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Abstract: Providing the ability of classification to computers has remained at the core of the faculty of artificial 

intelligence. Its application has now made inroads towards nearly every walk of life, spreading over healthcare, 

education, defence, economics, linguistics, sociology, literature, transportation, agriculture, and industry etc. To our 

understanding most of the problems faced by us can be formulated as classification problems. Therefore, any novel 

contribution in this area has a great potential of applications in the real world. This paper proposes a novel way of 

learning from classification datasets i.e., hierarchical learning through set partitioning. The theory of probabilistic 

hierarchical learning for classification has been evolved through several works while widening its scope with each 

instance. The theory demonstrates that the classification of any dataset can be learnt by generating a hierarchy of 

learnt models each capable of classifying a disjoint subset of the training set. The basic assertion behind the theory 

is that an accurate classification of complex datasets can be achieved through hierarchical application of low 

complexity models. In this paper, the theory is redefined and revised based on four mathematical principles namely, 

principle of successive bifurcation, principle of two-tier discrimination, principle of class membership and the 

principle of selective data normalization. The algorithmic implementation of each principle is also discussed. The 

scope of the approach is now further widened to include ten popular real-world datasets in its test base. This 

approach does not only produce their accurate models but also produced above 95% accuracy on average with regard 

to the generalising ability, which is competitive with the contemporary literature. 
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1. Introduction 

Main faculty of human consciousness is its ability to classify. It is our ability of classification through 

which we become aware of things in existence by distinguishing them from each other. Providing this 

ability to machines now constitutes major part of artificial intelligence. Its application has now touched 

every aspect of human life, including but not limited to renewable energy e.g. [1],  chemometrics e.g. [2], 

cyber security e.g. [3], natural language processing  e.g. [4], finance e.g. [5], microbiology e.g. [6], ecology 

e.g. [7], and healthcare e.g. [8]. Therefore, proposal of any novel way through which machines could learn 

to classify has an enormous potential of application in wide variety of areas. The theory of probabilistic 

hierarchical learning for classification was introduced in a conference paper [9]. It was moulded into a 

theory after a series of earlier papers [10-13]. This theory introduces the hierarchical model of learning. In 

the hierarchical learning, multiple models are learnt hierarchically over their subdomains, each containing 

elements from several flat classes. The model in each hierarchy is learnt on a subset of the training set. The 

configuration of that subset is also decided during training in that corresponding hierarchy. Therefore, a 

model and its application subdomain are learnt altogether. Since this subdomain may contain elements 

from several classes therefore, this subset is not a part of class hierarchy, this is a part of a hierarchy of 
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subdomains corresponding to a hierarchy of learnt models. The interesting thing about these models is that 

they are errorfree over their respective subdomains. 

The hierarchical learning should not be confused with a hierarchical classification or any of its contexts 

such as a natural hierarchical classification (NHC) or a methodological hierarchical classification (MHC). 

The hierarchical learning does not have hierarchical classes like NHC, such as classification of all biological 

organisms on earth e.g. [14] and hierarchical classification of diseases by world health organization1. The 

classes in the hierarchical learning are flat and cannot be represented through a directed acyclic graph e.g. 

[15] as can be done in the NHC [16]. The hierarchical learning is not even an artificial hierarchy of classes 

such as one done in MHC where classes are flat, rather, classification itself is performed hierarchically. One 

of its kind are Hierarchical Support Vector Machines [17], where hierarchies are decided manually. The 

MHC is also done by automated generation of meta-classes such as in a handwriting character recognition 

system [18].  

The hierarchical learning should not be confused with ensemble learning [19] which does also deal 

with multiple models but differs from hierarchical learning in several diverse ways based on the method of 

learning, the domains of models, the error handling, and the application methodology. The ensemble 

learning models are not hierarchically learnt, their domain covers the whole training set, their errors are 

averaged, and they can be applied simultaneously in parallel. Whereas in the hierarchical learning, each 

model has a domain which is a unique subset of the training set, it is errorfree, and models can only be 

applied sequentially. 

The hierarchical learning is a supervised classification learning method, but it should not be confused 

with other methods of supervised classification learning such as Neural Networks e.g. [20-22], Decision 

trees e.g., [23] and Naïve Bayes e.g. [24], as none of them follows the scheme of hierarchical learning. The 

multiple hierarchies in the hierarchical learning should not be confused with multiple layers of learning 

such as in Deep Learning e.g. [20-21]. This is because the number of layers in these networks are set prior 

to learning, however, number of hierarchies are not decided prior to learning, they are part of the learning 

process instead. Therefore, hierarchical structure in hierarchical learning is a learnt model rather than a 

predefined structure such as in Recurrent Neural Network e.g. [22]. Since the hierarchical learning uses the 

probabilistic model for the class discrimination as most of the linear e.g. [25] and nonlinear e.g. [26] 

discriminants do, it is termed as the theory of probabilistic hierarchical learning. The interesting thing about 

its probabilistic model is its flexibility that allows for the negative probabilistic values, a concept that was 

first introduced in an entirely different field i.e., Quantum mechanics [27]. 

Earlier, the theory was emphasized through mathematical means. In this paper, the theory is redefined 

and revised by introducing four mathematical principles including the principle of successive bifurcation, 

the principle of two-tier discrimination, the principle of class membership and the principle of selective data 

normalization. The first principle provides structure for the hierarchical application of learning, the second 

principle supports this hierarchical structure with mathematical logistics, the third principle tailors the rule 

of probabilistic class membership to suit the hierarchical structure, and the fourth principle applies data 

normalization in a selective way which again helps in hierarchical learning. These four strong mathematical 

principles provide more fidelity to theory that its application is now extended from 5 to 10 datasets. 

The rest of the paper divides into eight sections. Section 2 introduces the principle of successive 

bifurcation, section 3 covers principle of two-tier discrimination, section 4 discusses principle of class 

membership, and section 5 details the principle of data normalization. The theory’s ability to develop 

errorfree models is tested in section 6. Section 7 presents experimental results on generalization ability of 

theory. The generalizing ability of theory is compared with literature in section 8. Lastly, conclusions and 

future work are orchestrated in section 9. 

2. Principle of Successive Bifurcation 

The concept behind the hierarchical learning is creating a set of disjoint subsets whose union is the full 

training set and a developing a simple model corresponding to each of these subsets. The model is learnt 

using the unclassified samples of the training set and then domain is assigned to the model consisting of 

                                                            
1 WHO (2016) International statistical classification of diseases and related health problems. - 10th revision, Fifth edition, 2016. 3 v. 
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the samples which are classified by it correctly. The rest of the samples are retained in the unclassified set 

of the training set to train another model in the next hierarchy. This means that at each hierarchy, the learnt 

model bifurcates the training set into classified and unclassified subsets. Therefore, the hierarchical learning 

follows the principle of successive bifurcation of the training set. This principle is visualised in Figure 1. 

 
Figure 1. Principle of successive bifurcation 

Figure 1 depicts the training set, which is partitioned into subsets 𝑆1, … … , 𝑆𝑛 by the models 

𝑀1 … … 𝑀𝑛−1. Each model 𝑀𝑖 in hierarchy 𝐻𝑖 bifurcates the training set into classified 𝑆𝑖 and unclassified 𝑆i
𝑢 

subsets. The last subset 𝑆𝑛 is either NULL subset or the subset containing samples from one class only, 

illustrating the end of hierarchical classification procedure. 

The principle of successive bifurcation described above generalises the hierarchical learning procedure. 

At any given point during the heirarchical learning the four statements (𝑎 − 𝑑) of equation 1, must be 

satisfied. 

∀𝑖=𝑚𝐻𝑖 ∶ {

𝑎: 𝑀𝑖−1 ≺ 𝑀𝑖 ∶ 𝑆𝑖 → 𝐶

𝑏:              𝑈 = 𝑆𝑖
𝑐 ∪ 𝑆𝑖

𝑢

𝑐:          𝑆𝑖
𝑐 = ⋃1≤𝑗≤𝑖𝑆𝑗

𝑑:               𝑚 = 𝑛 − 1

                             (1) 

Where, 

𝑚 = Total number of hierarchies 

𝑛 = Total number of subsets 

𝐻𝑖 = Level 𝑖 in the hierarchy 

𝑀𝑖 = Model achieved at 𝐻𝑖 

𝑆𝑖 = Subset of training set classified by model 𝑀𝑖 at 𝐻𝑖 

𝐶 = Class set 

𝑈 = the training set 

𝑆𝑖
𝑐 = Set of classified samples at the end of 𝐻𝑖 

𝑆𝑖
𝑢 = Set of unclassified samples at the end of 𝐻𝑖 

Therefore, the four statements (𝑎 − 𝑑) of the principle of successive bifurcation in equation 1, can be 

described as follows.  

a. At 𝐻𝑖, 𝑀𝑖−1 precedes 𝑀𝑖, whose domain is the subset 𝑆𝑖 and class set 𝐶 is its codomain.  

b. At 𝐻𝑖, the training set 𝑈 is the set of all samples including 𝑆𝑖
𝑐 and 𝑆𝑖

𝑢  

c. At 𝐻𝑖, 𝑆𝑖
𝑐 is the union of all sets classified on levels 1 through 𝑖 

d. At 𝐻𝑖, total number of hierarchies is always one less than total number of subsets. 

2.1. Postulate 1 

The principle of successive bifurcation can be used as a tool to replace a high complexity model with 

several simpler models each with a constrained domain representing a unique subset of the training set 

such that union of all constrained domains equals the training set.  

2.2. Implementation 

The Figure 2 presents flowchart showing implementation of principle of successive bifurcation. The 

algorithm learns from the training set which results in its bifurcation into the classified and the unclassified 

subsets. If the unclassified subset is not empty and has samples belonging to more than one class, then the 

unclassified set is used as the training set in the next hierarchy. In the figure, X refers to subset containing 

members from only one class. 
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Figure 2. Principle of successive bifurcation implementation 

3. Principle of two-tier Discrimination 

The phrase two-tier discrimination refers to the two-step discrimination function of each model. Each 

model must perform two-step discrimination. The two-step discrimination means the discrimination in 

terms of classification of samples and then the discrimination in terms of partitioning the training set into 

two subsets that is, the subset within its domain and subset outside its domain. The expression 2 

encapsulates this whole idea. 

{
𝑞ℎ ∈ {𝐶𝑘  ∩ 𝑆𝑖} 𝑃(𝑖, ℎ, 𝑘) > ∀𝑗≠𝑘 𝑃(𝑖, ℎ, 𝑗) + ψ

𝑞ℎ ∈ 𝑆𝑖
𝑢 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                          (2) 

where, 

𝑃(𝑖, ℎ, 𝑘) = Probability that the sample 𝑞ℎ is the member of class 𝐶𝑘 w. r. t.  model 𝑀𝑖. 

ψ = Size of the set partition 

The expression 2 says if the Probability 𝑃(𝑖, ℎ, 𝑘) is greatest among all the classes by the minimum value 

equal to size of set partition, then sample 𝑞ℎ is the member of class 𝐶𝑘 and lies within classified subset 𝑆𝑖, 

otherwise it belongs to unclassified subset 𝑆𝑖
𝑢. Whereas, the size of set partition is the greatest margin by 

which the 𝑀𝑖 could misclassify the sample during a training session. The size of set partition can be 

calculated through equation 3. 

ψ = 𝑚𝑎𝑥 (∀ℎ 𝑞ℎ ∈ {𝐶𝑗  ∩ 𝑆𝑖
𝑢} [𝑃(𝑖, ℎ, 𝑘) − 𝑚𝑎𝑥 (∀𝑘≠𝑗  𝑃(𝑖, ℎ, 𝑗))])                                                      (3) 

From equation 3, it can be seen that ψ represents the size of set partition which is maximum difference 

among all the training samples between the largest and second largest probabilities of membership, whereas 

largest probability belongs to a wrongly assigned class. 

The model in expression 2, describes a state in hierarchical learning at any given hierarchy 𝐻𝑖, where 

there are only two possibilities available that either the sample under the test is classified correctly, or its 

classification is postponed to the next hierarchy level. This process continues until the last hierarchy where 

it attains a state that either 𝑆𝑖
𝑢 = ∅ or 𝑆𝑖

𝑢 ∈ 𝑋 where 𝑋 contains samples belonging to one class only. The class 

𝑋 can be called a remainder class. The remainder class does not have potential to introduce errors in the 

classification as it is distinguishable by the second tier of discrimination based on set partitioning. Therefore, 

this process can only end up in accurate classification of all samples.  However, in the case of 𝑆𝑖
𝑢 ∈ 𝑋, the set 

partitioning ψ > 0 otherwise if 𝑆𝑖
𝑢 = ∅ then ψ = 0. 

3.1. Postulate 2 

Incorporating a set-partition in the framework of probabilistic class membership is here referred to as 

the principle of two-tier discrimination. The principle can eliminate misclassification of samples completely 

during hierarchical training, making the hierarchical learning model errorfree. 

3.2. Implementation 

Please refer to Figure 2. The flowchart between arrow 1 and arrow 4 doesn’t show any discriminatory 

rules for the classified and unclassified set. Replace it with the flowchart in Figure 3, which shows two tier 

discrimination. 

It can be seen in Figure 3, that in the first tier it is checked that whether the sample under investigation 

obeys expression 2. If it doesn’t obey, then ‘otherwise’ clause of expression 2 is materialized, where it is sent 

to the unclassified set to postpone its classification to the next hierarchy. However, if it obeys expression 2 



AETiC 2023, Vol. 7, No. 1 65 

www.aetic.theiaer.org 

then in the second tier it is checked whether it is classified correctly. If it is classified correctly then it is sent 

to the classified set otherwise the set partitioning margin is reset for the learning algorithm to restart the 

classification for the current hierarchy again.  The symbols used in the figure refer to the symbols described 

in expression 2 and equation 3. 

 
Figure 3: Principle of two-tier discrimination implementation 

4. Principle of class membership 

From the descriptions presented in section 3 about principle of two-tier discrimination (expression 2), 

it can be seen that the decision about the class membership in hierarchical learning is largely based on the 

probability. Now the question arises how to model this probability so that it could be useful in assignment 

of membership of a class. Equation 4 provides such a framework. 

𝑃(𝑖,ℎ,𝑘) = {

𝜇(𝑖,ℎ)−𝛾(𝑖,𝑘,𝑚𝑖𝑛)

𝛾(𝑖,𝑘,𝑚𝑒𝑎𝑛)−𝛾(𝑖,𝑘,𝑚𝑖𝑛)
, 𝜇(𝑖,ℎ) ≤ 𝛾(𝑖,𝑘,𝑚𝑒𝑎𝑛)

𝛾(𝑖,𝑘,𝑚𝑎𝑥)−𝜇(𝑖,ℎ)

𝛾(𝑖,𝑘,𝑚𝑎𝑥)−𝛾(𝑖,𝑘,𝑚𝑒𝑎𝑛)
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                          (4) 

where 

𝜇(𝑖,ℎ) = Value of sample 𝑠ℎ w. r. t. model 𝑀𝑖 

𝜇(𝑖,𝑘,𝑚𝑖𝑛) = Estimated minimum value of samples belonging to class 𝐶𝑘 w. r. t. model 𝑀𝑖 

𝜇(𝑖,𝑘,𝑚𝑎𝑥) = Estimated maximum value of samples belonging to class 𝐶𝑘 w. r. t. model 𝑀𝑖 

𝜇(𝑗,𝑘,𝑚𝑒𝑎𝑛) = Estimated mean value of samples belonging to class 𝐶𝑘 w. r. t. model 𝑀𝑖 

The mean value of model 𝑀𝑖 of class 𝐶𝑘 can be estimated as follows. 

𝜇(𝑖,𝑘,𝑚𝑒𝑎𝑛) =
∑ 𝜇(𝑖,ℎ)ℎ∈𝐶𝑘

𝑛𝑘
                                                                          (5) 

Where, 

𝑛𝑘 = Number of samples in the training set belonging to class 𝐶𝑘 

The maximum and minimum value among samples of class 𝐶𝑘 w. r. t. model 𝑀𝑖 can be estimated as, 

𝜇
(𝑖,𝑘,

𝑚𝑎𝑥
𝑚𝑖𝑛

)
= 𝜇(𝑖,𝑘,𝑚𝑒𝑎𝑛) ± 𝜌 ∗ 𝜇(𝑖,𝑘,𝑠𝑑)                                                                          (6) 

where 

𝜌 = Range parameter, computed in theorem later in appendix. 

𝜇(𝑖,𝑘,𝑠𝑑) = Estimated standard deviation of samples belonging to class 𝐶𝑘, w. r. t. model 𝑀𝑖 

The standard deviation 𝜇(𝑖,𝑘,𝑠𝑑) can be estimated as, 

𝜇(𝑖,𝑘,𝑠𝑑) = √
∑ (𝜇(𝑖,ℎ)−𝜇(𝑖,𝑘,𝑚𝑒𝑎𝑛))

2
ℎ∈𝐶𝑘

𝑛𝑘
                                                                          (7) 

It should be noted that in equation 4, if any of the conditions either 𝜇(𝑖,ℎ) < 𝜇(𝑖,𝑘,𝑚𝑖𝑛) or 𝜇(𝑖,ℎ) >

𝜇(𝑖,𝑘,𝑚𝑎𝑥) is true then such a condition will push probability towards negative zone, which shows flexibility 

of this model to accept negative probabilities - the concept quite well established in quantum mechanics 

[27]. However, this shows that probabilistic model of equation 4 depends on relative closeness of sample 

with respect to class means. It should be noted that the measure of relative closeness heavily depends on 

the computation of class boundaries. On the other hand, the computation of class boundary entirely 

depends on the estimates of the minimum and maximum of the class. Alternately, the minimum and 

maximum estimates of a class largely depend on the range parameter mentioned in equation 6 of the model. 

Obviously, this range parameter is different at different hierarchical levels as size of the training subset 

continues to become smaller with each subsequent hierarchical level. Therefore, this parameter should be 
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set according to the size of a training subset. Furthermore, as we move to the higher levels of hierarchies 

the subset not only become smaller but also their sample spread becomes larger, as remaining samples are 

only those who failed to fit in the earlier models. This necessitates to estimate maximum possible value of 

this parameter to capture the structure of the subset. We have proved in our theorem presented in appendix 

that range parameter for maximal spread is equal to √𝑛 − 1. Please see appendix, where we have calculated 

its value. 

The experiments have shown that the value of range parameter as computed is only advantageous at 

tail end hierarchies where subset sizes are substantially curtailed. For the rest of the hierarchies its value 

trends around the value of 𝜋. Therefore, final value of range parameter is shown in equation 8.  

𝜌 = 𝑚𝑖𝑛(𝜋, √𝑛 − 1)                                                                                                                                            (8) 

4.1. Postulate 3 

The principle of class membership based on the relative closeness of a sample to the class mean 

provides a convenient estimate of probability of class membership provided class boundaries configured 

carefully according to sample size. 

4.2. Implementation 

Follow the steps below: 

• Compute mean based on equation 5. 

• Compute standard deviation based on equation 7. 

• Compute range parameter based on equation 8 

• Compute minimum and maximum of the class based on equation 6 

• Compute probability from equation 4. 

• Use this probability to assign class to samples according to equation 2. 

5. Principle of selective data normalisation 

The principle of selective data normalisation involves two steps. First is the development of a 

mechanism that decides whether data normalisation is needed. The second step decides how it should be 

done. Let us introduce the notion of range ratio, which can help with the decision whether to normalise 

data. The range ratio is the ratio between maximum and minimum of data belonging to a feature. The range 

ratio 𝛾 can be computed as shown in equation 9. 

𝛾 =
𝑚𝑎𝑥(𝑎𝑏𝑠(𝑚𝑖𝑛),𝑎𝑏𝑠(𝑚𝑎𝑥))

𝑚𝑖𝑛(𝑎𝑏𝑠(𝑚𝑖𝑛),𝑎𝑏𝑠(𝑚𝑎𝑥))
                                                                                                                              (9) 

Now let us consider a feature as potent if its range ratio is greater than or equal to two, else consider it 

as impotent. Now if the dataset has minimum of 50% features as potent then there is no need to normalise 

the data. However, data normalization is needed if this is not the case. The equation 10, provides the method 

of data normalisation. 

𝑣𝑚 =
𝑣0−𝑣𝑚𝑖𝑛

𝑣𝑚𝑎𝑥−𝑣𝑚𝑖𝑛
× (𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛) + 𝑢𝑚𝑖𝑛                                                                                                (10) 

Where, 

𝑣0 = original value of a feature of a sample 

𝑣𝑚 = modified value of a feature of a sample 

𝑣𝑚𝑖𝑛 = minimum value of a feature among all samples 

𝑣𝑚𝑎𝑥 = maximum value of a feature among all samples 

𝑢𝑚𝑖𝑛 = minimum value of all features among all samples 

𝑢𝑚𝑎𝑥 = maximum value of all features among all samples 

The equation 10, proportionally distributes the values from 𝑢𝑚𝑖𝑛 to 𝑢𝑚𝑎𝑥 and it is applied only to 

features which satisfy the condition 𝑣𝑚𝑎𝑥 = 𝑢𝑚𝑎𝑥. 
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5.1. Postulate 4 

The principle of selective data normalisation is based on the range of values of different features in the 

dataset, which can then be utilized to decide whether the dataset needs data normalisation procedure. 

5.2. Implementation 

Follow the steps below. 

• Compute the range ratio 𝛾 according to equation 9 for each of the features. 

• Compute the number of potent features 𝑓𝑝 with 𝛾 ≥ 2. 

• If 𝑓𝑝 ≥
𝑓𝑡

2
 then stop (𝑓𝑡 = total number of features). 

• Choose the features to be normalised 𝑓𝑛 satisfying the condition 𝑣𝑚𝑎𝑥 = 𝑢𝑚𝑎𝑥. 

• Apply data normalisation to features 𝑓𝑛 according to equation 10. 

6. Errorfree model test 

An errorfree model test is the test prepared to verify whether the models developed through 

hierarchical learning could be errorfree as claimed in postulate 2 represented by expression 2. An errorfree 

model should accurately classify the whole dataset, or it should not misclassify any of the samples of the 

dataset. Therefore, accurate classification of some of the well-known datasets through a chain of simpler 

models trained in hierarchical order may validate postulate 2 of the theory. Some of the challenging real-

world datasets from the UCI repository2 were chosen to test this hypothesis. The details of those datasets 

are given in Table 1 for feature and class description. In Table 1, column 1 gives name of the dataset, its 

domain and reference. Column 2 provides feature description in sequence as they appear in the dataset. 

Column 3 contains class names and finally column 4 states number of samples in each class. It also gives 

the total number of samples in the dataset. The datasets are alphabetically sorted. 

Table 1. Class and Feature Description of datasets 

Dataset Feature List Class Name 
Nr. of 

samples 

(1) (2) (3) (4) 

Acute Inflammations 

Nephritis 

(Medical [28]) 

1. Temperature,  

2. Nausea 

3. Lumbar pain 

4. Urine pushing 

5. Micturition pains 

6. Burning of urethra itch: 

swelling of urethra outlet 

Positive 50 

Negative 70 

Total 120 

Acute Inflammations 

Urinary 

(Medical [28]) 

Same as above 

Positive 59 

Negative 61 

Total 120 

Balance Scale 

(Psychological [29]) 

1. Left weight 

2. Left distance 

3. Right weight 

4. Right distance 

Balanced 49 

Left tipped 288 

Right tipped 288 

Total 625 

Banknote 

Authentication 

(Image3) 

1. Variance of wavelet transformed image (WTI) 

2.  Skewness of WTI 

3. Curtosis of WTI 

4. Entropy of image 

True 610 

False 762 

Total 1372 

Breast Cancer 

Wisconsin 

(Diagnostic) 

(Image [30]) 

1. Radius (mean distance of points 

on the perimeter from the center) 

2. Texture (standard deviation of 

gray-scale values) 

3. Perimeter 

4. Area 

5. Smoothness (local variation in 

radius lengths) 

6. Compactness (perimeter^2 / area - 

1.0) 

7. Concavity (severity of 

concave portions of the 

contour) 

8. Concave points (number of 

concave portions of the 

contour) 

9. Symmetry 

10. Fractal dimension ("coastline 

approximation" - 1) 

Malignant 

 
212 

Benign 357 

Total 569 

Car Evaluation 1. Buying cost 4. Number of seats Unacceptable 1210 

                                                            
2 https://archive.ics.uci.edu/ml/datasets.php  
3 D. Dua and C. Graff, (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, 

School of Information and Computer Science 

https://archive.ics.uci.edu/ml/datasets.php
http://archive.ics.uci.edu/ml
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(Decision making 

[31]) 

2. Maintenance cost 

3. Number of doors 

5. Size of lug-boot 

6. Level of safety 

Acceptable 384 

Good 69 

Very good 65 

Total 1728 

Iris 

(Botanical [25, 32]) 

1. Sepal length 

2. Sepal width 

3. Petal length 

4. Petal width 

Setosa 50  

Verginica,   50  

Versi-colour 50  

Total 150 

Seeds 

(Image [33]) 

1. Area 

2. Perimeter 

3. Compactness 

4. Length of kernel 𝑘 

5. Width of  𝑘 

6. Asymmetry coefficient 

7. Length of  𝑘  groove 

Kama 70 

Rosa 70 

Canadian 70 

Total 210 

User Knowledge 

Modelling 

(Educational [34]) 

1. Degree of study time for goal object materials (GOM) 

2. Degree of repetition number for GOM 

3. Degree of study time for related objects with GOM 

4. Exam performance for related objects with GOM 

5. The exam performance for GOM 

Very Low 50 

Low 129 

Middle 122 

High 130 

Total 403 

Wine 

(Chemical [35]) 

1. Alcohol 

2. Malic acid 

3. Ash 

4. Alcalinity of ash 

5. Magnesium 

6. Total phenols 

7. Flavanoids 

8. Nonflavanoid phenols 

9. Proanthocyanins 

10. Color intensity 

11. Hue 

12. OD280 / OD315 of diluted 

wines 

13. Proline             

Class 1 59 

Class 2 71 

Class 3 48 

Total 178 

It should be noted that in the Table 1 only 10 features are shown for the dataset of Breast Cancer 

Wisconsin Diagnostic [30], which are computed from a fine needle aspirate digitized image of breast mass.  

The dataset comprises 10 image features to characterize the cell nuclei. However, the dataset has been 

augmented to comprise 30 attributes, including mean attribute values, standard deviations, and largest 

deviation from the mean values.  

An evolutionary algorithm [10-13] was used to train a model proposed hierarchical learning method 

realized in Microsoft Visual Studio C/C++. It should be noted that the data normalisation procedure was 

not applied for errorfree model test. The program was tried on the 10 datasets described in Table 1. The 

method was tried 30 times on each dataset using random seeds. It should be noted that whole dataset was 

taken as the training set. The trained models were later used to classify the same dataset. Each random trial 

ended up in accurate classification of the dataset. The description of models is given in Table 2.  

Table 2 presents one model with least number of hierarchies from 30 random trials for all the ten 

datasets (Table 1). The column 1 gives the name of the dataset. The column 2 provides the number of 

hierarchies. The Column 3 shows the corresponding hierarchy level. The mathematical model in that 

hierarchy is presented in column 4. The column 5 reveals the number of samples classified by the model, 

whereas the column 6 mentions either the number of unclassified samples or the number of samples 

belonging to one last remaining class. Finally, the column 7 states the size of set partition. The datasets are 

presented in the same order as that of Table-1. The feature numbers in the models (column 4), correspond 

to feature numbers shown in Table-1. The following procedure can be followed to verify the models 

presented in the Table 2:  

• Model value of each sample in the relevant subset of training set should be calculated by putting 

feature values of each sample in the models shown in Table 2. 

• Classification of each sample should be done using principle of class membership. Its 

implementation procedure is given in the section 4.2.  

If the readers find that any of the models given in the Table 4, misclassify any of the samples of the 

datasets, they should report to author along with details. 

From the results shown in Table 2, one finds that the proposed method is able to classify four datasets 

namely Acute Inflammation Nephritis, Acute Inflammation Urinary, Balance Scale and Wine dataset in just 

one hierarchy, whereas Banknote Authentication, Iris and Breast Cancer Wisconsin Diagnostic are classified 

in only two hierarchies and finally Seeds, User knowledge modelling and car evaluation are classified in 
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three, five, and 13 hierarchies respectively. The accurate classification of the datasets in multiple hierarchies 

shows the ability of the proposed theory to model complex non-linear datasets with a high precision. 

Table 2. Accurate models of classification datasets 

DS NH HL 
Model 

Description 

No. of 

cl. Sp. 

ucl/ 

rcl 
S/Part. 

(1) (2) (3) (4) (5) (6) (7) 

Acute 

Inflam. 

Nephritis 

1 1 0.8668𝑓2 + 0.4732𝑓3 + 0.2610𝑓1 − 0.4767𝑓6 − 0.9315𝑓5 + 0.9398𝑓4 120 0 0.0000 

Acute 

Inflam. 

Urinary 

1 1 0.7452𝑓3 − 0.7190𝑓4  +
0.0020𝑓1

0.7499𝑓6

− 0.7284𝑓5 × 0.7855𝑓2 120 0 0.0000 

Balance 

Scale 
1 1 

0.4469𝑓1

0.2260𝑓3

−
0.0823𝑓4

0.0416𝑓2

 619 6 0.0184 

Banknote 

Authenti-

cation 

2 

1 0.4567𝑓3 − 0.0528𝑓4 + 0.3640𝑓2 + 0.7121𝑓1 1340 32 0.8526 

2 (0.1890𝑓4 − 0.2364𝑓3) × (0.0904𝑓2 − 0.5019𝑓1) 32 0 0.0000 

Breast 

Cancer 

Wisconsin 

Diagnostic  2 

1 

 
11.9558𝑓12

2.1969𝑓19+2.3684𝑓15
×

0.3705𝑓11×0.8895𝑓5

0.1627𝑓17
+ (0.0871𝑓23 + 497.222𝑓7) × (0.496𝑓3 −

15.5294𝑓6) −
0.4083𝑓4

0.0643𝑓2×0.4172𝑓28×0.0431𝑓14
− {(

23.4939𝑓20

1.1706𝑓8
−9.1887𝑓25 × 0.1537𝑓1 −

0.982𝑓27

2.2949𝑓16
−

0.0065𝑓13 −  0.5138𝑓21) × (
19.2656𝑓29+ 0.4549𝑓22

0.4412𝑓10+0.1184𝑓26
+ 1.6674𝑓30 × 3.5946𝑓24)} 

549 20 0.1474 

2 

 
(1.9206𝑓15+0.1401𝑓6)×0.7436𝑓27×(0.7285𝑓25−0.1565𝑓28)×0.8941𝑓22×0.8295𝑓4

0.0928𝑓10×(
0.6147𝑓26
0.1009𝑓19

+
0.8566𝑓2
0.1397𝑓9

−0.5595𝑓21−0.4672𝑓5−
0.651𝑓20

0.1248𝑓18
)

− (0.9158𝑓7 + 0.2982𝑓29 −

0.6528𝑓13 × 0.3787𝑓8) ×
0.3687𝑓3×0.0367𝑓12

0.1825𝑓1+0.6836𝑓23
× (0.74𝑓24 − 0.4713𝑓14 + 0.1267𝑓11 ×

0.9811𝑓30 + 0.9386𝑓17 × 0.2252𝑓16) 

20 0 0.0000 

Car 

Evaluation 
13 

1 (0.0254𝑓3 + 1.0307𝑓6 ) × (1.2495𝑓4 − 0.3656𝑓2) + 0.1328𝑓5 − 0.7774𝑓1 1003 725 0.9772 

2 0.9312𝑓1 + 0.9311𝑓2 − 0.0450𝑓6 + 0.0038𝑓4 − 0.0432𝑓5  124 601 1.2129 

3 (0.4148𝑓3 + 0.9397𝑓2) × (0.6600𝑓1 + 0.2111𝑓6 + 0.2247𝑓5 + 0.0188𝑓4) 150 451 1.4296 

4 
0.2071𝑓2 + 0.3115𝑓1

0.0026𝑓3 + 1.8128𝑓5 

− 1.1642𝑓6  70 381 0.9502 

5 (0.3339𝑓2 + 0.9655𝑓1) × 0.1604𝑓6 ×  0.4692𝑓5 + 0.4905𝑓3 × 0.0016𝑓4 75 306 1.3791 

6 
(1.6270𝑓2 − 0.5243𝑓6 ) × 0.2967𝑓3

1.1159𝑓5 

− 0.4037𝑓4 − 0.0001𝑓1 39 267 1.6433 

7 ((0.8728𝑓2 ×  0.5461𝑓5 ) − 0.5702𝑓6 − 1.8730𝑓1) × (0.8159𝑓3 + 0.2953𝑓4) 27 240 0.7261 

8 
0.5375𝑓5 + 1.4298𝑓3 + 0.1258𝑓6 − 0.1129𝑓2

0.9633𝑓1 + 4.7259𝑓4

 31 209 0.8590 

9 
0.6127𝑓1 − 0.1598𝑓3 − 0.1375𝑓5 + 0.6102𝑓2

0.0141𝑓6 × 1.1527𝑓4

 50 159 1.6065 

10 0.0301𝑓4 − 0.0049𝑓3 − 1.1130𝑓6 −  1.0766𝑓5 + 0.0972𝑓2 × 0.7656𝑓1 57 102 0.5555 

11 
0.6220𝑓6 −  0.8985𝑓5 

0.3331𝑓2 + 0.1390𝑓1

− 0.1048𝑓4 × 0.1458𝑓3 53 49 0.9945 

12 0.1655𝑓3 + 2.8962𝑓6 +  0.9130𝑓5 + 0.1253𝑓4 − 0.0773𝑓1 + 0.0046𝑓2 40 9 0.0578 

13 (0.4115𝑓6 + 0.0820𝑓4) ×
0.9167𝑓2 − 0.7246𝑓1

0.4177𝑓3 −  0.2257𝑓5 

 9 0 0.0000 

Iris 2 
1 0.2559𝑓3 + 0.0018𝑓4 − 0.6265𝑓1 − 0.5043𝑓2 138 12 0.6973 

2 1.2035𝑓2 + 0.1410𝑓3 − 0.4938𝑓4 + 0.4061𝑓1 6 6 0.6741 

Seeds 3 

1 
0.1673𝑓6

0.3916𝑓5

+ (0.0619𝑓2 − 0.0489𝑓7) − (0.1594𝑓3 × 1.4004𝑓4 × 0.2024𝑓1) 130 80 1.5480 

2 
0.0724𝑓2

0.7171𝑓5

×  
0.0080𝑓3

0.0139𝑓6

−
1.6947𝑓7

0.3063𝑓4

− 0.0478𝑓1 42 38 1.0749 

3 

0.8065𝑓5

0.4834𝑓6
+ 0.7505𝑓1 × 0.3210𝑓4

1.6162𝑓3

0.0911𝑓2
+ 1.3856𝑓7

 37 1 0.1038 

User 

Knowledge 

Modeling 

5 

1 0.6115𝑓4 + 0.1941𝑓1 − 0.1072𝑓2 + 0.1395𝑓3 + 1.3571𝑓5  287 116 1.4598 

2 0.0871𝑓2 + 0.0378𝑓3 + 0.1894𝑓4 + 0.0096𝑓1 + 0.6614𝑓5 84 32 1.0208 

3 
0.0009𝑓2

0.1408𝑓4 × 0.3473𝑓5 × (0.7899𝑓1 − 0.1434𝑓3)
 13 19 0.7728 

4 
0.1034𝑓4 − 0.5578𝑓5

10.7284𝑓2

+ 0.0103𝑓1 − 0.2243𝑓3 7 12 0.3946 

5 (1.2328𝑓2 + 0.1893𝑓3 + 0.4515𝑓4 ) × (0.0286𝑓1 + 1.1009𝑓5) 12 0 0.0000 

Wine 1 1 
(0.7565𝑓13 + 25.5745𝑓2 +

9.595𝑓8

0.0365𝑓9

) − (0.1767𝑓10 + 0.1541𝑓6) ×
1.8678𝑓5

0.392𝑓7

− 0.7482𝑓1 × (2.4062𝑓4 − 13.9003𝑓12 − 19.4186𝑓3) 
177 1 0.0387 
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7. Generalising ability test 

Models are normally tested on two criteria. First is about their accuracy on the data on which they are 

trained (Section 6). Second is about their generalising ability i.e., their accuracy on the data on which they 

are not trained. This section deals with the second scenario. Experiments to evaluate the generalising ability 

of the hierarchical learning involve using two disjoint subsets of the dataset for the purpose of training and 

testing the model, respectively. The training sets are used to learn models, which are later tried on the test 

set. This division of training and test set is done entirely at random. Furthermore, to cross validate the 

results, the roles of training and test sets are also interchanged to remove any bias. In addition to this, it is 

done several times to produce average performance results. In this work this standard procedure is strictly 

followed to test the generalizing ability of hierarchical models. The datasets are randomly divided into 

training and test sets of equal size, their roles are also reversed, and this procedure is repeated for 30 

independent random trials. The 10 datasets used in the above-described experiments were the same as those 

used in experiments described in section 6. Results of these experiments are reported in Table 3, in which, 

column 1 and 2 identify the dataset. Column 3 and column 4 list the best and the worst results, respectively, 

achieved among 30 random trials. Column 5 lists average results of 30 random trials. Column 6 states what 

percentage of results were 100% accurate classification among the 30 random trials. The average results 

reveal that the proposed method achieves more than 90% correct results on each dataset.  

Table 3. The Classification Results 

No. Dataset 

Best 

Results 

% 

Worst 

Results 

% 

Average 

Results 

% 

%age of 

Accurate 

Results 

Average 

Execution Time 

(Seconds) 

(1) (2) (3) (4) (5) (6) (7) 

1st Acute Inflammations Nephritis 100.00 98.33 99.83 90.00 0.00 

2nd Acute Inflammations Urinary 100.00 94.17 99.36 76.67 0.00 

3rd Balance Scale 100.00 97.92 99.47 16.67 0.72 

4th Banknote Authentication 100.00 98.25 99.60 3.33 2.75 

5th Breast Cancer Wisconsin (Diag.) 96.66 92.62 95.00 0.00 141.76 

6th Car Evaluation 94.85 91.09 92.88 0.00 83.24 

7th Iris 96.67 91.33 93.87 0.00 0.11 

8th Seeds 93.33 85.71 90.17 0.00 1.31 

9th User Knowledge Modelling 95.53 87.59 92.69 0.00 1.99 

10th Wine 95.51 83.71 90.82 0.00 2.67 

 Average 97.25 92.07 95.37 18.67 23.45 

8. Comparison with contemporary methods 

We compare the proposed method with state-of-the-art methods for which the results on all the above 

datasets have been reported. Unfortunately, there is none that has been tried on all the ten datasets. 

However, one recently published paper about Random Forest [36] has tested five popular ensemble 

methods on nine of the ten datasets (except Breast cancer Diagnostic). We also found another paper about 

classification trees [37], which has been tested on nine out of ten datasets (except user knowledge 

modelling). Table 4 presents the comparison of the results of proposed method with those of methods. 

Column 1 and 2 of the table identify the dataset, columns 3-9 state average results of the seven methods (as 

referred in the table) on ten datasets in terms of number of correct predictions in percentage. At the bottom 

of the table there are three additional rows i.e., rows (11-13). Row 11 provides overall average of all the ten 

datasets. Number of random trials is mentioned in row 12 and finally row 13 reveals size of the training set 

as the percentage of the size of the complete dataset. The results show that the hierarchical learning achieves 

overall average of 95.37% against the best average of other schemes 94.68%. Furthermore, the hierarchical 

learning was trained on a much smaller proportion of the datasets, i.e., 50%, as compared to the competing 

methods trained on 75%-90% of the datasets. In addition to this, computational time of other schemes range 

within 5-15 minutes against average of less than one minute in case of hierarchical learning. Further to add, 

other schemes used much faster application-optimized cloud-computing environments as compared to 

personal laptop used to produce results presented here with the proposed method. Accounting all these 

facts, one may regard the results produced by the proposed method as competitive. 
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 Table 4: Comparison with Literature 

No. Dataset BA-C4.5 BA-CDT RF CRF RCRF OCT 
Hierarchical 

Learning 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1st Acute Inflam. Nephritis 100.00 100.00 100.00 100.00 100.00 100.0 99.83 

2nd Acute Inflam. Urinary 100.00 99.42 100.00 100.00 100.00 100.0 99.36 

3rd Balance Scale 81.56 82.41 80.30 81.94 82.76 87.6 99.47 

4th Banknote Authentication 98.95 98.77 99.34 99.31 99.26 98.7 99.60 

5th Breast Cancer (Diagnostic) - - - - - 94.0 95.00 

6th Car Evaluation 94.33 93.55 94.70 94.44 93.3 87.5 92.88 

7th Iris 94.47 95.07 94.53 94.6 94.87 95.1 93.87 

8th Seeds 92.71 91.19 93.57 93.57 93.71 91.3 90.17 

9th User Knowledge Modelling 90.33 89.98 91.31 90.79 90.60 - 92.69 

10th Wine 95.34 95.84 97.74 97.51 97.51 91.6 90.82 

11th Overall Average 94.18 94.03 94.61 94.68 94.67 93.98 95.37 

12th No. of Random trials 10x10-fold x-validation 
5x4-fold 

x-validation 

30x2-fold x-

validation 

13th Size of Training Set % 90.00 75.00 50.00 

9. Conclusion and Future Work  

This is sixth paper in the series of papers on the hierarchical learning. It theorises the method of 

hierarchical learning through 4 principles, i.e., principle of successive bifurcation, principle of two-tier 

discrimination, principle of class membership and the principle of selective data normalization. The first 

principle proposes that the multiple simpler models can emulate the effect of a more complex model, when 

put together hierarchically. The second principle separates the datapoints in terms of classes as well as 

domain. The third principle establishes class membership rule at different hierarchy levels. The last 

principle articulates the rules for the data normalisation. The presented method is not only supported on 

the mathematical grounds but also on the empirical results on ten popular real-world classification datasets 

taken from UCI repository. On these datasets accurate classification nonlinear discriminant models were 

produced, details of some of those models are given in section 6. The procedure to evaluate the accuracy of 

those models is also detailed. The generalising ability of the hierarchical method was also tested on the same 

datasets. The technique produced more than 95% correct results on average while trained on only 50% of 

the samples. Interestingly, the average of worst results in 30 random trials on all the datasets also turns out 

to be greater than 92%, which is a commendable result. The method performs competitively when 

compared with the results from other state of the art methods. Despite all the above success the technique 

still needs further theoretical enhancements for its wider applicability on the large spectrum of datasets, 

which are currently under investigation. 

Appendix 

Maximal Spread Theorem 

The maximal spread theorem calculates the value of the range parameter for the maximum possible spread 

of data points in terms of the size of the dataset, i.e., the number of data points present in the dataset under 

investigation. 

Theorem Statement: The range parameter for estimating minima/maxima of a set of points with 

maximal spread is equal to √𝑛 − 1. 

Please refer to equation 6 where range parameter is used for estimation of minima and maxima of the 

set of points. In statistics this parameter is roughly taken as 3. However, this value is suitable for larger 

datasets. In the theory of probabilistic hierarchical learning, training set is continually bifurcated in each 

hierarchy. Therefore, farther the hierarchy level smaller the dataset. Therefore, it was thought necessary 

that this parameter should be the function of the size of the subset. Furthermore, as we move to the higher 

levels of hierarchies the subset not only become smaller but also their sample spread becomes larger, as 

remaining samples are only those which failed to fit in the earlier models. This necessitates to estimate 

maximum possible value of this parameter to capture the structure of the set of points. For solution purpose, 

let us take only minima part of equation 6, as shown in equation 11. 
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𝜇𝑚𝑖𝑛 = 𝜇𝑚𝑒𝑎𝑛 − 𝜌 ∗ 𝜇𝑠𝑑                                                                        (11) 

Rearranging the variables: 

𝜌 =
𝜇𝑚𝑒𝑎𝑛−𝜇𝑚𝑖𝑛

𝜇𝑠𝑑
                                                                                                                                                   (12) 

Applying limits: as minima approaches 0. 

lim
𝜇𝑚𝑖𝑛→0

𝜌 =
𝜇𝑚𝑒𝑎𝑛

𝜇𝑠𝑑
                                                                        (13) 

The samples of the set will be maximally spread when one of the samples is closest to the mean while 

rest of the samples are at farthest point from the mean. Let us assume that maximum distance between the 

points is a unity. In the case of equation 13 since minima lies at 0, therefore, maxima should be at 1. To 

further follow our assumption of maximal spread let us consider one sample lies at minima 0 and 𝑛-1 

samples lie at maxima 1. Therefore, by substituting these values in equation 5, the mean of the point set can 

simply be calculated, as shown in equation 14. 

𝜇𝑚𝑒𝑎𝑛 =
𝑛−1

𝑛
                                                                                                                                                      (14) 

We can compute standard deviation by substituting the value of mean from equation 13 in equation 7, 

as shown in equation 15. 

𝜇𝑠𝑑 = √(
𝑛−1

𝑛
)

2
+(𝑛−1)×(

1

𝑛
)

2

𝑛
=

√𝑛−1

𝑛
                                                                                                      (15) 

Substituting the values of the mean (equation 14) and the standard deviation (equation 15) in equation 

12, we get the value of the range parameter as shown in equation (16). 

𝜌 = √𝑛 − 1                                                                                                                                                        (16) 

Equation 16 proves the theorem statement. 
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