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Abstract: This article tackles the problem of finding similarity between web time-sensitive news articles, which 

can be a challenge. This challenge was approached with a novel methodology that uses supervised learning 

algorithms with carefully selected features (Semantic, Lexical and Temporal features (content and contextual 

features)). The proposed approach considers not only the textual content, which is a well-studied approach that 

may yield misleading results, but also the context, community engagement, and community-deduced importance 

of that news article. This paper details the major procedures of title pair pre-processing, analysis of lexical units, 

feature engineering, and similarity measures. Thousands of web articles are being published every second, and 

therefore, it is essential to determine the similarity of these articles efficiently without wasting time on 

unnecessary text processing of the bodies. Hence, the proposed approach focuses on short contents (titles) and 

context. The conducted experiment showed high precision and accuracy on a Really Simple Syndication (RSS) 

dataset of 8000 Arabic news article pairs collected automatically from 10 different news sources. The proposed 

approach achieved an accuracy of 0.81. Contextual features increased the accuracy and the precision. The proposed 

algorithm achieved a 0.89 correlation with the evaluations of two human judges based on Pearson’s Correlation 

Coefficient. The results outperform the state-of-the-art systems on Arabic news articles. 
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1. Introduction 

Constantly, time-sensitive news updates are being published on the web [1]. When using intelligent 

web feeds (news feeds), it is desirable to link new updates (time-sensitive news articles) with other 

updates. This will help personalize the web services [2] and improve the relevance and quality of the 

news feed. Besides, It is an essential necessity for many important modern applications to find a similarity 

between textual online components (including online news articles) such as text searching [3], news 

aggregators [4-5], content platforms and news recommendation systems [4-6]. That was the focus of many 

research projects, where similarity was tackled as a text distance or classification, giving more importance 

to the textual content of articles or web documents in general [7-8]. Detecting similarity between various 

linguistic utterances is a crucial computational linguistic task [9] whether the similarity is measured 

between characters, lexical units, expressions, phrases, paragraphs or documents. Many research projects 

show a significant improvement in performance when accurate similarity detection is used, such as Search 

Engines and information retrieval (IR) [10], recommendation systems [11-12], machine translation (MT) 

[13], Chatbots [14], text clustering and classification [15], sentiment analysis and opinion mining [16-17], 

etc.  

Text similarity was studied by researchers from various points of view. Some methods suggest that 

two textual items (utterances) are similar if they have a common subsequence of characters (string) and 

words. For example, algorithms such as Jaccard similarity [11] and cosine similarity are very effective and 
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efficient in measuring similarity between utterances based on the common strings between them. On the 

other hand, semantic similarity targets discovering logical similarities between textual items even if the 

lexical similarity does not exist [18]. 

In this paper, the focus is on the similarity between Arabic web news articles, which is not only a text 

similarity task. Web articles have contextual aspects that can be used. Besides, relying on text only can be 

misleading. For example, two authors may write about the same news story but use distant textual 

elements, so the two articles will be considered as dissimilar. Meanwhile, a story of a Christmas event in 

2016 (or some other periodical events) might be textually similar to a Christmas story in 2018, but in 

reality, there is no point in grouping them together. In this article, content similarity and contextual 

similarity of web news articles were considered. Content similarity is a measure based on the textual 

content, whether it is lexical or semantic. Content similarity was applied on titles and keywords rather 

than the full article. Context similarity relies on metadata and the impact of the article, particularly the 

publication date, importance of the article, and social media impact.  

Measuring similarity between Arabic utterances can be a challenging task. Many researchers consider 

Arabic as a pi-language (poorly informatized language) [19-20] and maintaining high quality lexical and 

semantic data from its corpus is difficult [21]. Similarity experiments in resourceful languages achieve 

better results in general [22]. Temporal and contextual features will be beneficial, especially without the 

needed lexical and semantic resources. In this paper, the focus is on seeking a hybrid approach that 

utilizes supervised learning on Semantic, Lexical and Temporal features. The idea is to use social media 

interaction and engagement with a web article as a feature that can determine its similarity to other 

articles. 

This paper is organized as follows: the next section discusses related work. After that, in section 

three, the main approach to article similarity detection is introduced. Section four presents the approach 

to data acquisition and preprocessing. And then section five shows the experiment and its results, while 

section six evaluates and assesses the proposed method. And finally, some conclusions, future work, and 

possible applications are shown. 

2. Related work 

Relating news articles were studied as a text classification problem, a document clustering problem, 

or a content similarity problem. Time-sensitive data may introduce new (unseen) topics, classes, 

community interest, and terminology (lexical units); therefore, this will be a challenge for classifications 

and clustering. The content similarity of news articles relies on content overlapping. Many IR approaches 

investigate textual and multimedia overlapping. A promising line of research focuses on the layout, 

visualization, and structure of articles to deduce similarity [23], but this requires huge computational 

capabilities and resources. It is desired to find similarity without heavy processing of the article’s content 

and structure. Thus, the proposed approach relies on finding similarity based on RSS feeds that do not 

show the final visualization and the article’s content. Therefore, it is considering short metadata such as 

titles, publication dates, and times. 

Many researchers approach the problem of article similarity as a text similarity problem. Textual 

similarity [24] depends on the string representation of phrases. And consequently, two documents are 

similar if they have similar strings.  

Some approaches deal with the text as a sequence of characters (String), such as Longest Common 

Subsequence [25], Jaro [26], Damerau - Levenshtein [27] and Needleman – Wunsch [28]. And other 

approaches consider the text as words governed by syntaxes such as Block Distance, Cosine similarity 

[29], Dice’s coefficient [30], Euclidean distance (L2), and Jaccard similarity [31]. Text similarity can be 

effective and easy to implement, but word ambiguity is challenging for this approach. On the other hand, 

semantic similarity may resolve ambiguity [32], but requires significant resources. Semantic similarity can 

be used to solve word ambiguity [32]. It tries to correlate different lexical units (and sometimes other 

utterances) based on their logical (meaning) similarity rather than their character or lexical similarity. It is 

very common for semantic similarity algorithms to rely on a large textual corpus to deduce additional 

information about the words and phrases. For instance, finding similar words based on their frequent 

collocation. The following algorithms and methods are considered as text corpus semantic similarity 



AETiC 2023, Vol. 7, No. 1 77 

www.aetic.theiaer.org 

algorithms: Hyperspace Analogue to Language (HAL) [33], Latent Semantic Analysis (LSA) [34], 

Generalized Latent Semantic Analysis (GLSA) [35], Explicit Semantic Analysis (ESA) [36], Pointwise 

Mutual Information - Information Retrieval (PMI-IR) [37], Second-order co-occurrence point wise mutual 

information (SCO-PMI) [38], Normalized Google Distance (NGD) [39] and Extracting DIStributionally 

similar words using COoccurrences (DISCO) [40]. For these algorithms to work accurately and effectively, 

a vast and clean textual corpus must be used, and they deduce similarity based on textual collocations. 

Normalized Google Distance (NGD) can be considered as an exception to that last condition, because it 

utilizes the huge capabilities of Google’s indexed data to our advantage. Therefore, it can deduce 

similarity without building a local data repository. 

Usually, a semantic network such as Wordnet [41] can be attached to the semantic similarity engine 

to increase its accuracy and coverage. In fact, many researchers are using Wordnet comprehensively to 

measure the semantic distances between words and phrases, which can be considered an autonomous 

semantic similarity measure. This can be useful for resourceful languages such as English (English 

Wordnet has 155 327 words organized in 175 979 synsets). Still, it is not as effective for The Arabic 

language where the synsets count is significantly lower than the number of English synsets. 

Some researchers consider other aspects, such as URL linking structures, visual location (location on 

a web page), metadata and users. But those methods are media and applications dependent. 

Text and semantic similarity can be used for the article’s title similarity, but they are not enough. 

Similar articles may describe the exact same event using completely different texts.  

The proposed method in this paper represents a hybrid approach that utilizes content (string) 

similarity of the titles and contextual similarity, which utilizes the engagement with the community and 

the importance of the content. 

3. Article Comparison 

3.1. Motivation and Research Objectives 

Finding similar Arabic news articles is very important for news aggregators, search engines, 

recommendation systems, and many other web applications. Most current approaches invest heavily in 

lexical and semantic similarities between the news textual bodies. These approaches have three issues: 1) 

they ignore the contextual elements of a news article, 2) they require heavy processing of entire textual 

bodies. 3) Textual similarity (lexical or semantic) between news bodies might not reflect relevance or 

interest by the users. 

This article introduces an approach that tries to improve similarity detection between Arabic news 

articles by employing a novel approach that provides powerful lexical and semantic embedding for every 

title and considers the metadata of news articles simultaneously. 

This paper introduces a novel method to determine the similarity between two Arabic web articles. 

The proposed algorithm focuses on Content Similarity (lexical and semantic similarity) and Contextual 

Similarity. This section details the main approach, starting with the main algorithm, pre-processing, and 

feature engineering.  

The proposed algorithm relies on Really Simple Syndication (RSS) data. This is a common data 

format for sharing new web articles. RSS data rarely contains an entire article body, but it contains 

metadata, titles, and links to the web article, etc. 

The following subsections detail the extraction of content features and context features. 

3.2. Content Similarity 

This subsection describes the extraction process for content similarity features. Note that not all RSS 

feeds have a summary or full text. Therefore, only titles are considered in the string-based similarity. 

To compare between two articles, a list of lexical and semantic features for the titles of every couple is 

generated. Next subsection will introduce the lexical similarity features followed by the semantic 

similarity. 



AETiC 2023, Vol. 7, No. 1 78 

www.aetic.theiaer.org 

3.2.1. String-based similarity (lexical similarity) 

Assume that we have two articles, A1 and A2. We want to find the textual similarity between those 

two articles through their titles (T1 and T2). We consider several forms of each title, as follows: 
𝑇1 = {𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙1, 𝑛𝑜𝑟𝑚1, 𝑏𝑜𝑤1, 𝑛𝑒𝑟1, 𝑝𝑜𝑠1}                 (1) 

𝑇2 = {𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙2, 𝑛𝑜𝑟𝑚2, 𝑏𝑜𝑤2, 𝑛𝑒𝑟2, 𝑝𝑜𝑠2}                 (2) 

Where original1 and original1 are the original text of the titles, norm1 and norm2 are the normalized 

forms of the titles (text after standard normalization), bow1 and bow2 are the bag of words of the 

normalized titles, ner1 and ner2 are the named entity in the original titles, pos1 and pos2 are the part of 

speech of the original titles. The reason for creating these forms is to find distances between each 

corresponding form. It should be noted that for the NLP pipeline in creating these forms, including 

named entity recognition (NER) and part of speech (POS) analysis, the Farasa Arabic Java Library [42] 

was used. 

Accordingly, various similarities are measured between the above couples. Forming the similarity 

features as follows: 

1. Similarity between the normalized T1 and T2 according to the Longest Common Subsequence 

algorithm (effective in measuring common lexical units in the titles). LCS can be obtained using the 

following equation: 

𝐿𝐶𝑆 (𝑖, 𝑗) = {

∅                                                                        𝑖𝑓 𝑖 = 0 𝑜𝑟 𝑗 = 0

𝐿𝐶𝑆(𝑖 − 1, 𝑗 − 1) + 1                          𝑖𝑓 𝑛𝑜𝑟𝑚1𝑖 = 𝑛𝑜𝑟𝑚2𝑗

𝑚𝑎𝑥{ 𝐿𝐶𝑆(𝑖, 𝑗 − 1), 𝐿𝐶𝑆 (𝑖 − 1, 𝑗)      𝑖𝑓 𝑛𝑜𝑟𝑚1𝑖 ≠ 𝑛𝑜𝑟𝑚2𝑗
                              (3) 

If n is the size of norm1 and m is the size of norm2, then LCS (n, m) is the number of the longest 

common subsequence between norm1 and norm2. 

2. Distance between the normalized T1 and T2 according to Cosine similarity. As obtained by the 

below equation. 

𝐶𝑜𝑠𝑖𝑛𝑒 (𝑛𝑜𝑟𝑚1, 𝑛𝑜𝑟𝑚2) =  
 
𝑛𝑜𝑟𝑚1 .
→      

𝑛𝑜𝑟𝑚2
→      

‖
𝑛𝑜𝑟𝑚1
→      ‖ ‖

𝑛𝑜𝑟𝑚2
→      ‖

=
∑ 𝑛𝑜𝑟𝑚1𝑖𝑛𝑜𝑟𝑚2𝑖 
𝑛
1

√∑ 𝑛𝑜𝑟𝑚1𝑖
2𝑛

1 √∑ 𝑛𝑜𝑟𝑚2𝑖
2𝑛

1

                               (4) 

Where 𝑛𝑜𝑚𝑟1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . 𝑛𝑜𝑟𝑚 2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  is the dot product if the two vectors and n is the length of the larger vector 

(larger title, in terms of the number of words). 

3. Distance between the normalized T1 and T2 according to the Jaccard similarity algorithm. As 

obtained by the below equation. 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (𝑛𝑜𝑟𝑚1, 𝑛𝑜𝑟𝑚2) =
|𝑛𝑜𝑚𝑟1 ∩ 𝑛𝑜𝑟𝑚2|

|𝑛𝑜𝑚𝑟1∪ 𝑛𝑜𝑚𝑟2|
                 (5) 

4. Distance between the normalized T1 and T2 according to their Euclidean distance. As obtained by 

the below equation: 

𝐸𝑢𝑐𝑙 (𝑛𝑜𝑟𝑚1, 𝑛𝑜𝑟𝑚2) = √∑ (𝑛𝑜𝑚𝑟1𝑖 − 𝑛𝑜𝑚𝑟2𝑖)
2𝑛

𝑖=1                    (6) 

5. Distance between the named entity of T1 and T2 according to Jaccard similarity. As obtained by 

the equation below. 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (𝑛𝑒𝑟1, 𝑛𝑒𝑟2) =
|𝑛𝑒𝑟1 ∩ 𝑛𝑒𝑟2|

|𝑛𝑒𝑟1∪𝑛𝑒𝑟2|
                 (7) 

6. Distance between the named entity of T1 and T2 according to Cosine similarity. As obtained by the 

equation below. 

𝐶𝑜𝑠𝑖𝑛𝑒 (𝑛𝑒𝑟1, 𝑛𝑒𝑟2) =  
 
𝑛𝑒𝑟1 .
→    

𝑛𝑒𝑟2
→   

‖
𝑛𝑒𝑟1
→   ‖ ‖

𝑛𝑒𝑟2
→   ‖

=
∑ 𝑛𝑒𝑟1𝑖𝑛𝑒𝑟2𝑖 
𝑛
1

√∑ 𝑛𝑒𝑟1𝑖
2𝑛

1 √∑ 𝑛𝑒𝑟2𝑖
2𝑛

1

                                (8) 

7. Distance between the part of speech output for T1 and T2 according to Jaccard similarity. 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (𝑝𝑜𝑠1, 𝑝𝑜𝑠2) =
|𝑝𝑜𝑠1 ∩ 𝑝𝑜𝑠2|

|𝑝𝑜𝑠1∪𝑝𝑜𝑠2|
                 (9) 

8. Distance between the part of speech output for T1 and T2 according to Cosine similarity. As 

obtained by the equation below. 

𝐶𝑜𝑠𝑖𝑛𝑒 (𝑝𝑜𝑠1, 𝑝𝑜𝑠2) =  
 
𝑝𝑜𝑠1 .
→    

𝑝𝑜𝑠2
→   

‖
𝑝𝑜𝑠1
→   ‖ ‖

𝑝𝑜𝑠2
→   ‖

=
∑ 𝑝𝑜𝑠1𝑖𝑝𝑜𝑠2𝑖 
𝑛
1

√∑ 𝑝𝑜𝑠1𝑖
2𝑛

1 √∑ 𝑝𝑜𝑠2𝑖
2𝑛

1

                                             (10) 

These features are normalized to represent the textual and lexical similarity (or distance) between 

couples of articles. 
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3.2.2. Semantic Similarity (Normalized Google Distance) 

Many options can be used for semantic similarity. It was reported that Normalized Google Distance 

NGD is very accurate for semantic disambiguation with little to no context, which is convenient for our 

short titles and keywords [43]. What is powerful about NGD is that it utilizes the prevailing size of Google 

data to your advantage, even when you do not have a relevant corpus, which is perfect in our problem. As 

a result, NGD was chosen for semantic similarity. The Normalized Google Distance (NGD) is a semantic 

similarity measure that can be determined from the number of hits / results returned by the Google search 

engine for a particular group of search terms. Semantically related words (lexical units) will have close 

measures of Normalized Google Distance, while words with dissimilar meanings tend to be farther apart.  

To be precise, NGD between two terms can be calculated as follows: 

𝑁𝐺𝐷( 𝑥 , 𝑦 ) =
𝑚𝑎𝑥 { 𝑙𝑜𝑔 𝑓( 𝑥 ) ,  𝑙𝑜𝑔 𝑓( 𝑦 ) } −𝑙𝑜𝑔𝑓( 𝑥 ,𝑦 )

𝑙𝑜𝑔𝐺−𝑚𝑖𝑛 { 𝑙𝑜𝑔𝑓( 𝑥 ) , 𝑙𝑜𝑔 𝑓( 𝑟𝑦 ) }
                 (11) 

Where: 

1. x and y are two search terms 

2. f ( x ) is the number of results returned by Google Search Engine for the term x. 

3. f ( y ) is the number of results returned by Google Search Engine for the term y.  

4. f ( x , y ) is the number of results returned when we search Google for x and y together.  

5. While G is the total number of pages indexed by Google. 

NGD ( x , y ) will be close to 0 if the terms x and y are related. NGD was used for Arabic news titles 

because it is practically convenient, computationally efficient and does not require a corpus (not like most 

of the other semantic similarity algorithms). 

Algorithm 1. Shows the steps towards finding NGD similarity. 
Algorithm 1 

NGDSim ( T1 , T2 ) 

//Start of Algorithm 1 

    normt1 = NormalizeTitle ( T1 ) 

    normt2 = NormalizeTitle ( T2 ) 

    fx = callgooglesearch ( normt1 ) 

    fy = callgooglesearch ( normt2  ) 

    fxy = callgooglesearch ( normt1 + normt2 ) 

    G = callgooglesearch ( “ the ” ) 

    sim = ( max ( log  fx , log fy ) – log fxy ) / log G  – min ( log fx , log fy ) ) 

 return sim 

//end of Algorithm 1 

Algorithm 1 receives a couple of Arabic titles and returns their NGD similarity. Algorithm 1 

estimates the total number of pages indexed by Google using the return number of hits when the keyword 

“the” is searched. The function callgooglesearch (x) returns the number of search results of x.  

It should be noted that NGDSim does not use the inclusive double quotations “ ” on the normalized 

T1 and T2, which means that fx will equal the number of search results returned by all the terms in 

normt1 according to their original order in T1.  

3.3. Contextual similarity 

As mentioned earlier, content alone should not determine similarity, even if a semantic 

disambiguation mechanism is deployed. Because context is very important in the domain of news articles. 

Two articles can have high content similarity, but in reality, they should not be grouped together simply 

because they have different context (temporal, geographical, demographical, etc.). 

The following contextual similarity features were introduced to eliminate content bias:: 

1. Time distance (publication date distance). 

2. Community importance (importance-based retweets). 

3. Community interest. 

3.3.1. Time distance 

Time distance is identified as the difference between the publication date of article A1 and the 

publication date of article A2. The distance could be measured in any date/time unit. For technical 
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convenience, time distance is measured using the number of days. Equation 12 calculates the time 

distance: 
𝑇𝐷1 = 𝐴1 ( 𝑝𝑢𝑏 ) − 𝐴2 ( 𝑝𝑢𝑏 )               (12) 

Where: 

1. TD1 is the new time difference feature  

2. A1 ( pub ) is the publication date of the first article. 

3. A2 ( pub ) is the publication date of the second article. 

However, more weight should be given to titles published within a close period. Therefore, equation 

13 is presented as follows:  
𝑇𝐷2 = 𝑒𝑇𝐷1                   (13) 

Where TD2 is a second time distance that gives close time intervals more importance. And TD1 does 

not provide any bias towards close time distances. We keep TD1 and TD2 as useful features for the 

experiment.  

3.3.2. Importance 

It is anticipated that similar web articles would have comparable community importance; therefore, 

there is a need for the following simple feature, which measures the difference in the importance of two 

web articles in terms of the number of retweets: 

𝐼 =
𝑅𝑇1−𝑅𝑇2

𝑀𝑎𝑥 ( 𝑅𝑇1 ,𝑅𝑇2 )
                                   (14) 

Where: 

1. I is the relative importance feature. 

2. RT1 is the number of retweets of the first article. 

3. RT2 is the number of retweets of the second article. 

Similar articles draw similar attention from the social network community. Therefore, they have a 

similar number of retweets. 

It should be noted that the URL of the article in the RSS feed is being used to find the number of 

retweets. 

3.3.3. Community interest 

Similar web articles attract similar audiences. Therefore, the proposed approach measures the 

similarity between two articles through the similarity in the profiles of the Twitter users who interact with 

the articles. 

Algorithm 2. Measuring community interest 

Algorithm 2 

CI ( A1 ,  A2 ) 

// Algorithm 2 starts 

    P is the list of the retrieved profiles that retweeted A1 

    R is the list of the retrieved profiles that retweeted A2 

    Foreach profile in P 

       Find the last 20 tweets and add them into prt 

    Foreach profile in R 

       Find the last 20 tweets and add them into rrt 

    Community Interest = normalized intersection of prt and rrt 

    Return Community interest 

//Algorithm 2 ends 

As illustrated in Algorithm 2 to measure the distance in community interest between A1 and A2, I 

retrieve all the retweets of A1. Assuming that: 
𝑝 = { 𝑝1 , 𝑝2 , 𝑝3 …  𝑝𝑛 }                (15) 

Where p is the list of Twitter profiles of the people who retweeted Article 1. And assuming that: 
𝑟 =  { 𝑟1 , 𝑟2, 𝑟3 …  𝑟𝑛 }               (16) 

Where r is the list of Twitter profiles of the people who retweeted Article 2. Now, for each profile in p 

and r, we retrieve the last 20 retweets. Producing:  
prt ={ prt1 , prt2 ,  prt3 …  prtn * 20 }                 (17) 
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Which is the set of all retweets from users who retweeted Article 1. And: 
rrt = { rrt1 ,  rrt2 ,  rrt3 …  rrtm * 20 }               (18) 

Which is the set of all retweets from users who retweeted Article 2. 

Therefore, to measure the similarity of Article 1 and Article 2, the intersection between rrt and prt is 

measured as follows:  

𝐶𝐼 =
𝑝𝑟𝑡 ∩ 𝑟𝑟𝑡

𝑚𝑎𝑥 ( | 𝑝𝑟𝑡 | ,| 𝑟𝑟𝑡 | )
                       (19) 

4. Data acquisition and preprocessing 

4.1. Data Compilation 

The following RSS feeds provided by various Arabic online news agencies were considered. Table 1 

shows the RSS feeds that were used for data collection.  

Table 1. List of RSS feeds used for the experiment 

Main website Number of RSS feeds  

http://arabic.cnn.com 7 feeds 

http://aawsat.com 31 feeds 

http://www.bbc.com/arabic 10 feeds 

https://www.albawaba.com 11 feeds 

https://www.youm7.com 17 feeds 

https://www.alhurra.com 44 feeds 

http://www.rumonline.net 69 feeds 

http://alrai.com 41 feeds 

https://news.un.org 19 feeds 

https://www.arabstoday.net 25 feeds 

The feeds were automatically invoked to retrieve the data in XML formats.  

Figure 1 shows the process of data collection. 

 
Figure 1. The process of data collection 

As shown in figure 1, the feed retriever takes the RSS URLs as an input to retrieve the available XML 

documents from the news agencies. After that, an XML parser retrieves the raw data from these files, 

including their titles, dates, etc. 

Once the raw data is available, a Twitter API wrapper finds the retweets for every extracted title. 

And for every title, the system probes the profiles that retweeted it. This is done to calculate the 

importance and the community interest discussed previously. And therefore, we have the full needed 

data for every news article, including its number of tweets and the profiles which retweeted it.  

http://alrai.com/


AETiC 2023, Vol. 7, No. 1 82 

www.aetic.theiaer.org 

4.2. Data Description 

The following is a sample XML document retrieved by an Arabic CNN RSS: 
<item> 

  <title> 

2015 منذ انخفاض أسوأ تشهد بالصين الأسهم أسواق.   .كورونا فيروس  

</title> 

  <link> 

http://arabic.cnn.com/business/video/2020/02/04/v84621-coronavirus-world-markets 

</link>  

 <description>   
فيه تمكن يوم أول وهو ، الاثنين ، الصينية الأسهم تراجعت  

 اليوم في%  7.7   بنسبة شنغهاي مؤشر انخفض إذ.  وشنزين شنغهاي في جداً سيئاً يومًا كان و.  أسبوع من أكثر منذ كورونا فيروس انتشار مع التفاعل من المستثمرون 

 تباطؤ من مخاوف العالمية الأسواق هزت عندما 2015 آب /أغسطس في ”الأسود الاثنين“ منذ له انخفاض أكبر وهو - الجديد القمري للعام طويلة عطلة أعقاب في التداول من الأول

الصين في النمو . 

</description> 

  <pubDate> 

Tue, 04 Feb 2020 06:57:06 + 0000 

</pubDate> 

    <dc:creator> 

Abelhaik 

</dc:creator> 

    <guid isPermaLink = " false "> 

84621 at http://arabic.cnn.com 

</guid> 

    </item> 

It is common for such XML files to contain a publication date, title, ID, source, URL and a description. 

For every title, the number of tweets and the list of retweeted profiles to be added to the XML file were 

generated. All used feeds have similar information. Every data item (article) in the dataset contains at 

least the following: 

• Textual Title 

• URL 

• Date of Publication 

In addition to that the system retrieves the following: 

• Number of retweets based on the URL 

• Links of profiles that retweeted the URL 

4.3. Data Pre-processing 

For the experiment, 6000 XML files were collected from the ten news resources mentioned 

previously. The dates of the articles span from January 2020 to January 2022. The size of the collection is 

larger than (or comparable to) Arabic and non-Arabic news article similarity experiments conducted 

based on labelled data [44-47]. [44] [45] [46] [47]. 

The collected files (articles) were used to create a list of 8000 pairs of articles. Each pair is labelled 

with True or False. True means the couple is actually similar. False means the articles are not similar. Most 

of the pairs (5850 pairs) were False. While the rest of the pairs were True-labelled. Most of the true-

labelled pairs were manually selected, because it is difficult to find organically similar articles in the 

randomly generated set of pairs. 

The 8000 pairs were divided into a train data set and a test data set. For training, 5000 pairs (3500 of 

class False and 1500 of class True) were selected, which are 62.5% of the whole data set. And for testing, 

3000 pairs were dedicated (2350 of class False and 650 of class True) which is 37.5% of the entire data set. 

The 8000 couples were normalized and then used to generate the features described in section 3. 

5. Experiment 

The experiment compares the performances of supervised learning in three different settings:  

1. The first setting relies on features related to simple lexical title text similarity between pairs; 

this should be the baseline of the experiment. 

http://arabic.cnn.com/business/video/2020/02/04/v84621-coronavirus-world-markets
http://arabic.cnn.com/
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2. The second setting uses all the features in setting 1, in addition to that, the semantic 

similarity obtained by NGD). 

3. The third setting adds the contextual similarity features (Time distance, Importance, 

Community interest) to the features of the first and second settings. 

Among the various classification algorithms that were tested, the Random Forests classifier [48] has 

shown the best results in terms of precision, recall, and f-Measures. Note that comparison between 

classifiers is not the focus of this experiment, which is intended to validate the importance of content and 

contextual features. And therefore, Random Forest was used to compare the two settings mentioned 

above. 

Table 2 shows the results reported from the Random Forests Classifier in the first setting using 

textual similarity of text only.  

Table 2. Performance report (precision, recall and F-measure) with setting 1, baseline 

Measure Value Derivations 

Sensitivity (recall of True-class) 0.4585 TPR = TP / (TP + FN) 

Specificity (recall of False-class) 0.8277 SPC = TN / (FP + TN) 

Precision (of True-class) 0.4239 PPV = TP / (TP + FP) 

Negative Predictive Value (Precision of Flase-class ) 0.8468 NPV = TN / (TN + FN) 

False Positive Rate 0.1723 FPR = FP / (FP + TN) 

False Discovery Rate 0.5761 FDR = FP / (FP + TP) 

False Negative Rate 0.5415 FNR = FN / (FN + TP) 

Accuracy 0.7477 ACC = (TP + TN) / (P + N) 

F1 Score 0.4405 F1 = 2TP / (2TP + FP + FN) 

Matthews Correlation Coefficient 0.2783 TP*TN - FP*FN / sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)) 

Table 3 shows the result with the second setting, where the proposed semantic features were used 

with the textual features. 

Table 3. Performance report (precision, recall and F-measure) with setting 2 

Measure Value Derivations 

Sensitivity (recall of True-class) 0.4785 TPR = TP / (TP + FN) 

Specificity (recall of False-class) 0.8519 SPC = TN / (FP + TN) 

Precision (of True-class) 0.4719 PPV = TP / (TP + FP) 

Negative Predictive Value (Precision of Flase-class ) 0.8552 NPV = TN / (TN + FN) 

False Positive Rate 0.1481 FPR = FP / (FP + TN) 

False Discovery Rate 0.5281 FDR = FP / (FP + TP) 

False Negative Rate 0.5215 FNR = FN / (FN + TP) 

Accuracy 0.771 ACC = (TP + TN) / (P + N) 

F1 Score 0.4752 F1 = 2TP / (2TP + FP + FN) 

Matthews Correlation Coefficient 0.3287 TP*TN - FP*FN / sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)) 

Table 4 shows setting number 3, where contextual features were used. 

Table 4. Performance report (precision, recall and F-measure) with setting 2 

Measure Value Derivations 

Sensitivity (recall of True-class) 0.5246 TPR = TP / (TP + FN) 

Specificity (recall of False-class) 0.8915 SPC = TN / (FP + TN) 

Precision (of True-class) 0.5721 PPV = TP / (TP + FP) 

Negative Predictive Value (Precision of Flase-class ) 0.8715 NPV = TN / (TN + FN) 

False Positive Rate 0.1085 FPR = FP / (FP + TN) 

False Discovery Rate 0.4279 FDR = FP / (FP + TP) 

False Negative Rate 0.4754 FNR = FN / (FN + TP) 

Accuracy 0.812 ACC = (TP + TN) / (P + N) 

F1 Score 0.5474 F1 = 2TP / (2TP + FP + FN) 

Matthews Correlation Coefficient 0.4296 TP*TN - FP*FN / sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)) 

It is noted from the tables above that there is a significant increase in performance in the second and 

third setting. Especially for the True class precision. 

For further investigation into the quality of the proposed similar couples, a human-based evaluation 

was conducted, where two judges evaluated randomly selected couples that had not been part of the 

training or the testing. The focus is on the similar proposed articles. Therefore, 650 true labeled couples 

and 450 false labeled couples were used to be evaluated by the two judges. Each couple is given a score of 
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1-10 from each judge. Where 1 indicates the absence of similarity and higher scores indicate higher 

similarity.  

Kappa Coefficient was used to measure the agreement between the judges. The inter-agreement score 

was 0.9634, which indicates a substantial agreement between the human evaluators. 

The human-based evaluation showed a significant correlation between the labels predicted by the 

proposed approach and the average score provided by the judges. According to the Pearson correlation 

coefficient (r), the correlation score between the human evaluations and the proposed systems predictions 

is 0.8837. This indicates that there is a significant large positive relationship between human evaluation 

and the predictions. This correlation establishes confidence in the test. 

The proposed algorithm achieved an accuracy of 0.91 based on human scores on the predicted labels. 

Considering that an average score from 1 to 5 corresponds to a False label, and an average score from 6 to 

10 corresponds to a True label. 

6. Evaluation and Assessment 

The proposed approach can detect article similarity with high overall accuracy. The proposed 

algorithms for finding NGD and contextual features have led to increased accuracy, f-measure and 

precision. This was achieved without using a lexical or semantic dictionary.  

Community interest seems to directly improve the performance of the True labeled pairs. In fact, 

setting 3 led to a 10% improvement in True precision from setting 2 and 15% improvement from setting 1. 

This validates the intuition that similar articles would attract similar audiences. However, importance 

seems to have a slight positive impact on the performance, because importance can be inherited from the 

article’s source, not by the content of the articles themselves. 

 The performance of the proposed algorithm in terms of precision and F-measures is comparable with 

similar reported tasks on resourceful languages. Table 5 shows the results of similar Arabic and non-

Arabic experiments. It should be noted that a sentence-based Arabic news similarity experiment with the 

same goals as this one could not be found.  

Table 5. Comparison with the state-of-the-art systems for Arabic and news similarity 

Reference Type Language Result 

Singh and Singh [45] Bilingual news article Hindi and English Best Accuracy 0.81 

Meddeb et al. [49] Documents Arabic Root Mean Squared Error (RMSE) is 0.8 

Xu et al. [44] Multilingual news 

similarity 

Multilingual, including 

Arabic 

Pearson’s correlation coefficient for Arabic 0.79  

Nagoudi et al, [50] Arabic-English Sentences Arabic and English Pearson’s correlation coefficient for Arabic 0.77 

The proposed approach shows superiority despite the fact that it uses the title and the context only, 

while most of the other approaches rely on corpus full text analysis. 

This means that news articles should not be exclusively considered as a textual document, but rather 

it is a web entity that is composed of other important features.  

Contextual based similarity can complement textual similarity. And therefore, many applications 

could utilize that. Especially when there is a shortage of lexical resources. 

Investigating further social networks and lexical resources may increase performance, which is part 

of the future work. 

7. Conclusion 

This article describes a novel method for detecting similarities between Arabic news articles. The 

proposed algorithm showed effectiveness according to the conducted experiment, even though the 

proposed approach has limited dependency on a lexical resource. String based similarity and lexical based 

similarity can be used as bases for the proposed algorithm. Still, they have limited capabilities, and thus 

the proposed similarity measures presented in this paper have improved accuracy and precision. The 

results obtained by the experiment were comparable to similar experiments in the English language, 

which is significant considering that English is a resource rich language if compared to Arabic. The result 

will be improved further with the help of a carefully constructed multi-domain Arabic lexicon. And this is 

part of our future work. 
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