
Annals of Emerging Technologies in Computing (AETiC)

Vol. 6, No. 2, 2022

Hatem M. Bahig, “Speeding Up Fermat’s Factoring Method using Precomputation”, Annals of Emerging Technologies in Computing

(AETiC), Print ISSN: 2516-0281, Online ISSN: 2516-029X, pp. 50-60, Vol. 6, No. 2, 1st April 2022, Published by International

Association for Educators and Researchers (IAER), DOI: 10.33166/AETiC.2022.02.004, Available:

http://aetic.theiaer.org/archive/v6/v6n2/p4.html.

Research Article

Speeding Up Fermat’s Factoring Method

using Precomputation

 Hatem M. Bahig

Ain Shams University, Egypt
hmbahig@sci.asu.edu.eg

 Received: 19 January 2022; Accepted: 25th March 2022; Published: 1st April 2022.

Abstract: The security of many public-key cryptosystems and protocols relies on the difficulty of factoring a large

positive integer n into prime factors. The Fermat factoring method is a core of some modern and important

factorization methods, such as the quadratic sieve and number field sieve methods. It factors a composite integer

n=pq in polynomial time if the difference between the prime factors is equal to ∆= 𝒑 − 𝒒 ≤ 𝒏𝟎.𝟐𝟓 , where p>q. The

execution time of the Fermat factoring method increases rapidly as ∆ increases. One of the improvements to the

Fermat factoring method is based on studying the possible values of (n mod 20). In this paper, we introduce an

efficient algorithm to factorize a large integer based on the possible values of (n mod 20) and a precomputation

strategy. The experimental results, on different sizes of n and ∆, demonstrate that our proposed algorithm is faster

than the previous improvements of the Fermat factoring method by at least 48%.

Keywords: Fermat’s Factoring Method; Integer Factorization; Precomputation; Public-key Cryptosystem; RSA

1. Introduction

Let n be a positive integer. The integer factorization problem (IFP) is finding the prime factors of

𝑛 = 𝑝1
𝛼1𝑝2

𝛼2 … 𝑝𝑘
𝛼𝑘, where 𝑝𝑖

𝛼𝑖 are pairwise distinct primes and each 𝛼𝑖 ≥ 1. IFP is one of the

fundamental problems in information security and computational number theory for the following

reasons:

1. The security of many public-key cryptosystems and protocols [1-2] relies on the difficulty of IFP.

For example, in the RSA cryptosystem [1], each user performs the following:

− Generates two large distinct primes, p and q of the same bit-size.

− Computes 𝑛 = 𝑝 𝑞, and Euler’s totient function 𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1).

− Randomly generate an integer e with gcd(𝜑(𝑛), 𝑒) = 1, where gcd denotes the greatest

common divisor.

− Computes the multiplicative inverse d of e modulo 𝜑(𝑛), 𝑖. 𝑒., 𝑒𝑑 ≡ 1 𝑚𝑜𝑑 𝜑(𝑛).

− Now, the public key is the pair (e, n), while the private key is d. The prime factors p and q and

the integer φ(n) are kept secret (or destroyed).

− A message (plaintext) m is encrypted by calculating the ciphertext as follows: 𝑐 = 𝑚𝑒𝑚𝑜𝑑 𝑛.

An encrypted message (ciphertext) is decrypted by calculating 𝑚 = 𝑐𝑑𝑚𝑜𝑑 𝑛.

2. IFP is an excellent example of a problem that does not currently have a polynomial time

algorithm in classical computers but does in quantum computers [3-5].

There are two basic types of factoring methods for a large odd composite integer n [6-13]:

1. Special purpose factoring methods that quickly find small prime factors. The primary problem

with this type of factoring method is that if n has no small factor, as in public-key cryptosystems,

then factoring methods will have essentially no chance of succeeding. The Trial division,

Pollard's-method, Pollard's p-1 method, and the elliptic curve method are examples of this type of

factoring method.

http://aetic.theiaer.org/
http://aetic.theiaer.org/
http://www.theiaer.org/index.htm
http://www.theiaer.org/index.htm
http://aetic.theiaer.org/archive/v6/v6n2/p4.html
mailto:hmbahig@sci.asu.edu.eg

 AETiC 2022, Vol. 6, No. 2 51

www.aetic.theiaer.org

2. General-purpose factoring methods are exponential or subexponential time algorithms that factor

𝑛 independent of the size of its prime factors. The continued fraction technique, the quadratic

sieve, and the number field sieve are examples of this type of factoring methods. For factoring

large n with large prime factors, the number field sieve method has proven to be the most

effective method until now.

On the other hand, if additional information about some public-key cryptosystems is available, then

there are some factoring techniques [14-17] that work for those cryptosystems.

In this paper, we are concerned with Fermat’s factorization method [12-13] or simply Fermat’s

method (FM), which finds two integer factors p and q such that 𝑛 = 𝑝𝑞 = 𝑢2 − 𝑣2 = (𝑢 − 𝑣)(𝑢 + 𝑣). If 𝑢 −

𝑣 ≠ 1, then we have found a nontrivial factor of n. The idea of FM is a fundamental of some modern and

important factorization methods, such as the quadratic and multiple polynomial quadratic sieves, and

number field sieves methods.

For security reasons, such as in public-key cryptosystems [1-2], the integer 𝑛 = 𝑝𝑞 is usually a

product of two primes of equal bit-size. It is possible to find these factors in polynomial time if the

difference between the prime factors △= p − q ≤ 𝑛0.25 [18]. The main challenge with FM is when the

difference △ is greater than 𝑛0.25.

In this paper, we are interested in speeding up FM by reducing the search space using a

precomputation strategy, where some the preliminary computations can be made to reduce the number of

necessary operations after obtaining the integer u. This paper introduces a precomputation strategy to

improve Somsuk’s improvement of FM [19], which we call FMMod20. We call our proposed algorithm

FMMod20Precomp.

The experimental results show that FMMod20Precomp is faster than the previous improvements to

FM by at least 48% when △> 𝑛0.25. In fact, the percentage of improvement is affected by the sizes of n

and △.

The organization of the paper is as follows. Section 2 introduces the related works. In Section 3, we

give a brief description of FMMod20. In Section 4, we introduce our precomputation strategy to improve

FMMod20. In Section 4.1, we present the main idea of the proposed algorithm, FMMod20Precomp. In

Section 4.2, we give a complete description of the proposed algorithm. In Section 5, we present the

experimental study and comparison with three previous algorithms and then show the performance of

FMMod20Precomp. In Section 6, we present the conclusion of the paper and future works.

2. Related Works

In general, FM starts by computing 𝑢 = ⌊√𝑛⌋ + 1, and 𝑣 = 𝑢2 − 𝑛. Then, it repeatedly checks whether

v is a perfect square. If v is not a perfect square, then FM increases u by 1 and computes 𝑣 = 𝑢2 − 𝑛. If v is

a perfect square, then FM returns 𝑝 = 𝑢 + √𝑣, and 𝑞 = 𝑢 − √𝑣, see Algorithm FM, where PS(x) is a

subroutine that returns true if the integer number x is a perfect square, and returns false otherwise.

Clearly, the search space of FM is large when n is large.

Algorithm 1. FM (n: integer) returns integers
Begin

1. 𝑢 = ⌊√𝑛⌋ + 1

2. 𝑣 = 𝑢2 − 𝑛

3. While (PS(𝑣) =False) loop

4. 𝑢 = 𝑢 + 1

5. 𝑣 = 𝑢2 − 𝑛

6. End while

7. return 𝑢 + √𝑣 and 𝑢 − √𝑣

End.

Many techniques have been proposed to improve FM. Some of them used different FM formulas.

Mckee [20] proposed a variant of FM to search for three integers 𝑢, 𝑣, 𝑤 such that 𝑤2 = (𝑢 + ⌈√𝑛⌉𝑣)
2

−

𝑛𝑣2 and then computes gcd(𝑢 + ⌈√𝑛⌉𝑣 − 𝑤, 𝑛). Hart [21] proposed another variant of FM by searching for

a solution to 𝑣2 = (⌈√𝑛 u⌉)
2

− 𝑛𝑢, which was achieved by looking for squares after reduction modulo

𝑛, where 𝑢 starts from 1. The main drawback of these modifications is that they require more arithmetic

operations than FM, so the running time is large for large integers, e.g. 1024 bits.

 AETiC 2022, Vol. 6, No. 2 52

www.aetic.theiaer.org

Other techniques discarded some values of v or u that cannot lead to a solution, and so hence reduced

some calculations such as the perfect square test for v or u. Somsuk and Kasemvilas [22] proposed to

ignore the perfect square test PS when the least significant digits of v, denoted by LSD(𝑣), LSD(𝑣) =

2, 3, 7, 𝑜𝑟 8 because if PS(𝑣)=True, then either LSD(𝑣) = 0, 1, 4, 5, 6 𝑜𝑟 9. Somsuk and Kasemvilas [23]

improved [22] by studying LSD(𝑢) to not compute v. In [19], Somsuk used LSD(𝑢) and (𝑛 𝑚𝑜𝑑 20) to

study the possible values of (𝑣 𝑚𝑜𝑑 20) to be a perfect square in order to make a decision whether to

compute v. We denote this method by FMMod20. Somsuk and Tientanopajai [24] proposed a method

based on studying the last 𝑘 digits of n. The main problem of this method is that it requires 4 ∗ 10𝑘−1

specific subroutines. Clearly, this is large, in particular for large k.

Somsuk [25] proposed to use the formula 4𝑛 = 𝑥2 − 𝑦2, the Euler theorem, and the multiplication

instead of PS to not compute PS, where the Euler theorem states, “Let x be a positive integer such that the

greatest common divisor between x and n is 1, then 𝑥𝜑(𝑛) ≡ 1 mod 𝑛”. We denote this method by EF.

Vynnychuk et al. [26] improved the method in [27] which checks whether 𝑢2 − 𝑛 by module of a certain set

of foundations of modules b that are prime numbers is a quadratic residue. They used the

relation (𝑣 𝑚𝑜𝑑 𝑏)2 𝑚𝑜𝑑 𝑏 = ((𝑢 𝑚𝑜𝑑 𝑏)2 𝑚𝑜𝑑 𝑏 − 𝑛 𝑚𝑜𝑑 𝑏)𝑚𝑜𝑑 𝑏. The main disadvantage of this method

is that it requires large memory storage.

Shiu [28] enhanced FM by ignoring all even (or odd) numbers for u or v based on writing n as 𝑛 =

4𝑘 ± 1, 𝑛 ≥ 3. If 𝑛 = 4𝑘 + 1, then u is odd and v is even. Otherwise, 𝑛 = 4𝑘 − 1, u is even, and v is odd.

We denote this method by OEF. Somsuk et al. [29-30] proposed using the formula 𝑛 = 6𝑘 ± 1. If 𝑛 = 6𝑘 −

1, then u is divisible by 3. If 𝑛 = 6𝑘 + 1, then u is not always divisible by 3.

On the other hand, some techniques [31-33] are based on estimating the prime factors and using the

continued fraction of
1

√𝑛
 to obtain a list of convergent and initial values for u. The main drawback of the

methods in [31-32] is that they do not work for balanced primes, i.e., primes of the same bit-size. Tahir et

al. [33] studied balanced primes with a slight improvement compared to EF using some numerical

examples.

Recently, Longhas et al. [34] proved theoretically that a composite (not prime) integer n of the form

4k2 + 1 can be factorized using FM.

The main lack in these studies is that there is not enough practical comparative study for large

numbers. In [35], the authors presented a practical comparative study of most of these modifications when

n is in the range of 100-500 bits. They showed experimentally that the fastest improvement of FM is OEF.

3. Fermat’s Method using mod 20

Since we are going to improve the algorithm (FMMod20) proposed by Somsuk [19], we briefly

describe FMMod20.

To avoid testing the perfect square for 𝑢2 − 𝑛 for every 𝑢, Somsuk [19] proposed testing only some

values of 𝑢 based on the value of 𝑛 𝑚𝑜𝑑 20 and the least significant digit of 𝑢, LSD(𝑢), i.e., 𝑢 𝑚𝑜𝑑 10.

Somsuk observed the following:

1. Since n is odd and not divisible by 5, 𝑛 𝑚𝑜𝑑 20 is either 1, 3, 7, 9, 11, 13, 17, or 19.

2. If 𝑢2 − 𝑛 is a perfect square, then 𝑢2 − 𝑛 𝑚𝑜𝑑 20 is either 0, 1, 4, 5, 9, or 16.

Table 1 shows the possibility of finding perfect squares (in bold and underlined) when using the two

relations (𝑛 𝑚𝑜𝑑 20) and (𝑢 𝑚𝑜𝑑 10).

Table 1. Possibility of perfect square of 𝑢2 − 𝑛 [19]

LSD(u) The values of u2-n mod 20 when u2 –n mod 20 is

 1 3 7 9 11 13 17 19

0 1 17 13 11 9 7 3 1

1 0 18 14 12 10 8 4 2

2 3 1 17 15 13 11 7 5

3 8 6 2 0 18 16 12 10

4 15 13 9 7 5 3 19 17

5 4 2 18 16 14 12 8 6

6 15 13 9 7 5 3 19 17

7 8 6 2 0 18 16 12 10

8 3 1 17 15 13 11 7 5

9 0 18 14 12 10 8 4 2

 AETiC 2022, Vol. 6, No. 2 53

www.aetic.theiaer.org

Algorithm 2. FMMod20 (n : integer): return integers
Begin

1. 𝑢 = ⌈√𝑛⌉

2. r = n mod 20

3. u=changeU(u, r)

 /* find the first value of u such that 𝑢2 − 𝑛 mod 20 =0,1,4,5,9, or 16, see Algorithm change,

 Lines 1-34 in [19]. */

4. 𝑣 = √𝑢2 − 𝑛

5. While (v is not integer)

6. If (r = 1) then

7. The procedure for determining the integer v such that LSD(u) is 1, 5, or 9

8. ElseIf (r = 3) then

9. The procedure for determining the integer v such that LSD(u) is 2, or 8

10. ElseIf (r = 7) then

11. -- similar to the previous steps

12. -- the complete while loop can be found in Algorithm MFFV4, Lines 11-21 in [19].

13. End if

17. End While

18. return p=u-v, and q=u+v

End.

4. The Proposed Algorithm

In this section, we propose modifications to FMMod20 using a precomputation strategy. In Section

4.1, we mention the main idea of our proposed algorithm, FMMod20Precomp. Section 4.2 includes the full

description of FMMod20Precomp.

4.1 Outline of the proposed algorithm

The proposed algorithm FMMod20Precomp is based on two observations on FMMod20:

1. Given an integer n, the value of 𝑟 = 𝑛 𝑚𝑜𝑑 20 is fixed in the algorithm. Therefore, there is no

need to check the value of r every iteration of the while-loop (see, for examples, Lines 6, 8, 10 of

the FMMod20 algorithm).

2. The value of 𝑢 𝑚𝑜𝑑 10 (or LSD(𝑢)) is variable, but for a fixed value of 𝑛 𝑚𝑜𝑑 20, the possible

values of u, PS(𝑢2 − 𝑛) =True, can be determined initially. Thus, there is no need to search for u

such that LSD(𝑢) is one of the values that may produce a perfect square (see, for examples, Lines

6, 8, 10 in the FMMod20 algorithm). For example, suppose that 𝑛 𝑚𝑜𝑑 20 = 1. From Table 2, the

possible values for u, such that PS(𝑢2 − 𝑛) =True, are LSD(𝑢) = 1, 5, and 9. As we can see from

Table 1 and Table 2, the number of possible values of u that may produce a perfect square is at

most 3.
Table 2. Number of possible values of u such that PS(u2 –n) is true

n mod 20 1 3 7 9 11 13 17 19

Number of accepted cases 3 2 2 3 3 2 2 3

Our strategy is to compute the differences between the possible values of u every 10 consecutive

integers such that 𝑢2 − 𝑛 is a perfect square. To implement such strategy, we do the following steps:

First, we define a Cycle as an integer interval [𝑢0, 𝑢0 + 9], where LSD(𝑢0) = 0, i.e., 10 consecutive

integers. The integer 𝑢0 is called the start point of a cycle. Since we use the relation u mod 10, i.e., there are

10 possible values for u mod 10, we choose the length of the cycle to be 10.

Second, we construct an array dif to hold the differences between the possible values of u such that

PS(𝑢2 − 𝑛) =True based on the relations (𝑛 𝑚𝑜𝑑 20) and (𝑢 𝑚𝑜𝑑 10) . The array dif is a two-dimensional

array that contains 4×8 elements, as shown in Table 3, where

• 𝑑1 is the difference between the start point of a cycle and the first possible value of u in the cycle,

such that 𝑃𝑆(𝑢2 − 𝑛) =True.

• 𝑑2 is the difference between the first and second possible values of u in a cycle, such that 𝑃𝑆(𝑢2 −

𝑛) =True.

 AETiC 2022, Vol. 6, No. 2 54

www.aetic.theiaer.org

• 𝑑3 is the difference between the second and third possible values of u in a cycle, such that

𝑃𝑆(𝑢2 − 𝑛) =True. If there is no third value for u, such that 𝑃𝑆(𝑢2 − 𝑛) =True, then d3 has no

value, denoted by “-”.

• d4 is the difference between the last possible value of u in a cycle, such that 𝑃𝑆(u2 − n) =True, and

the start point of the next cycle.

Table 3. The two-dimensional array dif contains the differences between the possible values

of u, such that PS(u2 – n) =True, based on the relations (n mod 20) and (u mod 10).

Index of dif

 1 3 7 9 11 13 17 19

1: d1 1 2 4 3 0 3 1 0

2: d2 4 6 2 2 4 4 8 2

3: d3 4 - - 2 2 - - 6

4: d4 1 2 4 3 4 3 1 2

4.2 The algorithm

The proposed algorithm includes two main steps. The first step (called the preparation step) aims to

search for a solution (prime factors) in the small interval [𝑢, 𝑢′], where 𝑢 = ⌊√𝑛⌋ + 1 and 𝑢′ is the first

integer greater than or equal to u such that (𝑢′ 𝑚𝑜𝑑 10) = 0. This step can be done by checking if

(𝑢 𝑚𝑜𝑑 10) ≠ 0. Then, the proposed algorithm terminates by calculating the prime factors if PS(𝑢2 −

𝑛) =True. Otherwise, the algorithm increases u by one. This process is repeated until the algorithm either

finds u such that 𝑢2 − 𝑛 is a perfect square or stops when (𝑢 𝑚𝑜𝑑 10) = 0.

The second step, called perfect square in a cycle (PSC), aims to search for the prime factors in the

remainder space. Based on the fixed value of (𝑟 = 𝑛 𝑚𝑜𝑑 20), the algorithm increases u by dif[1, r]. Note

that, u satisfies that 𝑢 𝑚𝑜𝑑 10 = 0 as described in the preparation step. Next, the proposed algorithm tests

whether 𝑢2 − 𝑛 is a perfect square. If PS(𝑢2 − 𝑛) = False, then PSC increases u by dif[2, r] and again tests

u. Based on the value of r, PSC increases u by dif[3, r] or not. If there is no value of u satisfying that

PS(𝑢2 − 𝑛) = True in the cycle, then PSC increases u by dif[4, r] and repeats the process. If one of u’s

satisfies that PS(𝑢2 − 𝑛) =True, then PSC returns the prime factors.

The steps of the proposed algorithm are presented in the FMMod20Precomp algorithm. Line 1

represents the first value of u in the search space, while Line 2 represents the initial value of the Boolean

variable “found’’. Lines 3-9 represent the preparation step, i.e., finding the first value of u such that either

(𝑢 mod 10) = 0 or PS(𝑢2 − 𝑛) =True. Lines 10-14 calculate the prime factors of n when the boolean

variable found is true, i.e., (𝑢2 − 𝑛) is a perfect square. The remaining lines represent the second step PSC,

i.e., searching for u such that PS(𝑢2 − 𝑛)=True using the Subroutine Cycle(r, u, n), where 𝑟 = 𝑛 𝑚𝑜𝑑 20.

Lines 18-19 calculate the prime factors of n

Note that there is no statement in the body of the while-loop, Lines 16-17, i.e., we repeat calling the

subroutine Cycle until it finds u such that PS(𝑢2 − 𝑛) =True. It is not difficult to put the body of the

subroutine Cycle inside the body of the while-loop which is slightly faster.

The full pseudo code of our proposed algorithm is given in Algorithm FMMod20Precomp, where the

subroutine Cycle performs the second step PSC.

Algorithm 3. Cycle(r: integer, u: in out integer, n:integer): return Boolean
Begin

1. 𝑢 ⟵ 𝑢 + 𝒅𝒊𝒇[1, 𝑟]

2. If (PS(𝑢2 − 𝑛) = true) then

3. return True

4. Else

5. 𝑢 ⟵ 𝑢 + 𝒅𝒊𝒇[2, 𝑟]

6. If (PS(𝑢2 − 𝑛) = true) then

7. return True

8. Else

9. If (𝑟 ∈ {1,9,11,19}) then

10. 𝑢 ⟵ 𝑢 + 𝒅𝒊𝒇[3, 𝑟]

11. If (PS(𝑢2 − 𝑛) = true) then

12. return True

13. End if

 AETiC 2022, Vol. 6, No. 2 55

www.aetic.theiaer.org

14. End if

15. 𝑢 ⟵ 𝑢 + 𝒅𝒊𝒇[4, 𝑟]

16. End if

17. End if

18. return False

End.

Algorithm 4. FMMod20Precomp (Fermat Method using Modulus 20 and precomputation)
Input: a composite number n.

Output: two primes, 𝑝 and 𝑞, s. t. 𝑛 = 𝑝 𝑞.

Begin

1. 𝑢 ⟵ ⌊√𝑛⌋+1

2. Found ⟵ False

3. While (Not found and (𝑢 mod 10) ≠ 0) do

4. If (PS(𝑢2 − 𝑛) = true) then

5. Found ⟵ True

6. Else

7. 𝑢 ⟵ 𝑢 + 1

8. End if

9. End while

10. If (Found=True) Then

11. 𝑝 ⟵ 𝑢 + √𝑢2 − 𝑛

12. 𝑞 ⟵ 𝑢 − √𝑢2 − 𝑛

13. return p and q

14. End if

15. 𝑚 ⟵ 𝑛 mod 20

16. While (Cycle(m, u, n) = False) do

17. End while

18. 𝑝 ⟵ 𝑢 + √𝑢2 − 𝑛

19. 𝑞 ⟵ 𝑢 − √𝑢2 − 𝑛

20. return p and q

End.

Now, the number of iterations executed by FMMod20Precomp can be calculated as follows. The

total number of iterations for the search space for FM is (𝑝 + 𝑞) − (⌊√𝑛⌋ + 1), where the term (𝑝 + 𝑞)

represents the last value of u in the search space, while the term (⌊√𝑛⌋ + 1) represents the first value of u

in the search space.

The algorithm FMMod20Precomp executes 𝛼0 iterations to find the first u such that (𝑢 𝑚𝑜𝑑 10) = 0,

where 0 ≤ 𝛼0 ≤ 9. The integer 𝛼0 takes the value 0 when the start value of u satisfies (𝑢 𝑚𝑜𝑑 10) = 0. On

the other hand, 𝛼0 = 9 when the start value of u satisfies (𝑢 𝑚𝑜𝑑 10) = 1. In general, the worst case for the

number of iterations is 9. The number of remaining iterations, based on FM, is

α = (𝑝 + 𝑞) − (⌊√𝑛⌋ + 1) − 𝛼0.

FMMod20Precomp excludes approximately 70% of the values in the search space since it ignores at

least 7 integers out of 10 integers in each cycle. Therefore, the total number of iterations including the test

of a perfect square after the preparation step is α − α × 0.7 = 0.3 α. Hence the total number of iterations

for FMMod20Precomp is 0.3 α + α0=0.3 ((𝑝 + 𝑞) − (⌊√𝑛⌋ + 1)) + 0.7𝛼0. Therefore, the

FMMod20Precomp algorithm has a better performance compared to the previous FM modifications.

5. Experimental Results

This section presents the experimental performance of the proposed FMMod20Precomp algorithm. It

consists of two sections. The first section describes the data set, hardware, and software used in the

experimental study. The other section compares FMMod20Precomp, FMMod20 [19], EF [25] and OEF [28-

30].

5.1 Platform Specification and Data Set

The algorithms (FMMod20Precomp, FMMod20, EF and OEF) were implemented using the C++

language and executed on a computer consisting of the processor Xeon E5-2630 with a speed of 2.6 GHz

 AETiC 2022, Vol. 6, No. 2 56

www.aetic.theiaer.org

and a memory of 16 GB. The computer ran the Microsoft Windows 10 operating system. We used the

GMP library (GNU Multiple Precision) 1 to operate with big integers, greater than 64 bits.

We have two parameters affecting the execution time of the algorithms: (1) the size of n, which is

equal to the number of bits in n and denoted by |𝑛|, and (2) the value of △. The sizes of n conducted in the

experimental study were 128, 256, 512, and 1024 bits. For each value of n, the size of each prime factor is

|𝑛|/2. For example, if n has 1024 bits, then each prime factor has 512 bits. Now, let △0= p − q = 𝑛0.25,
and therefore,

|△0| =
|𝑛|

4
.

The sizes of △ conducted in the experimental study were |△0| + 10, |△0| + 15, |△0| + 20,

or |△0| + 25. As we mentioned in Section 1, FM is efficient when △≤ 𝑛0.25, while the execution time of

FM increases as △ increases. Therefore, there is no need to study FM when the size of △ equals |△0|.

5.2. The Results

This section compares the proposed FMMod20Precomp algorithm with the three previous

algorithms: FMMod20, OEF and EF.

Figure 1-4 show the average execution times (in seconds) of the four algorithms for 50 values of n as

the size of n varies 128, 256, and 512 bits, and for 20 values of n with sizes of 1024 bits. For each size 128,

256, 512, and 1024 bits, we generate n such that the size of △ is | △ | = |△0| + 𝛿, where 𝛿 = 10, 15, 20,
and 25.

Figure 1. Comparison between the four algorithms when |∆|=│∆0│+10

Figure 2. Comparison between the four algorithms when |∆|=│∆0│+15

1 GMP library, "The GNU multiple precision arithmetic library", 2021. Available: https://gmplib.org.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

128 256 512 1024

R
u

n
n

in
g

 T
im

e
in

 S
ec

o
n

d
s

|n|

│∆0│+10

FMMod20

FMMod20PreComp

OEF

EF

0

0.2

0.4

0.6

64 128 256 512 1024

R
u

n
n

in
g

Ti
m

e
 in

 S
e

co
n

d
s

|n|

│∆0│+15

FMMod20

FMMod20PreComp

OEF

EF

 AETiC 2022, Vol. 6, No. 2 57

www.aetic.theiaer.org

Figure 3. Comparison between the four algorithms when |∆|=│∆0│+20

Figure 4. Comparison between the four algorithms when |∆|=│∆0│+25

Table 4. Percentage of improvement of FMMod20Precomp compared to FMMod20
𝛿 |n|

 64 128 256 512 1024

10 89.3% 27.1% 51.4% 47.6% 60.9%

15 73.8% 68.3% 64.8% 56.1% 41.3%

20 74.5% 67.0% 65.4% 55.8% 39.2%

25 65.4% 68.3% 63.2% 57.9% 39.3%

Table 5. Percentage of improvement of FMMod20Precomp compared to OEF
𝛿 |n|

 64 128 256 512 1024

10 66.7% 28.6% 36.4% 35.0% 64.3%

15 45.6% 51.1% 44.3% 49.9% 52.5%

20 51.5% 49.5% 47.1% 50.5% 48.5%

25 46.2% 50.8% 49.5% 53.6% 50.1%

Table 6: Percentage of improvement of FMMod20Precomp compared to EF
𝛿 |n|

 64 128 256 512 1024

10 88.9% 66.7% 69.6% 75.9% 92.2%

15 73.7% 76.5% 68.6% 57.2% 34.9%

20 74.0% 75.0% 69.3% 56.7% 28.9%

25 74.5% 76.5% 67.2% 61.7% 31.8%

From Figures 1-4 and Tables 4-6, we can conclude the following:

• FMMod20Precomp has execution times less than FMMod20, EF, and OEF for all different values

of n and | △ | = |△0| + 𝛿.

• FMMod20Precomp reduces the average CPU time by 58% on average compared to a fast

implementation of the FMMod20 algorithm.

0

50

100

150

200

64 128 256 512 1024
R

u
n

n
in

g
 T

im
e
 i

n
 S

ec
o
n

d
s

|n|

│∆0│+20

FMMod20

FMMod20PreComp

OEF

EF

0

10000

20000

30000

40000

50000

64 128 256 512 1024

R
u

n
n

in
g

 T
im

e
in

 S
ec

o
n

d
s

|n|

│∆0│+25

FMMod20

FMMod20PreComp

OEF

EF

 AETiC 2022, Vol. 6, No. 2 58

www.aetic.theiaer.org

• FMMod20Precomp reduces the average CPU time by 48% on average compared to the OEF

algorithm.

• FMMod20Precomp reduces the average CPU time by 66% on average compared to the EF

algorithm.

• The percentages of the improvements depend on the size of n and ∆.

• In general, for |n|< 1024, the two algorithms OEF and FMMod20 have better performance than

the EF algorithm. On the other hand, the EF algorithm has better performance than the OEF and

FMMod20 algorithms in the case of |n|=1024.

• EOF and FMMod20 perform worse when |n|=1024.

In general, the proposed FMMod20Precomp algorithm has better performance compared to

FMMod20, EF, and OEF for different values of n and |△0| + 𝛿.

6. Conclusion and Future Works

A new strategy to improve the Fermat factoring method and FMMod20 is proposed. It is based on

computing the differences between the possible values of u every 10 consecutive integers such that 𝑢2 − 𝑛

is a perfect square. We have used a two-dimensional array dif to hold these differences. Then based on

the value of (𝑛 𝑚𝑜𝑑 20), and the array dif, the algorithm discards some values of u that cannot lead to a

solution. The experimental results, on different sizes of n and ∆, show that the FMMod20Precomp

algorithm has better performance. FMMod20Precomp is faster than FMMod20 by 58% on average and faster

than the previous improvements of the Fermat factoring method by 48% on average.

In future work, we will study the possibility of combining two or more methods to improve FM. We

can also use a multicore system [36] to improve FMMod20Precomp.

Acknowledgment

This work was supported financially by the Academy of Scientific Research and Technology (ASRT), Egypt,

Grant No 6419, ScienceUp.

References

[1] Ronald Rivest, Adi Shamir and Leonard Adleman, "A Method for Obtaining Digital Signatures and Public-key

Cryptosystems", Communication of ACM, Print ISSN: 0001-0782, Online ISSN: 1557-7317, pp. 120-126, Vol. 21, 1978,

Published by Association for Computing Machinery (ACM), DOI: 10.1145/359340.359342.

[2] Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa and Kazuki Yoneyama, "Strongly Secure Authenticated Key

Exchange from Factoring, Codes, and Lattices", Designs, Codes and Cryptography, Print ISSN: 0925-1022, Online

ISSN: 1573-7586, pp. 469–504, Vol. 76, 2015, Published by Springer, DOI: 10.1007/s10623-014-9972-2.

[3] Peter Shor, "Polynomial-time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum

Computer", SIAM Journal on Computing, pp. 1484-1509, Vol. 26, No.5, 1997, Published by Society for Industrial

and Applied Mathematics (SIAM), DOI: 10.1137/S0097539795293172, Available:

https://link.springer.com/article/10.1007/s10623-014-9972-2.

[4] Nanyang Xu, Jing Zhu, Dawei Lu, Xianyi Zhou, Xinhua Peng et al., "Quantum Factorization of 143 on a Dipolar-

coupling Nuclear Magnetic Resonance System", Physical Review Letter, Print ISSN: 0031-9007, Online ISSN: 1079-

7114, pp. 1–5, Vol. 108, No. 13, 2012, Published by American Physical Society (APS), Available:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.130501.

[5] Baonan Wang, Feng Hu, Haonan Yao and Chao Wang, "Prime Factorization Algorithm Based on Parameter

Optimization of Ising Model", Scientific Reports, Online ISSN: 2045-2322, Vol. 10, No. 7106, 2020, Published by

Nature Portfolio, DOI: 10.1038/s41598-020-62802-5, Available: https://www.nature.com/articles/s41598-020-

62802-5.

[6] Arjen K. Lenstra, "Integer Factoring", Design Codes and Cryptography, Print ISSN: 0925-1022, Online ISSN: 1573-

7586, pp. 101–128, Vol. 19, 2000, Published by Springer, DOI: 10.1023/A:1008397921377.

[7] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, Handbook of Applied Cryptography, 1st ed., Boca

Raton: CRC Press, 1997.

[8] Douglas Robert Stinson and Maura Paterson, Cryptography Theory and Practice, 4th ed., Boca Raton: CRC Press,

2018.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.130501
https://www.google.com/search?sxsrf=APq-WBv4Wy7SGUlTW54w2hRMAKtkybaNTQ:1648300362475&q=Nature+Portfolio&stick=H4sIAAAAAAAAAOPgE-LSz9U3SK8wyi6JV-IEsc3KLYortWSzk630k_Lzs_ULUosy81MykxNzrApKk3IyizNSixaxCvgllpQWpSoE5BeVpOXnZObvYGXcxc7EwQAAR9l4AFMAAAA&sa=X&ved=2ahUKEwjtitqs7eP2AhUihf0HHeHsCX8QmxMoAXoECCoQAw
https://www.nature.com/articles/s41598-020-62802-5
https://www.nature.com/articles/s41598-020-62802-5

 AETiC 2022, Vol. 6, No. 2 59

www.aetic.theiaer.org

[9] Simon Rubinstein-Salzedo, "Clever Factorization Algorithms and Primality Testing", in Springer Undergraduate

Mathematics Series: Cryptography, Cham: Springer, 2018, ch. 13, pp. 127-140, Series ISSN: 1615-2085, Series E-ISSN:

2197-4144, DOI: 10.1007/978-3-319-94818-8.

[10] Song Y. Yan, "Factoring Based Cryptography", in Cybercryptography: Applicable Cryptography for Cyberspace

Security, ISBN: 978-3-319-72534-5, Online ISBN: 978-3-319-72536-9, Springer, Cham, pp. 217-286, 2019, DOI:

10.1007/978-3-319-72536-9.

[11] Luke Valenta, Shaanan Cohney, Alex Liao, Joshua Fried, Satya Bodduluri et al., "Factoring as a Service", in Lecture

Notes in Computer Science, Financial Cryptography and Data Securit (FC), Vol. 9603, Print ISBN: 978-3-662-54969-8,

Online ISBN: 978-3-662-54970-4, Series Print ISSN: 0302-9743, Series Online ISSN: 1611-3349, pp. 321–338,

2017, Published by Springer, DOI: 10.1007/978-3-662-54970-4_19.

[12] Song Y. Yan, Primality Testing and Integer Factorization in Public-Key Cryptography, ISBN: 978-0-387-77267-7, Online

ISBN: 978-0-387-77268-4¸ 2nd ed., Springer, Boston, MA, 2009, DOI: 10.1007/978-0-387-77268-4.

[13] Xinguo Zhang, Mohan Li, Yu Jiang and Yanbin Sun, "A Review of the Factorization Problem of Large Integers", in

Lecture Notes in Computer Science, Artificial Intelligence and Security (ICAIS), Vol. 11635, Print ISBN: 978-3-030-

24267-1, Online ISBN: 978-3-030-24268-8, Series Print ISSN 0302-9743, Series Online ISSN 1611-3349 , pp 202-213,

Springer, Cham, 2019, DOI: 10.1007/978-3-030-24268-8, Available: https://link.springer.com/book/10.1007/978-3-

030-24268-8.

[14] Omar Akchiche and Omar Khadir, "Factoring RSA Moduli with Primes Sharing Bits in the Middle", Applicable

Algebra in Engineering, Communication and Computing, Print ISSN: 0938-1279, Online ISSN: 1432-0622, pp. 245–259,

Vol. 29, No. 3, 2018, DOI: 10.1007/s00200-017-0340-0.

[15] Dieaa. I. Nassr, Hatem M. Bahig, Ashraf Bhery and Sameh Daoud, "A New RSA Vulnerability using Continued

Fractions", in International Conference on Computer Systems and Applications (IEEE/ACS), 31 March - 4 April 2008,

Doha, Qatar, Print ISSN: 2161-5322, Online ISSN: 2161-5330, pp. 694-701, 2008, DOI:

10.1109/AICCSA.2008.4493604, Available: https://ieeexplore.ieee.org/document/4493604.

[16] Hattem M. Bahig, Dieaa I. Nassr and Ashraf Bhery, "Factoring RSA Modulus with Primes not Necessarily

Sharing Least Significant Bits", Applied Mathematics and Information Sciences (AMIS), pp. 243-249, Vol. 11, No. 1,

2017, Published by Natural Sciences, DOI: 10.18576/amis/10130, Available:

http://www.naturalspublishing.com/files/published/01cuz818m162py.pdf.

[17] Abderrahmane Nitaj, Muhammad Rezal Kamel Ariffin, Dieaa I. Nassr and Hatem M. Bahig, “New Attacks on

the RSA Cryptosystem”, In Lecture Notes in Computer Science (Progress in Cryptology – AFRICACRYPT

2014), Vol. 8469, Print ISBN: 978-3-319-06733-9, Online ISBN: 978-3-319-06734-6, pp. 178-198, 2014, Springer,

Cham, DOI: 10.1007/978-3-319-06734-6_12.

[18] Benne de Weger, "Cryptanalysis of RSA with Small Prime Difference", Applicable Algebra in Engineering,

Communication and Computing, Print ISSN: 0938-1279, Online ISSN: 1432-0622, pp. 17–28, Vol. 13, 2002, DOI:

10.1007/s002000100088.

[19] Kritsanapong Somsuk, "A New Modified Integer Factorization Algorithm using Integer Modulo 20's Technique",

In 2014 International Computer Science and Engineering Conference (ICSEC), 30 July - 1 August 2014, Khon Kaen,

Thailand, pp. 312-316, Published by IEEE, E-ISBN: 978-1-4799-4963-2, DOI: 10.1109/ICSEC.2014.6978214.

[20] James Mckee, “Speeding Fermat’s Factorization Method”, Mathematics of Computation, Print ISSN 0025-5718,

Online ISSN 1088-6842, pp. 1729–1737, Vol. 68, No. 228, 1999, DOI: 10.1090/S0025-5718-99-01133-3.

[21] William B. Hart, “A One Line Factoring Algorithm”, Journal of the Australian Mathematical Society, Print ISSN

1446-7887, pp. 61-69, Vol. 92, No. 1, 2012, DOI: 10.1017/S1446788712000146.

[22] Kritsanapong Somsuk and Sumonta Kasemvilas, "MFFV2 and MNQSV2: Improved Factorization Algorithms", in

2013 International Conference on Information Science and Applications (ICISA), Suwon, 24-26 June 2013, pp. 1-3,

Published by IEEE, DOI: 10.1109/ICISA.2013.6579415, Available: https://www.computer.org/csdl/proceedings-

article/icisa/2013/06579415/12OmNzw8iYN.

[23] Kritsanapong Somsuk and Sumonta Kasemvilas, “MFFV3: An Improved Integer Factorization Algorithm to

Increase Computation Speed”, Advanced Materials Research, pp. 1432–1436, Vols. 931–932, 2014, DOI:

10.4028/www.scientific.net/AMR.931-932.1432.

[24] Kritsanapong Somsuk and Kitt Tientanopajai, "An Improvement of Fermat's Factorization by Considering the

Last m Digits of Modulus to Decrease Computation Time", International Journal of Network Security, Print ISSN:

1816-353X, Online ISSN: 1816-3548, pp. 99-111, Vol. 19, No. 1, 2017, DOI: 10.6633/IJNS.201701.19, Available:

http://ijns.jalaxy.com.tw/contents/ijns-v19-n1/ijns-2017-v19-n1-p99-111.pdf.

[25] Kritsanapong Somsuk, "The New Integer Factorization Algorithm Based on Fermat’s Factorization Algorithm

https://link.springer.com/chapter/%20%2010.1007/978-3-662-54970-4_19
https://link.springer.com/book/10.1007/978-0-387-77268-4
https://link.springer.com/book/10.1007/978-3-030-24268-8:
https://link.springer.com/book/10.1007/978-3-030-24268-8:
https://dl.acm.org/toc/aaecc/2018/29/3
https://dl.acm.org/toc/aaecc/2018/29/3
https://dl.acm.org/toc/aaecc/2018/29/3
https://dl.acm.org/doi/abs/10.1007/s00200-017-0340-0
https://ieeexplore.ieee.org/document/4493604
https://link.springer.com/chapter/10.1007/978-3-319-06734-6_12#auth-Abderrahmane-Nitaj
https://link.springer.com/chapter/10.1007/978-3-319-06734-6_12#auth-Muhammad_Rezal_Kamel-Ariffin
https://link.springer.com/chapter/10.1007/978-3-319-06734-6_12#auth-Dieaa_I_-Nassr
https://link.springer.com/chapter/10.1007/978-3-319-06734-6_12#auth-Hatem_M_-Bahig
https://dl.acm.org/toc/aaecc/2018/29/3
https://dl.acm.org/toc/aaecc/2018/29/3
https://link.springer.com/article/10.1007/s002000100088
https://link.springer.com/article/10.1007/s002000100088
https://doi.ieeecomputersociety.org/10.1109/ICISA.2013.6579415
https://www.computer.org/csdl/proceedings-article/icisa/2013/06579415/12OmNzw8iYN
https://www.computer.org/csdl/proceedings-article/icisa/2013/06579415/12OmNzw8iYN
http://ijns.jalaxy.com.tw/contents/ijns-v19-n1/ijns-2017-v19-n1-p99-111.pdf

 AETiC 2022, Vol. 6, No. 2 60

www.aetic.theiaer.org

and Euler’s Theorem", International Journal of Electrical and Computer Engineering (IJECE), Print ISSN: 2088-8708,

Online ISSN: 2722-2578, pp. 1469-1476, Vol. 10, 2020, DOI: 10.11591/ijece.v10i2, Available:

http://ijece.iaescore.com/index.php/IJECE/article/view/19291/13667.

[26] Stepan Vynnychuk, Yevhen Maksymenko and Vadym Romanenko, “Application of the Basic Module’s

Foundation for Factorization of Big Numbers by the Fermat Method”, Eastern-European Journal of Enterprise

Technologies, Print ISSN: 1729-3774, Online ISSN: 1729-4061, pp. 14–23, Vol. 6, No. 4 (96), 2018, DOI:

10.15587/1729-4061.2018.150870.

[27] Donald E. Knuth, Art of Computer Programming, Vol. 2. Seminumerical Algorithms, 3rd ed. Massachusetts, Addison-

Wesley Professional, pp. 762, ISBN: 9780321635778.

[28] Peter Shiu, "Fermat’s Method of Factorisation", The Mathematical Gazette, Print ISSN: 0025-5572, Online

ISSN: 2056-6328, pp. 97–103, Vol. 99, No. 544, 2015, DOI: 10.1017/mag.2014.12, Available:

https://www.jstor.org/stable/24496908?refreqid=excelsior%3A966a3fb6d9c871ff015efe2df35f0b07.

[29] Kritsanapong Somsuk and Sumonta Kasemvilas, “Possible prime modified Fermat factorization: new improved

integer factorization to decrease computation time for breaking RSA”, in Advances in Intelligent Systems and

Computing, International Conference on Computing and Information Technology (IC2IT2014), Angsana Laguna,

Phuket, Thailand, 8-9 May, 2014, Print ISBN: 978-3-319-06537-3, Online ISBN: 978-3-319-06538-0, Vol. 265, pp.

325-334, 2014, DOI: 10.1007/978-3-319-06538-0_32, Available: https://www.springerprofessional.de/en/possible-

prime-modified-fermat-factorization-new-improved-intege/2129714.

[30] Kritsanapong Somsuk and Kitt Tientanopajai, "Improving Fermat factorization algorithm by dividing modulus

into three forms", KKU Engineering Journal, Print ISSN 2539-6161, Online ISSN 2539-6218,

pp. 350-353, Vol. 43, No. S2, 2016, DOI: 10.14456/kkuenj.2016.127, Available: https://ph01.tci-

thaijo.org/index.php/easr/article/view/70248.

[31] Mu-En Wu, Raylin Tso and Hung-Min Sun, "On the improvement of Fermat factorization using a continued

fraction technique”, Future Generation Computer Systems, Print ISSN: 0167-739X, pp. 162–168, Vol. 30, January

2014, Published by ScienceDirect, DOI: 10.1016/j.future.2013.06.008, Available:

https://www.sciencedirect.com/science/article/abs/pii/S0167739X13001222.

[32] Kritsanapong Somsuk, "The Improvement of Initial Value Closer to the Target for Fermat’s Factorization

Algorithm", Journal of Discrete Mathematical Sciences and Cryptography, Print ISSN: 0972-0529, Online ISSN: 2169-

0065, pp. 1573-1580, Vol. 21, No. 7-8, 2018, Published by

Taylor & Francis LTD, DOI: 10.1080/09720529.2018.1502737.

[33] Rasyid R.M. Tahir, Muhammad A. Asbullah, Muhammad R Ariffin and Zahari Mahad, "Determination of a Good

Indicator for Estimated Prime Factor and Its Modification in Fermat’s Factoring Algorithm", Symmetry, Online

ISSN: 2073-8994, Vol. 13, No. 5, 2021, Published by Multidisciplinary Digital Publishing Institute (MDPI), DOI:

10.3390/sym13050735, Available: https://www.mdpi.com/2073-8994/13/5/735.

[34] Paul Ryan A. Longhas, Alsafat M. Abdul and Aurea Z. Rosal, "Factors of Composite 4n2 + 1 using Fermat’s

Factorization Method", International Journal of Mathematics Trends and Technology, Print ISSN: 2349-5757, Online

ISSN: 2231-5373, Vol. 68, No. 1, pp 53-60, 2022, DOI: 10.14445/22315373/IJMTT-V6811P506, Available:

https://www.ijmttjournal.org/archive/ijmtt-v68i1p506.

[35] Hazem M. Bahig, Mohammed A. Mahdi, Khaled A. Alutaibi, Amer AlGhadhban and Hatem M. Bahig,

"Performance Analysis of Fermat Factorization Algorithms", International Journal of Advanced Computer Science and

Applications (IJACSA), Print ISSN: 2158-107X , Online ISSN: 2156-5570, Vol. 11, No. 12, 2020, Published by Science

and Information Organization (SAI), DOI: 10.14569/IJACSA.2020.0111242, Available:

https://thesai.org/Publications/ViewPaper?Volume=11&Issue=12&Code=IJACSA&SerialNo=42.

[36] Hazem Bahig, Hatem Bahig and Yasser Kotb, “Fermat Factorization using a Multi-Core System”, International

Journal of Advanced Computer Science and Applications (IJACSA), Print ISSN: 2158-107X , Online ISSN: 2156-5570,

Vol. 11, No. 4, 2020, Published by SAI, DOI: 10.14569/IJACSA.2020.0110444, Available:

https://thesai.org/Publications/ViewPaper?Volume=11&Issue=4&Code=IJACSA&SerialNo=44.

© 2022 by the author(s). Published by Annals of Emerging Technologies in Computing

(AETiC), under the terms and conditions of the Creative Commons Attribution (CC BY) license

which can be accessed at http://creativecommons.org/licenses/by/4.0.

http://ijece.iaescore.com/index.php/IJECE/article/view/19291/13667
https://www.jstor.org/stable/24496908?refreqid=excelsior%3A966a3fb6d9c871ff015efe2df35f0b07
https://ph01.tci-thaijo.org/index.php/easr/article/view/70248
https://ph01.tci-thaijo.org/index.php/easr/article/view/70248
https://doi.org/10.1016/j.future.2013.06.008
https://www.sciencedirect.com/science/article/abs/pii/S0167739X13001222
https://www.tandfonline.com/doi/abs/10.1080/09720529.2018.1502737
https://doi.org/10.3390/sym13050735
https://www.mdpi.com/2073-8994/13/5/735
https://thesai.org/Publications/ViewPaper?Volume=11&Issue=12&Code=IJACSA&SerialNo=42
https://dx.doi.org/10.14569/IJACSA.2020.0110444
https://thesai.org/Publications/ViewPaper?Volume=11&Issue=4&Code=IJACSA&SerialNo=44

