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Abstract: The security of many public-key cryptosystems and protocols relies on the difficulty of factoring a large 

positive integer n into prime factors. The Fermat factoring method is a core of some modern and important 

factorization methods, such as the quadratic sieve and number field sieve methods. It factors a composite integer 

n=pq in polynomial time if the difference between the prime factors is equal to ∆= 𝒑 − 𝒒 ≤ 𝒏𝟎.𝟐𝟓 , where p>q. The 

execution time of the Fermat factoring method increases rapidly as ∆ increases. One of the improvements to the 

Fermat factoring method is based on studying the possible values of (n mod 20). In this paper, we introduce an 

efficient algorithm to factorize a large integer based on the possible values of (n mod 20) and a precomputation 

strategy. The experimental results, on different sizes of n and ∆, demonstrate that our proposed algorithm is faster 

than the previous improvements of the Fermat factoring method by at least 48%.  
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1. Introduction 

Let n be a positive integer.  The integer factorization problem (IFP) is finding the prime factors of   

𝑛 = 𝑝1
𝛼1𝑝2

𝛼2 … 𝑝𝑘
𝛼𝑘, where 𝑝𝑖

𝛼𝑖 are pairwise distinct primes and each 𝛼𝑖 ≥ 1.  IFP is one of the 

fundamental problems in information security and computational number theory for the following 

reasons:  

1. The security of many public-key cryptosystems and protocols [1-2] relies on the difficulty of IFP. 

For example,  in the RSA  cryptosystem [1], each user performs the following: 

− Generates two large distinct primes, p and q of the same bit-size. 

− Computes 𝑛 = 𝑝 𝑞, and  Euler’s totient function 𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1). 

− Randomly generate an integer e with gcd(𝜑(𝑛), 𝑒) = 1, where gcd denotes the greatest 

common divisor.  

− Computes the multiplicative inverse d of e modulo 𝜑(𝑛), 𝑖. 𝑒., 𝑒𝑑 ≡ 1 𝑚𝑜𝑑 𝜑(𝑛). 

− Now, the public key is the pair (e, n), while the private key is d. The prime factors p and q and 

the integer φ(n) are kept secret (or destroyed). 

− A message (plaintext)  m is encrypted by calculating the ciphertext as follows: 𝑐 = 𝑚𝑒𝑚𝑜𝑑 𝑛. 

An encrypted message (ciphertext) is decrypted by calculating 𝑚 = 𝑐𝑑𝑚𝑜𝑑 𝑛. 

2. IFP is an excellent example of a problem that does not currently have a polynomial time 

algorithm in classical computers but does in quantum computers [3-5]. 

There are two basic types of factoring methods for a large odd composite integer n [6-13]:  

1. Special purpose factoring methods that quickly find small prime factors. The primary problem 

with this type of factoring method is that if n has no small factor, as in public-key cryptosystems, 

then factoring methods will have essentially no chance of succeeding. The Trial division, 

Pollard's-method, Pollard's p-1 method, and the elliptic curve method are examples of this type of 

factoring method.  
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2. General-purpose factoring methods are exponential or subexponential time algorithms that factor 

𝑛 independent of the size of its prime factors.  The continued fraction technique, the quadratic 

sieve, and the number field sieve are examples of this type of factoring methods. For factoring 

large n with large prime factors, the number field sieve method has proven to be the most 

effective method until now.  

On the other hand, if additional information about some public-key cryptosystems is available, then 

there are some factoring techniques [14-17] that work for those cryptosystems.  

In this paper, we are concerned with Fermat’s factorization method [12-13] or simply Fermat’s 

method (FM), which finds two integer factors p and q such that 𝑛 = 𝑝𝑞 = 𝑢2 − 𝑣2 = (𝑢 − 𝑣)(𝑢 + 𝑣). If 𝑢 −

𝑣 ≠ 1,  then we have found a nontrivial factor of n. The idea of FM is a fundamental of some modern and 

important factorization methods, such as the quadratic and multiple polynomial quadratic sieves, and 

number field sieves methods. 

For security reasons, such as in public-key cryptosystems [1-2], the integer 𝑛 = 𝑝𝑞 is usually a 

product of two primes of equal bit-size. It is possible to find these factors in polynomial time if the 

difference between the prime factors △= p − q ≤ 𝑛0.25 [18]. The main challenge with FM is when the 

difference △ is greater than 𝑛0.25.  

In this paper, we are interested in speeding up FM by reducing the search space using a 

precomputation strategy, where some the preliminary computations can be made to reduce the number of 

necessary operations after obtaining the integer u. This paper introduces a precomputation strategy to 

improve Somsuk’s improvement of FM [19], which we call FMMod20. We call our proposed algorithm 

FMMod20Precomp. 

The experimental results show that FMMod20Precomp is faster than the previous improvements to 

FM by at least 48% when △> 𝑛0.25. In fact, the percentage of improvement is affected by the sizes of n 

and △.   

The organization of the paper is as follows. Section 2 introduces the related works. In Section 3, we 

give a brief description of FMMod20. In Section 4, we introduce our precomputation strategy to improve 

FMMod20. In Section 4.1, we present the main idea of the proposed algorithm, FMMod20Precomp. In 

Section 4.2, we give a complete description of the proposed algorithm. In Section 5, we present the 

experimental study and comparison with three previous algorithms and then show the performance of 

FMMod20Precomp. In Section 6, we present the conclusion of the paper and future works. 

2. Related Works 

In general, FM starts by computing 𝑢 = ⌊√𝑛⌋ + 1, and 𝑣 = 𝑢2 − 𝑛. Then, it repeatedly checks whether 

v is a perfect square. If v is not a perfect square, then FM increases u by 1 and computes 𝑣 = 𝑢2 − 𝑛. If v is 

a perfect square, then FM returns 𝑝 =  𝑢 + √𝑣, and 𝑞 = 𝑢 − √𝑣, see Algorithm FM, where PS(x) is a 

subroutine that returns true if the integer number x is a perfect square, and returns false otherwise. 

Clearly, the search space of FM is large when n is large. 

Algorithm 1. FM (n: integer) returns integers 
Begin 

1. 𝑢 = ⌊√𝑛⌋ + 1 

2. 𝑣 = 𝑢2 − 𝑛 

3. While (PS(𝑣) =False) loop 

4.  𝑢 = 𝑢 + 1 

5.  𝑣 = 𝑢2 − 𝑛 

6. End while 

7. return  𝑢 + √𝑣  and   𝑢 − √𝑣 

End. 

Many techniques have been proposed to improve FM. Some of them used different FM formulas. 

Mckee [20]  proposed a variant of FM to search for three integers 𝑢, 𝑣, 𝑤 such that 𝑤2 = (𝑢 + ⌈√𝑛⌉𝑣)
2

−

𝑛𝑣2 and then computes gcd(𝑢 + ⌈√𝑛⌉𝑣 − 𝑤, 𝑛). Hart [21] proposed another variant of FM by searching for 

a solution to 𝑣2 = (⌈√𝑛 u⌉)
2

− 𝑛𝑢, which was achieved by looking for squares after reduction modulo 

𝑛, where 𝑢 starts from 1. The main drawback of these modifications is that they require more arithmetic 

operations than FM, so the running time is large for large integers, e.g. 1024 bits.  
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Other techniques discarded some values of v or u that cannot lead to a solution, and so hence reduced 

some calculations such as the perfect square test for v or u. Somsuk and Kasemvilas [22] proposed to 

ignore the perfect square test PS when the least significant digits of v, denoted by LSD(𝑣), LSD(𝑣) =

2, 3, 7, 𝑜𝑟 8 because if PS(𝑣)=True, then either LSD(𝑣) = 0, 1, 4, 5, 6 𝑜𝑟 9.  Somsuk and Kasemvilas [23] 

improved [22] by studying LSD(𝑢) to not compute v. In [19], Somsuk used LSD(𝑢) and (𝑛 𝑚𝑜𝑑 20) to 

study the possible values of  (𝑣 𝑚𝑜𝑑 20) to be a perfect square in order to make a decision whether to 

compute v. We denote this method by FMMod20.  Somsuk and Tientanopajai [24] proposed a method 

based on studying the last 𝑘 digits of n. The main problem of this method is that it requires 4 ∗ 10𝑘−1 

specific subroutines. Clearly, this is large, in particular for large k.  

Somsuk [25] proposed to use the formula 4𝑛 = 𝑥2 − 𝑦2, the Euler theorem, and the multiplication 

instead of PS to not compute PS, where the Euler theorem states, “Let x be a positive integer such that the 

greatest common divisor between x and n is 1, then 𝑥𝜑(𝑛) ≡ 1 mod 𝑛”. We denote this method by EF.  

Vynnychuk et al. [26] improved the method in [27] which checks whether 𝑢2 − 𝑛 by module of a certain set 

of foundations of modules b that are prime numbers is a quadratic residue. They used the 

relation (𝑣 𝑚𝑜𝑑 𝑏)2 𝑚𝑜𝑑 𝑏 = ((𝑢 𝑚𝑜𝑑 𝑏)2 𝑚𝑜𝑑 𝑏 − 𝑛 𝑚𝑜𝑑 𝑏)𝑚𝑜𝑑 𝑏. The main disadvantage of this method 

is that it requires large memory storage. 

Shiu [28] enhanced FM by ignoring all even (or odd) numbers for u or v based on writing n as 𝑛 =

4𝑘 ± 1, 𝑛 ≥ 3. If 𝑛 = 4𝑘 + 1, then u is odd and v is even. Otherwise,  𝑛 = 4𝑘 − 1,  u is even, and v is odd. 

We denote this method by OEF.  Somsuk et al. [29-30] proposed using the formula 𝑛 = 6𝑘 ± 1. If 𝑛 = 6𝑘 −

1, then u is divisible by 3. If 𝑛 = 6𝑘 + 1, then u is not always divisible by 3. 

On the other hand, some techniques [31-33] are based on estimating the prime factors and using the 

continued fraction of 
1

√𝑛
  to obtain a list of convergent and initial values for u. The main drawback of the 

methods in [31-32] is that they do not work for balanced primes, i.e., primes of the same bit-size. Tahir et 

al. [33] studied balanced primes with a slight improvement compared to EF using some numerical 

examples. 

Recently, Longhas et al. [34] proved theoretically that a composite (not prime) integer n of the form 

4k2 + 1 can be factorized using FM. 

The main lack in these studies is that there is not enough practical comparative study for large 

numbers. In [35], the authors presented a practical comparative study of most of these modifications when 

n is in the range of 100-500 bits. They showed experimentally that the fastest improvement of FM is OEF. 

3. Fermat’s Method using mod 20 

Since we are going to improve the algorithm (FMMod20) proposed by Somsuk [19], we briefly 

describe FMMod20. 

To avoid testing the perfect square for 𝑢2 − 𝑛 for every 𝑢, Somsuk [19] proposed testing only some 

values of 𝑢 based on the value of 𝑛 𝑚𝑜𝑑 20 and the least significant digit of 𝑢, LSD(𝑢), i.e., 𝑢  𝑚𝑜𝑑 10. 

Somsuk observed the following: 

1. Since n is odd and not divisible by 5, 𝑛 𝑚𝑜𝑑 20 is either 1, 3, 7, 9, 11, 13, 17, or 19. 

2. If 𝑢2 − 𝑛 is a perfect square, then 𝑢2 − 𝑛 𝑚𝑜𝑑 20 is either 0, 1, 4, 5, 9, or 16. 

Table 1 shows the possibility of finding perfect squares (in bold and underlined) when using the two 

relations (𝑛 𝑚𝑜𝑑 20) and (𝑢 𝑚𝑜𝑑 10). 

Table 1. Possibility of perfect square of 𝑢2 − 𝑛  [19] 

LSD(u) The values of u2-n mod 20 when u2 –n  mod 20 is 

   1          3         7          9        11       13        17        19 

0 1 17 13 11 9 7 3 1 

1 0 18 14 12 10 8 4 2 

2 3 1 17 15 13 11 7 5 

3 8 6 2 0 18 16 12 10 

4 15 13 9 7 5 3 19 17 

5 4 2 18 16 14 12 8 6 

6 15 13 9 7 5 3 19 17 

7 8 6 2 0 18 16 12 10 

8 3 1 17 15 13 11 7 5 

9 0 18 14 12 10 8 4 2 
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Algorithm 2. FMMod20 (n : integer): return integers  
Begin 

1. 𝑢 = ⌈√𝑛⌉            

2. r = n mod 20 

3. u=changeU(u, r) 

       /* find the first value of u such that  𝑢2 − 𝑛  mod 20 =0,1,4,5,9, or 16, see Algorithm change,  

          Lines 1-34 in [19]. */ 

4. 𝑣 = √𝑢2 − 𝑛 

5. While (v is not  integer) 

6. If (r = 1) then 

7.  The procedure for determining the integer v such that LSD(u) is 1, 5, or 9 

8. ElseIf  (r = 3) then 

9. The procedure for determining the integer v such that LSD(u) is 2, or 8 

10. ElseIf  (r = 7) then 

11.     -- similar to the previous steps   

12.                   -- the complete while loop can be found in Algorithm MFFV4, Lines 11-21 in  [19]. 

13.      End if  

17. End While 

18. return p=u-v, and q=u+v 

End. 

4. The Proposed Algorithm 

In this section, we propose modifications to FMMod20 using a precomputation strategy. In Section 

4.1, we mention the main idea of our proposed algorithm, FMMod20Precomp. Section 4.2 includes the full 

description of FMMod20Precomp. 

4.1 Outline of the proposed algorithm 

The proposed algorithm FMMod20Precomp is based on two observations on FMMod20: 

1. Given an integer n, the value of 𝑟 = 𝑛 𝑚𝑜𝑑 20  is fixed in the algorithm. Therefore, there is no 

need to check the value of r every iteration of the while-loop (see, for examples, Lines 6, 8, 10 of 

the FMMod20 algorithm). 

2. The value of 𝑢 𝑚𝑜𝑑 10 (or LSD(𝑢)) is variable, but for a fixed value of 𝑛 𝑚𝑜𝑑 20, the possible 

values of u, PS(𝑢2 − 𝑛) =True, can be determined initially. Thus, there is no need to search for u 

such that LSD(𝑢) is one of the values that may produce a perfect square (see, for examples, Lines 

6, 8, 10 in the FMMod20 algorithm). For example, suppose that 𝑛 𝑚𝑜𝑑 20 = 1. From Table 2, the 

possible values for u, such that PS(𝑢2 − 𝑛) =True, are LSD(𝑢) = 1, 5, and 9. As we can see from 

Table 1 and Table 2, the number of possible values of u that may produce a perfect square is at 

most 3. 
Table 2. Number of possible values of u such that PS(u2 –n)  is true 

n mod 20 1 3 7 9 11 13 17 19 

Number of accepted cases 3 2 2 3 3 2 2 3 

Our strategy is to compute the differences between the possible values of u every 10 consecutive 

integers such that 𝑢2 − 𝑛  is a perfect square. To implement such strategy, we do the following steps: 

First, we define a Cycle as an integer interval [𝑢0, 𝑢0 + 9], where LSD(𝑢0) = 0, i.e., 10 consecutive 

integers. The integer 𝑢0 is called the start point of a cycle. Since we use the relation u mod 10, i.e., there are 

10 possible values for u mod 10, we choose the length of the cycle to be 10. 

Second, we construct an array dif to hold the differences between the possible values of u such that 

PS(𝑢2 − 𝑛) =True based on the relations (𝑛 𝑚𝑜𝑑 20 ) and (𝑢 𝑚𝑜𝑑 10) . The array dif is a two-dimensional 

array that contains 4×8 elements, as shown in Table 3, where 

• 𝑑1 is the difference between the start point of a cycle and the first possible value of u in the cycle, 

such that 𝑃𝑆(𝑢2 − 𝑛) =True. 

• 𝑑2 is the difference between the first and second possible values of u in a cycle, such that 𝑃𝑆(𝑢2 −

𝑛) =True. 
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• 𝑑3 is the difference between the second and third possible values of u in a cycle, such that 

𝑃𝑆(𝑢2 − 𝑛) =True. If there is no third value for u, such that 𝑃𝑆(𝑢2 − 𝑛) =True, then d3 has no 

value, denoted by “-”. 

• d4 is the difference between the last possible value of u in a cycle, such that 𝑃𝑆(u2 − n) =True, and 

the start point of the next cycle. 

Table 3. The two-dimensional array dif contains the differences between the possible values  

of u, such that PS(u2 – n) =True, based on the relations (n mod 20) and (u mod 10). 

Index of dif 

 1 3 7 9 11 13 17 19 

1: d1 1 2 4 3 0 3 1 0 

2: d2 4 6 2 2 4 4 8 2 

3: d3 4 - - 2 2 - - 6 

4: d4 1 2 4 3 4 3 1 2 

4.2 The algorithm 

The proposed algorithm includes two main steps. The first step (called the preparation step) aims to 

search for a solution (prime factors) in the small interval [𝑢, 𝑢′], where 𝑢 = ⌊√𝑛⌋ + 1 and 𝑢′ is the first 

integer greater than or equal to u such that (𝑢′ 𝑚𝑜𝑑 10) = 0. This step can be done by checking if 

(𝑢 𝑚𝑜𝑑 10) ≠ 0. Then, the proposed algorithm terminates by calculating the prime factors if PS(𝑢2 −

𝑛) =True. Otherwise, the algorithm increases u by one. This process is repeated until the algorithm either 

finds u such that 𝑢2 − 𝑛  is a perfect square or stops when (𝑢 𝑚𝑜𝑑 10) = 0. 

The second step, called perfect square in a cycle (PSC), aims to search for the prime factors in the 

remainder space.  Based on the fixed value of (𝑟 = 𝑛 𝑚𝑜𝑑 20), the algorithm increases u by dif[1, r]. Note 

that, u satisfies that 𝑢 𝑚𝑜𝑑 10 = 0 as described in the preparation step. Next, the proposed algorithm tests 

whether  𝑢2 − 𝑛 is a perfect square. If PS(𝑢2 − 𝑛) = False, then PSC increases u by dif[2, r] and again tests 

u. Based on the value of r, PSC increases u by dif[3, r] or not. If there is no value of u satisfying that 

PS(𝑢2 − 𝑛) = True in the cycle, then PSC increases u by dif[4, r] and repeats the process. If one of u’s 

satisfies that PS(𝑢2 − 𝑛) =True, then PSC returns the prime factors.  

The steps of the proposed algorithm are presented in the FMMod20Precomp algorithm. Line 1 

represents the first value of u in the search space, while Line 2 represents the initial value of the Boolean 

variable “found’’.  Lines 3-9 represent the preparation step, i.e., finding the first value of u such that either 

(𝑢 mod 10) = 0 or PS(𝑢2 − 𝑛) =True. Lines 10-14 calculate the prime factors of n when the boolean 

variable found is true, i.e., (𝑢2 − 𝑛) is a perfect square. The remaining lines represent the second step PSC, 

i.e., searching for u such that PS(𝑢2 − 𝑛)=True using the Subroutine Cycle(r, u, n), where 𝑟 = 𝑛  𝑚𝑜𝑑 20.  

Lines 18-19 calculate the prime factors of n 

Note that there is no statement in the body of the while-loop, Lines 16-17, i.e., we repeat calling the 

subroutine Cycle until it finds u such that PS(𝑢2 − 𝑛) =True. It is not difficult to put the body of the 

subroutine Cycle inside the body of the while-loop which is slightly faster. 

The full pseudo code of our proposed algorithm is given in Algorithm FMMod20Precomp, where the 

subroutine Cycle performs the second step PSC.  

 

Algorithm 3.  Cycle(r: integer, u: in out integer, n:integer): return Boolean 
Begin 

1. 𝑢 ⟵ 𝑢 + 𝒅𝒊𝒇[1, 𝑟]            

2. If (PS(𝑢2 − 𝑛) = true) then 

3. return True 

4. Else  

5. 𝑢 ⟵ 𝑢 + 𝒅𝒊𝒇[2, 𝑟]          

6. If (PS(𝑢2 − 𝑛) = true) then 

7.  return True 

8. Else  

9.            If  (𝑟 ∈ {1,9,11,19}) then              

10.   𝑢 ⟵ 𝑢 + 𝒅𝒊𝒇[3, 𝑟] 

11.    If (PS(𝑢2 − 𝑛) = true) then 

12.                        return True 

13.    End if  
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14.            End if    

15.  𝑢 ⟵ 𝑢 + 𝒅𝒊𝒇[4, 𝑟]          

16.      End if  

17. End if 

18. return False 

End. 
 

Algorithm 4. FMMod20Precomp (Fermat Method using Modulus 20 and precomputation) 
Input: a composite number n.  

Output: two primes, 𝑝 and  𝑞, s. t.  𝑛 = 𝑝 𝑞. 

Begin 

1. 𝑢 ⟵ ⌊√𝑛⌋+1 

2. Found ⟵ False 

3. While (Not found and (𝑢 mod 10) ≠ 0) do 

4. If (PS(𝑢2 − 𝑛) = true) then 

5. Found ⟵ True 

6. Else  

7. 𝑢 ⟵ 𝑢 + 1 

8. End if 

9. End while 

10. If (Found=True) Then 

11. 𝑝 ⟵  𝑢 + √𝑢2 − 𝑛 

12. 𝑞 ⟵ 𝑢 − √𝑢2 − 𝑛 

13. return p and q 

14. End if 

15. 𝑚 ⟵ 𝑛 mod 20 

16. While ( Cycle(m, u, n) =  False) do 

17. End while 

18. 𝑝 ⟵ 𝑢 + √𝑢2 − 𝑛 

19. 𝑞 ⟵ 𝑢 − √𝑢2 − 𝑛 

20. return p and q 

End. 

Now, the number of iterations executed by FMMod20Precomp can be calculated as follows.  The 

total number of iterations for the search space for FM is (𝑝 + 𝑞) − (⌊√𝑛⌋ + 1), where the term (𝑝 + 𝑞) 

represents the last value of u in the search space, while the term (⌊√𝑛⌋ + 1) represents the first value of u 

in the search space. 

The algorithm FMMod20Precomp executes 𝛼0 iterations to find the first u such that (𝑢 𝑚𝑜𝑑 10) = 0, 

where 0 ≤ 𝛼0 ≤ 9.  The integer  𝛼0 takes the value 0 when the start value of u satisfies (𝑢 𝑚𝑜𝑑 10) = 0. On 

the other hand, 𝛼0 = 9 when the start value of u satisfies (𝑢 𝑚𝑜𝑑 10) = 1. In general, the worst case for the 

number of iterations is 9. The number of remaining iterations, based on FM, is 

α = (𝑝 + 𝑞) − (⌊√𝑛⌋ + 1) − 𝛼0. 

FMMod20Precomp excludes approximately 70% of the values in the search space since it ignores at 

least 7 integers out of 10 integers in each cycle. Therefore, the total number of iterations including the test 

of a perfect square after the preparation step is  α − α × 0.7 = 0.3 α. Hence the total number of iterations 

for FMMod20Precomp is 0.3 α + α0=0.3 ((𝑝 + 𝑞) − (⌊√𝑛⌋ + 1)) + 0.7𝛼0. Therefore, the 

FMMod20Precomp algorithm has a better performance compared to the previous FM modifications. 

5. Experimental Results 

This section presents the experimental performance of the proposed FMMod20Precomp algorithm. It 

consists of two sections. The first section describes the data set, hardware, and software used in the 

experimental study. The other section compares FMMod20Precomp, FMMod20 [19], EF [25] and OEF [28-

30].  

5.1 Platform Specification and Data Set 

The algorithms (FMMod20Precomp, FMMod20, EF and OEF) were implemented using the C++ 

language and executed on a computer consisting of the processor Xeon E5-2630 with a speed of 2.6 GHz 
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and a memory of 16 GB. The computer ran the Microsoft Windows 10 operating system.  We used the 

GMP library (GNU Multiple Precision) 1 to operate with big integers, greater than 64 bits. 

We have two parameters affecting the execution time of the algorithms: (1) the size of n, which is 

equal to the number of bits in n and denoted by |𝑛|, and (2) the value of △. The sizes of n conducted in the 

experimental study were 128, 256, 512, and 1024 bits. For each value of n, the size of each prime factor is 

|𝑛|/2. For example, if n has 1024 bits, then each prime factor has 512 bits. Now, let △0= p − q = 𝑛0.25,  
and therefore, 

|△0| =
|𝑛| 

4
. 

The sizes of △ conducted in the experimental study were  |△0| + 10, |△0| + 15,  |△0| + 20, 

or |△0| + 25.  As we mentioned in Section 1, FM is efficient when △≤ 𝑛0.25, while the execution time of 

FM increases as △ increases.  Therefore, there is no need to study FM when the size of △ equals |△0|.  

5.2. The Results 

This section compares the proposed FMMod20Precomp algorithm with the three previous 

algorithms: FMMod20, OEF and EF.   

Figure 1-4 show the average execution times (in seconds) of the four algorithms for 50 values of n  as 

the size of n varies 128, 256, and 512 bits, and for 20 values of n with sizes of 1024 bits. For each size 128, 

256, 512, and 1024 bits, we generate n such that the size  of △ is | △ | = |△0| + 𝛿, where 𝛿 = 10, 15, 20,
and 25.   

 

Figure 1. Comparison between the four algorithms when |∆|=│∆0│+10 

 

 

Figure 2. Comparison between the four algorithms when |∆|=│∆0│+15 

                                                            
1 GMP library, "The GNU multiple precision arithmetic library", 2021. Available: https://gmplib.org. 
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Figure 3. Comparison between the four algorithms when |∆|=│∆0│+20 

 

Figure 4. Comparison between the four algorithms when |∆|=│∆0│+25 

Table 4.  Percentage of improvement of FMMod20Precomp compared to FMMod20 
𝛿 |n| 

     64                 128                 256               512               1024                            

10 89.3% 27.1% 51.4% 47.6% 60.9% 

15 73.8% 68.3% 64.8% 56.1% 41.3% 

20 74.5% 67.0% 65.4% 55.8% 39.2% 

25 65.4% 68.3% 63.2% 57.9% 39.3% 

 

Table 5. Percentage of improvement of FMMod20Precomp compared to OEF 
𝛿 |n| 

     64                 128                 256               512               1024                            

10 66.7% 28.6% 36.4% 35.0% 64.3% 

15 45.6% 51.1% 44.3% 49.9% 52.5% 

20 51.5% 49.5% 47.1% 50.5% 48.5% 

25 46.2% 50.8% 49.5% 53.6% 50.1% 

Table 6: Percentage of improvement of FMMod20Precomp compared to EF 
𝛿 |n| 

     64                 128                 256               512               1024                            

10 88.9% 66.7% 69.6% 75.9% 92.2% 

15 73.7% 76.5% 68.6% 57.2% 34.9% 

20 74.0% 75.0% 69.3% 56.7% 28.9% 

25 74.5% 76.5% 67.2% 61.7% 31.8% 

From Figures 1-4 and Tables 4-6, we can conclude the following: 

• FMMod20Precomp has execution times less than FMMod20, EF, and OEF for all different values 

of n and | △ | = |△0| + 𝛿.   

• FMMod20Precomp reduces the average CPU time by 58% on average compared to a fast 

implementation of the FMMod20 algorithm. 

0

50

100

150

200

64 128 256 512 1024
R

u
n

n
in

g
 T

im
e
 i

n
 S

ec
o
n

d
s

|n|

│∆0│+20

FMMod20

FMMod20PreComp

OEF

EF

0

10000

20000

30000

40000

50000

64 128 256 512 1024

R
u

n
n

in
g

 T
im

e 
in

 S
ec

o
n

d
s

|n|

│∆0│+25

FMMod20

FMMod20PreComp

OEF

EF



 AETiC 2022, Vol. 6, No. 2 58 

www.aetic.theiaer.org 

• FMMod20Precomp reduces the average CPU time by 48% on average compared to the OEF 

algorithm. 

• FMMod20Precomp reduces the average CPU time by 66% on average compared to the EF 

algorithm. 

• The percentages of the improvements depend on the size of n and ∆.   

• In general, for |n|< 1024, the two algorithms OEF and FMMod20 have better performance than 

the EF algorithm. On the other hand, the EF algorithm has better performance than the OEF and 

FMMod20 algorithms in the case of |n|=1024. 

• EOF and FMMod20 perform worse when |n|=1024. 

In general, the proposed FMMod20Precomp algorithm has better performance compared to 

FMMod20, EF, and OEF for different values of n and |△0| + 𝛿.   

6. Conclusion and Future Works 

A new strategy to improve the Fermat factoring method and FMMod20 is proposed. It is based on 

computing the differences between the possible values of u every 10 consecutive integers such that 𝑢2 − 𝑛 

is a perfect square.  We have used a two-dimensional array dif to hold these differences. Then based on 

the value of (𝑛 𝑚𝑜𝑑 20), and the array dif, the algorithm discards some values of u that cannot lead to a 

solution. The experimental results, on different sizes of n and ∆, show that the FMMod20Precomp 

algorithm has better performance.  FMMod20Precomp is faster than FMMod20 by 58% on average and faster 

than the previous improvements of the Fermat factoring method by 48% on average.   

In future work, we will study the possibility of combining two or more methods to improve FM. We 

can also use a multicore system [36] to improve FMMod20Precomp. 
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