐𝑒𝑒 , model’s prediction accuracy Acc, Acc dictionary Results,  

 Initializing: number of training samples 𝑁𝑡𝑟𝑎𝑖𝑛 , number of testing samples 𝑁𝑡𝑒𝑠𝑡   

 Step 1:  

1 For Epoch=1, 2, . . . , 60 do 

2    For iteration = 1 to (
𝑁𝑡𝑟𝑎𝑖𝑛

30
+ 1) do 

3 Sampling a batch of samples 𝐵 ∈ 𝑆𝑡𝑟𝑎𝑖𝑛, inputting to 𝑓 

4 Predicting probabilities �̂�𝑖 = 𝑓(𝑇𝑟𝑠1(𝑥𝑖)) 

5 Calculating loss 𝑙𝑜𝑠𝑠 = (�̂�𝑖 − 𝑓𝑂𝐿𝑆(𝑦𝑖))  

6 Updating parameters through back propagating  

7    End For 

8    𝐴𝑐𝑐 = (𝑓(𝑥𝑖) == 𝑦𝑖),  𝑥𝑖 , 𝑦𝑖 ∈ 𝑆𝑡𝑒𝑠𝑡  
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9 If Acc is the best then 

10 Save Acc in Results 

11 End For 

 Step 2:  

12 For Epoch=61, 62, . . . , 300 do 

13    For iteration = 1 to (
𝑁𝑡𝑟𝑎𝑖𝑛

30
+ 1) do 

14 Sampling a batch of samples 𝐵 ∈ 𝑆𝑡𝑟𝑎𝑖𝑛, inputting to f 

15 Predicting probabilities �̂�𝑖 = 𝑓 (𝑓𝑐𝑚(𝑇𝑟𝑠1(𝑥𝑖))) 

16 Calculating loss 𝑙𝑜𝑠𝑠 = (�̂�𝑖 − 𝑓𝑂𝐿𝑆(𝑓𝑐𝑚(𝑦𝑖)))  

17 Updating parameters through back propagating  

18    End For 

19    𝐴𝑐𝑐 = (𝑓(𝑥𝑖) == 𝑦𝑖),  𝑥𝑖 , 𝑦𝑖 ∈ 𝑆𝑡𝑒𝑠𝑡  

20 If Acc is the best then 

21 Save Acc in Results 

22 End For 

23 Return Results 

The SC-CNN algorithm, as shown in Algorithm 1, is a typical transfer learning strategy written in 

Python. Given the same resolution of 2562 for training and testing, the total number of training epochs in 

Step 1 is 60, while the one in Step 2 is 240. Note that the setting epochs are empiric values according to the 

evaluation result in Figure 1.  

The method employs cross-entropy as the object function. The error-back-propagation algorithm is 

the Adam-W [32], with a weight decay of 1E-06. In Steps 1 and 2, the initial learning rate is both 1E-04 

with cosine decay, and for cosine decay settings, the maximum number of iterations is 60 and 240, 

respectively. The training mini-batch is fixed at 30 for all datasets.  

4.3. Dataset and Division 

 
Figure 4: Typical samples in AID 

 
Figure 5: Typical samples in NWPU 
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This study employs two RSI datasets as benchmarks, including AID and NWPU, and the samples 

from each category are shown in Figures. 4 and 5. More details about these two datasets can be found in 

[31]. To get a fair comparison, the TRs are the same as in previous studies, including 20% and 50% for AID 

but 10% and 20% for NWPU. All the training and testing subsets are chosen at random. 

4.4. Evaluation Criteria 

This study employs the OA and confusion matrix [31] as criteria for performance evaluation. Let 𝑁𝑐 

be the total number of accurately classified samples and 𝑁𝑡 be the total number of tested samples, the OA 

can be described as follows: 

𝑂𝐴 =
𝑁𝑐

𝑁𝑡
                                                                                                                                                              (11) 

4.5. Hardware and Software Environments 

The experiments were performed on four personal computers equipped with a single RTX 2060 GPU. 

PyTorch 1.11.0 is installed on Windows 10. All the experimental results were averaged over five runs. 

5. Results 

5.1. Fitting Curves 

 
Figure 6: Training loss curves for AID and NWPU. 

 
Figure 7: Testing accuracy curves for AID and NWPU. 

The model’s fitting curves on AID and NWPU are shown in Figures. 6 and 7, in which the former is 

training loss and the latter is testing accuracy.  

The model’s loss curves, as shown in Figure 6, both show a fast decline in Step 1 but go oscillatory in 

Step 2 (marked with green rectangles). In Step 1, the label function is Eq. (9), but in Step 2, the function is 

Eq. (10). Therefore, the loss function changes as the number of training epochs surpasses 60. At the first 

several epochs, we can see that the loss curves show a fast increase from small values but then decrease 

clearly in the subsequent epochs (marked with green rectangles). The OLS algorithm, as mentioned 

before, initializes its soft labels for each category with zero and then dynamically updates the labels as 

training goes deeper. Hence, with these rapidly declining losses, we can see that the soft label generated 

by OLS is adaptive to different datasets.  

Looking at the model’s accuracy curves in Figure 7, we can see that the model shows rapid 

convergence rates since the first training epochs (marked with black rectangles), but its accuracy presents 
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a slight decrease at epoch 60 (marked with green rectangles); afterwards, the accuracy curves both climb 

higher in the following epochs. The cut-and-mixed samples, as explained in Figure 3, have two subclass 

labels, but the model’s prediction may not give larger probabilities for these two subclasses due to the 

similarity in categories of RSI. Therefore, we can still find notable yields in accuracy, though the loss 

curves have obviously rebounded. These results prove that, with CutMix as regularization in Step 2, the 

model has been forced to learn more discriminative features when the cut-and-mixed patch disturbs the 

image’s original label. In addition, we can also see that the pre-trained model on ImageNet-1k can achieve 

very fast fittings even during the first several epochs; meanwhile, the TRs with more samples can make 

the model gain a more rapid convergence rate. Hence, these results also reveal that a deep CNN model 

pre-trained on ImageNet-1K is easy to overfit on the RSI datasets, though many researchers pay more 

attention to the domain gap between natural images and RSI. 

Nonetheless, these results also prove the hypothesis in Eqs. (6) to (8). First, as training goes deeper, 

the CNN will learn more local features, but the model’s performance may be suboptimal due to the data 

distribution gap between training and testing sets. Second, overfitting is easy to emerge for these RSI 

datasets, though we used a smaller LR of 1E-04 and only trained for a short period of 60 epochs.  

5.2. OA Results 

Table 1. OA (%) comparison of different methods on AID 

Methods Technical Route 
Base model TR 

Architecture Params 20% 50 (%) 

Chaib et al. [2] 

Feature fusion 

Three VGGNet-16 415 M None 89.71 ±0.33 

Liu et al. [3] 
Three VGGNet-16 415 M None 96.37 ± 0.30 

Three GoogLeNet 39 M None 94.12 ± 0.32 

Liu et al. [4] Single GoogLeNet 13 M None 97.24 ± 0.32 

Cheng et al [5] Single VGGNet-16 138 M 90.82 ± 0.16 91.89 ± 0.22 

Bazi et al. [6] Loss modification 
Single EfficientNet-B0 5.3 M 93.69 ± 0.11 96.17 ± 0.16 

Single EfficientNet-B3 12.2 M 94.19 ± 0.15 96.56 ± 0.14 

Xie et al. [7] 
Architecture fine-

tune 
Single VGGNet-16 138 M 93.60 ± 0.12 96.66 ± 0.11 

 Guo et al. [11] 

Attention module 

add-in 

Partial VGGNet-16 57 M 95.02 ± 0.28 96.66 ± 0.19 

Tong et al. [12] Single DensnNet-121 8.3 M 95.73 ± 0.22 97.16 ± 0.26 

Alhichri et al. [14] Single EfficientNet-B3 12.2 M 94.45 ± 0.76 96.56 ± 0.12 

Tang et al. [17] Two VGGNet-16 276 M 93.33 ± 0.29 95.38 ± 0.29 

Li et al. [18] 
A ResNet-101 with 

GRUs 
54.1 M 96.19 ± 0.48 97.84 ± 0.39 

Sun et al. [16] 

Multiple models 

A VGGNet-16 with 

two self-designed 
modules 

12.2 M 92.20 ± 0.23 95.48 ± 0.12 

Zhang et al.[19] 
An InceptionV3 with 
CapsNets 

None 93.79 ± 0.13 96.32 ± 0.12 

Chen et al. [21] 

Attention module 

add-in; 
Multiple models 

A DensnNet-121 with 

multiple self-designed 
blocks 

None 95.96 ± 0.38 97.53 ± 0.32 

Zhao et al. [22] A CNN ensemble 
A DensnNet-121 with 
four self-designed 

branches 

23.9 M 96.39 ± 0.21 98.40 ± 0.23 

[this work] Single CNN EfficeintNet-B0 5.3 M 96.86 ± 0. 07 98.05 ± 0.06 

To verify the method’s effectiveness, the author compares 21 CNN-based methods in previous 

literature. The presented data includes the method’s OAs, the base model’s architectures, and parameter 

sizes. As a fair comparison, the TR is the same, if not specifically stated. Note that most of the previous 

methods modified the model’s architecture or employed multiple models. Hence, the real parameter sizes 

of these methods should be inconceivably larger. The comparable results for AID are shown in Table 1, 

while those for NWPU45 are shown in Table 2. Note that "None" means that no relevant results are 

presented in the literature.  

As shown in Table 1, compared to all the previous state-of-the-art CNN methods, the author’s 

method on AID easily outperforms with an outstanding lead on OA; meanwhile, it is undoubtedly more 

lightweight with the fewest parameters. Compared to all the popular strategies in detail, the author’s lead 
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over the best of feature fusion is 0.81% [4], though the compared method used a smaller testing ratio of 

20%; the lead over the best of attention module add-in [18] is 0.2% to 0.6% with a clearly decrease of 91.3% 

for parameters; the lead over the best of multiple models [21] is 0.5% to 0.9%, though the compared 

method's parameter size is not presented but undoubtedly be more huge. Besides, the author’s lead over 

the CNN ensemble [22] is 0.5% at a TR of 20% and -0.3% at a TR of 50%. Technically speaking, based on 

Eq. (11), we can find that the TR of 50% is smaller. Therefore, taking the wrongly labeled samples by 

humans into account, the author argues that the method’s performance evaluation is more persuasive 

with a larger number of testing samples. Nonetheless, these results show that, compared to the author’s 

lightweight one, all the previous methods do not achieve outstanding improvements on AID, even though 

more handcrafted features, more parameters, and multiple models are used. 

Table 2. OA (%) comparison of different methods on NWPU 

Methods Technical Route 
Base model TR 

Architecture Params 10% 20 (%) 

Liu et al. [3] 

Feature fusion 

Three VGGNet-16 415 M None 93.27 ± 0.17 

Three GoogLeNet 39 M None 88.43 ± 0.18 

Cheng et al. [5] 
Single VGGNet-16 138 M 89.22 ± 0.50 91.89 ± 0.22 

GoogLeNet 13 M 86.89 ± 0.10 90.49 ± 0.15 

Bazi et al. [6] 
Loss 

modification 

EfficeintNet-B0 5.3 M 89.96 ± 0.27 None 

EfficeintNet-B3 12.2 M 91.08 ± 0.14 None 

Xie et al. [7] 
Architecture 

fine-tune 
VGGNet-16 138 M 89.89 ± 0.16 92.55 ± 0.14 

Guo et al. [11] 

Attention 

module add-in 

Partial VGGNet-16 57 M 91.30± 0.18 93.45 ± 0.17 

Tong et al. [12] 
Single DensnNet-

121 
8.3 M 92.70± 0.32 94.58 ± 0.26 

Guo et al. [13] ResNet-101 46.8 M 89.40 91.15 

Li et al. [15] ResNet-18 11.7 M 92.17 ± 0.08 92.46 ± 0.09 

Tang et al. [17] Two VGGNet-16 276 M 91.09 ± 0.13 92.42 ± 0.16 

Li et al. [18] 
A ResNet-101 with 

GRUs 
54.1 M 92.84 ± 0.36 94.26 ± 0.27 

Zhang et al. [19] Multiple models 
An InceptionV3 

with CapsNets 
None 89.03 ± 0.21 92.6 ± 0.11 

Chen et al. [21] 

Attention 

module add-in; 

Multiple models 

A DensnNet-121 

with multiple self-

designed blocks 

None 93.39 ± 0.39 94.95 ± 0.36 

Minetto et al. [20] A CNN 

ensemble 

A CNN 

ensemble 

12 CNNs None None 94.51 ± 0.21 

Zhao et al. [22] 

A DensnNet-121 

with four self-

designed branches 

23.9 M 93.05 ± 0.18 95.36 ± 0.14 

[this work] Single CNN EfficeintNet-B0 5.3 M 94.27 ± 0.04 95.89 ± 0.08 

As shown in Table 2, the author’s method on NWPU still outperforms, with an outstanding lead on 

OA but undoubtedly the fewest parameters. Compared to all strategies in detail, the author’s lead over 

the best of feature fusion is 2.6% [3], though the compared method used a smaller testing ratio of 20%; the 

lead over the best of attention module add-in [12] is 1.3% to 1.6% with a clearly decrease of 36% for 

parameters; the lead over the best of multiple models [21] is 0.9% to 1.0%, although the compared 

method's parameter size is not mentioned but undoubtedly be more huge. In addition, the author’s lead 

over the best CNN ensemble [22] is 0.5% to 1.2%, and the improvement on a TR of 10% with more testing 

examples is more obvious. Based on Eq. (11) and putting the similar comparison results together, we can 

see that the author’s method is more advanced when the testing sets become larger.  

Therefore, as a short conclusion, based on all the above OA results on the two benchmark RSI 

datasets, we can find that the author’s method presents a consistent advance compared to the other 

previous ones; these results also prove that the hypothesis and explanation from mathematical theory, as 

presented in Section 3.1, are reasonable and persuasive. That is, it is unnecessary to improve the method’s 

computational complexity for transfer learning tasks like RSI-SC. 
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5.3. Confusion Matrixes 

 
Figure 8: Confusion matrix of AID at a TR of 20%. 
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Figure 9: Confusion matrix of NWPU at a TR of 20%. 
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The confusion matrix for AID at a 20% TR is shown in Figure 8, while that for NWPU at a 20% TR is 

shown in Figure 9. As mentioned before, the author’s method has proven to be more advanced with more 

testing samples. Hence, the matrix of AID at a TR of 20% is shown here in special.   

In short, as shown in Figure 8, the model achieved an OA of 97.05% on AID with a TR of 20%, but the 

confusion results are different among the 30 categories. In detail, the most confusing categories are 

marked with red rectangles, including center, industry area, park, resort, school, and square, with OA less 

than 95%; the secondary confusing ones marked with green rectangles have OA slightly less than 97%, 

including church and commercial area; the other categories’ OA are all above 97%. Compared to previous 

studies [7, 12, 17, 19, 21, 22], we can see that the confusion is consistent, though the author’s OA is higher. 

Giving a quick look to the prior leading methods [21, 22], we can find that these methods have the most 

confusing subclasses similar to this work, but in particular, compared to the OA results of confusing 

categories in this work, the OAs in [21] are poorer but those in [22] are higher. In other words, the author’s 

method is more discriminative for all subclasses in AID except the most confusing ones, including park, 

resort, and square. As mentioned before, a classifier ensemble has the advantage of diversity, but its final 

performance still depends on whether its individual classifiers are accurate enough. Therefore, the CNN 

ensemble method in [22] is still suboptimal due to its secondary individual classifiers, though it performs 

better in the three categories.   

In summary, as shown in Figure 9, the model shows an OA of 96.04% on NWPU with a TR of 20%, 

and still, the confusion results are different among 45 categories. In Figure 9, the most confusing 

categories marked with red rectangles include church, dense residential, industry area, island, palace, 

railway, and railway station, with OA less than 94%; the secondary confusing ones are marked with green 

rectangles with OA less than 96%, including commercial area, desert, freeway, lake, meadow, medium 

residential, mountain, rectangular farmland, river, runway, sparse residential, terrace, and wetland; the 

other categories’ OA are all above 96%. Looking at the comparable results in [7, 12, 17, 19, 22], we can see 

that the confusion is still consistent, though the author’s OA is higher. Giving the same attention to the 

priors-leading method in [22], we can find that its most confusing subclasses are still different from this 

work. That is, compared to the ensemble in [22], the author’s method is more discriminative for all 

subclasses on NWPU except the most confusing ones. However, if compared to the method in [7] with a 

lower OA of 92.55% for the whole dataset, the confusion results in [22] still show clear OA gaps of 

approximately 3% to 7% in some categories, including forest, roundabout, tennis court, and so on. 

Therefore, putting the results on two datasets together, we can see that the poor individual classifiers in 

the CNN ensemble [22] have made the method suboptimal, even though it has diverse individual 

classifiers. 

In conclusion, taking all the confusion results shown in Figures. 8 and 9 into account, we can see that 

the author’s method surpasses all the other previous methods clearly, with the obvious advantage of 

cheaper hardware overheads, and as the testing samples increase, the author’s method becomes more 

superior; meanwhile, the most confusing categories are human settlements. Hence, based on the results of 

the OA and confusion matrixes, we can see that the pre-trained CNN on ImageNet-1K can achieve 

outstanding performance, though the RSI has clear domain gaps with natural ones.  

5.4. Visualization with Analysis 

5.4.1. Class Activation Mapping 

To get a better understanding of CutMix, the author employs activation maps by the GradCAM 

algorithm [33] to analyze how the CNN’s attention is changed for the cut-and-mixed samples, and the 

maps are shown in Figure 10, in which the A denotes the original scene-mixed images, the B represents 

activation maps for the beach subclass, and the C represents activation maps for the resort subclass. Note 

that the brighter areas indicate more discriminative information. 

As shown in Figure 10a, the activated area of the EfficientNet-B0 model trained without CutMix is 

larger and more scattered, which indicates that the model’s prediction corresponds to more principal 

features. On the contrary, as shown in Figure 10b, the activated area of the same model trained with 

CutMix is smaller and more targeted, and more specifically, as shown in the C part of Figure 10b, the 

activated area for resort is mainly focused on a swimming pool, which is the most general ground object 
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of the resort category. Therefore, based on these activation mapping results, we can see that the CutMix 

has guided the CNN to learn more discriminative features in RSI. 

 
(a): Training without CutMix 

 
(b): Training with CutMix 

Figure 10: Activation maps of scene-mixed images derived from Grad-CAM. 

5.4.2. Stochastic Neighbor Embedding 

 
Figure 11: t-SNE visualization for AID and NWPU 

To get a further verification of the method’s effectiveness, this paper employed a technique [34], 

named t-Distributed Stochastic Neighbor Embedding (t-SNE), to intuitively show the similarity of 

classified samples, and the visualization results, as shown in Figure 11, have the same category number 

for AID and NWPU presented in Figures. 4 and 5.  

The obviously overlapped category pairs of AID (marked with red rectangles), as shown in the left of 

Figure 11, include the first pair of playground and stadium, the second pair of center and square, and the 

third pair of parking and resort. Looking at the right of Figure 11, the clearly overlapped category of 

NWPU (also marked with red rectangles) contains three pairs, including the first one of desert and 

mountain, the second one of lake and wetland, and the last one of church and palace. Putting the results 

for AID and NWPU together, we can see that most of the categories are clearly separated from each other, 

and the overlapped results are related to the confusion information shown in Figures. 8 and 9. Checking 

all the previous methods with comparable results [15, 22], we can see that the t-SNE visualization results 

in this paper are more dispersed both for AID and NWPU, indicating a better classifying result.  

5.5. Ablation Study 

To validate the importance of regularization in training, in the ablation experiments, the whole 

pipeline of the SC-CNN algorithm is used as the baseline with the OLS and CutMix inactive, and the OA 

results, as shown in Table 3, include a 20% TR for AID and a 10% TR for NWPU.  

The baseline strategy, as shown in row 1 of Table 3, can help the model prevail over all the previous 

methods in Table 1, with a 0.1% to 6.9% OA increase on AID and NWPU. These results reveal that there 

has been consistently suboptimal performance in previous studies. The author argues that an 
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inappropriate training strategy may be the first reason. Looking at the second and third rows of Table 3, 

we can see that the OLS and CutMix both boost the EfficientNet-B0 performance by a 0.6% OA increase 

separately. Most importantly, as shown in the last row of Table 3, the combination of OLS and CutMix can 

boost the model’s accuracy by approximately 1.0%. Therefore, all these results prove that regularization is 

important for RSI-SC, though it has rarely been mentioned in previous studies.  

Table 3. OA (%) results of ablation studies for regularizations 

DA and regularization AID  

TR-20% 

NWPU  

TR-10% Baseline OLS CutMix 

   95.84 ± 0.20 93.36 ± 0.09 

   96.44 ± 0.11 93.76 ± 0.07 

   96.39 ± 0.12 93.48 ± 0.07 

   96.86 ± 0. 07 94.27 ± 0.04 

Table 4. OA (%) results of ablation studies for DA and regularizations 
DA and regularization AID  

TR-20% 

NWPU  

TR-10% Baseline DA1-2 DA2-2 CutMix-1 CutMix-2 

     96.68 ± 0.11 94.13± 0.05 

     96.40 ± 0.10 93.96 ± 0.13 

     96.73 ± 0.01 94.17 ± 0.12 

     96.81 ± 0.10 94.26 ± 0.10 

     96.86 ± 0. 07 94.27 ± 0.04 

To verify the effectiveness of the combination of DAs and regularizations, this work also conducted 

similar ablation experiments, and the results are shown in Table 4. In detail, as described in Section 3.3, 

the "DA1" denotes the DA used in Step 1, consisting of the color jitter, horizontal flip, vertical flip, and 

rotation, and the "DA2" denotes the DA used in Step 2, equal to DA1 but without the color jitter. In 

addition, the suffixes "-1" or "-2" mean the DAs or regularizations used in Steps 1 or 2, and the baseline is 

the same as defined in Table 3. 

Given the results in rows 1, 2, and 3 of Table 4, we can see that the model’s performance degrades 

both on AID and NWPU, revealing that the training sets transformed by stronger DA have a larger data 

distribution shift, giving out a suboptimal solution. In particular, the performance degradation is more 

evident on AID when a stronger DA is active in Step 2 with CutMix inactive, revealing that the impact of 

intensive DAs on a CNN’s performance is greater when the training set is smaller. Comparing the last two 

rows in Table 4, however, we can see that the model’s performance still degrades lightly when CutMix is 

active in Step 1, meaning that a combination of stronger DAs and regularizations will also result in a 

suboptimal solution, though more training samples may alleviate the effect. Anyhow, based on the 

consistent ablation results in Tables 3 and 4, it proves that the proposed combination of DAs and 

regularizations is effective. 

6. Discussions 

 
Figure 12. Fitting curves for AID and NWPU45D with different LRs 
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To verify the impact of a larger LR on the CNN’s accuracy, this study performs a simple but 

convincing test. It consists of five different LRs, including 0.0001, 0.0005, 0.001, 0.005, and 0.01, with the 

same baseline training strategy described in Table 3. The testing results are shown in Figure 11, where the 

baseline corresponds to a LR of 0.0001.  

As shown in Figure 12, it is clear that the model’s accuracy declines sharply as the LR grows. We can 

see that the accuracy drops fast as the LR exceeds 0.001 both for AID and NWPU. The result reveals that 

the CNN is easier to overfit on a small RSI training set with a larger LR. However, to the author’s best 

knowledge, previous studies in Tables 1 and 2 have not noticed this problem, and some of them have 

made mistakes. 

To verify the impact of adding modules to a pre-trained CNN without re-training on ImageNet-1K 

again, this study also conducted another simple but persuasive experiment. The test employs a pre-

trained EfficientNet-B0 model with all its built-in SE-block parameters re-initialized at random, and then 

uses the same algorithm presented in Algorithm 1 to train the model both on AID and NWPU. The 

experiment results, as shown in Table 5, can be directly compared to the related ones in Tables 1 and 2. 

Giving a quick look at Table 5, we can see that the same pre-trained CNN will meet significant 

performance degradation, with OA decreases of 0.15% to 0.24% on AID and those of 0.43% to 0.44% on 

NWPU, if its pre-trained weights of the SE attention blocks are re-initialized by random; meanwhile, the 

degradation is more obvious on the larger dataset. These results prove the viewpoints given in Eqs. (5-8), 

i.e., that pre-training matters a lot if the model’s architecture is modified.  

Table 5. OA (%) results of the attention module pre-training test 

Methods Architecture 
OA 

AID-TR20% AID-TR50% NWPU-TR10% NWPU-TR20% 

SE blocks re-initialized 
EfficientNet-B0 

96.71 ± 0.03 97.81 ± 0.05 93.84 ± 0.16 95.45 ± 0.07 

Original pre-trained weights 96.86 ± 0. 07 98.05 ± 0.06 94.27 ± 0.04 95.89 ± 0.08 

Taking the CNN ensemble [22] into account, by adding multiple branches to a pre-trained CNN with 

self-designed blocks plus built-in attention modules, the authors proposed an ingenious idea to condense 

the method’s complexity and lift the individual classifiers’ diversity; however, as proven in Table 5, this 

architecture modification requires a pre-training on ImageNet-1K again, but it is omitted in fact. 

Therefore, compared to the author’s one, we can see that the method’s performance in [22] struggles on 

the larger NWPU, just like the result in Table 5 behaves.  

In general, this work proposed a simple but leading method for classifying RSI by using a 

lightweight EfficientNet-B0 model. Given the fewer parameters than previous studies, the LS-EfficientNet 

can perform better in those hardware-restricted fields for classifying RSI, e.g., embedded systems, 

onboard devices, field tasks, and so on. Given the simple pipeline consisting of an accessible pre-trained 

CNN model and open source training algorithms, the LS-EfficientNet is also easier to reproduce for those 

routine tasks for classifying RSI. Based on the following points, however, the LS-EfficientNet still has 

disadvantages that need improvement. First, putting hardware and time costs aside, the LS-EfficientNet 

may not be the most cutting-edge method to date. Second, given the experience in this work, a CNN 

ensemble may have a much better performance than the LS-EfficientNet while still maintaining simplicity 

and efficiency. Third, the LS-EfficientNet using a pre-trained CNN on ImageNet-1K may achieve 

suboptimal performance on RSI sets due to the feature's domain gap and other neglected problems. 

Anyhow, the author will try to propose more efficient methods for RSI-SC in the future. 

7. Conclusions 

In this paper, the author proposes a CNN-based method that aims to provide a leading but efficient 

solution for RSI-SC by using a lightweight EfficientNet-B0. For this purpose, the paper first investigates 

several popular strategies in mathematical theory and gives out a qualitative conclusion on these 

methods’ theoretical performance in detail. Based on these findings, the work proposes a novel method 

using a simple pipeline consisting of a single CNN and its concise training algorithm. Far different from 

previous studies, the proposed method mainly focuses on tackling the problems, including overfitting, 

data distribution shift by DA, improper use of training tricks, and other incorrect operations on a pre-

trained CNN, which were commonly neglected in previous studies. Compared to the complex and 
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hardware-extensive ones in previous studies, the proposed method is easy to reproduce due to the fact 

that all the models, training tricks, and hyperparameter settings are open-sourced. Extensive experiments 

on two benchmark datasets, including AID and NWPU, show that the proposed method can easily 

surpass all the previous state-of-the-art ones, with an outstanding accuracy lead of 0.5% to 1.2% if 

compared to the best prior one in 2022. It should be emphasized that the proposed method has the fewest 

parameters, which is only 22% of the best competitor in 2022. In addition, ablation test results also prove 

that the proposed effective combination of training tricks, including OLS and CutMix, can clearly boost a 

CNN's performance for RSI-SC, with an increase in accuracy of 1.0%.  

Taking all the findings in the paper together, the author argues that it is unwise to improve the 

method’s complexity and hardware costs for transfer-leaning tasks like RSI-SC; meanwhile, the consistent 

suboptimal results in previous studies proven in this paper also make it hard to tell what findings are 

truly meaningful due to the methods’ very close performance. 
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