
Annals of Emerging Technologies in Computing (AETiC)

Vol. 6, No. 1, 2022

Maiass Zaher and Sándor Molnár, “A Comparative and Analytical Study for Choosing the Best Suited SDN Network Operating

System for Cloud Data Center”, Annals of Emerging Technologies in Computing (AETiC), Print ISSN: 2516-0281, Online ISSN: 2516-

029X, pp. 43-59, Vol. 6, No. 1, 1st January 2022, Published by International Association of Educators and Researchers (IAER), DOI:

10.33166/AETiC.2022.01.003, Available: http://aetic.theiaer.org/archive/v6/v6n1/p3.html.

Research Article

A Comparative and Analytical Study for

Choosing the Best Suited SDN Network

Operating System for Cloud Data Center

 Maiass Zaher* and Sándor Molnár

Budapest University of Technology and Economics, Hungary
zaher@tmit.bme.hu; molnar@tmit.bme.hu

*Correspondence: zaher@tmit.bme.hu

 Received: 6th December 2021; Accepted: 28th December 2021; Published: 1st January 2022

Abstract: The growing deployment of Software Defined Network (SDN) paradigm in the academic and

commercial sectors resulted in many different Network Operating Systems (NOS). As a result, adopting the right

NOS requires an analytical study of the available alternatives according to the target use case. This study aims to

determine the best NOS according to the requirements of Cloud Data Center (CDC). This paper evaluates the

specifications of the most common open-source NOSs. The studied features have been classified into two groups,

i.e., non-functional features such as availability, scalability, ease of use, maturity, security and interoperability,

and functional features, such as virtualization, fault verification and troubleshooting, packet forwarding

techniques and traffic protection solutions. A Decision support system, Analytical Hierarchy Process (AHP) has

been applied for assessing specifications of the inspected NOSs, namely, ONOS, Opendaylight (ODL), Floodlight,

Ryu, POX and Tungsten. Our investigation revealed that ODL is the most suitable NOS for CDC compared to the

rest studied NOSs. However, ODL and ONOS have almost similar scores compared to the rest NOSs.

Keywords: Analytical Hierarchy Process; Cloud Data Center; Data Center Network; Network Operating System;

Software Defined Network

1. Introduction

SDN paradigm introduces flexibility in data networks as network devices comply with NOS

instructions by separating the control and data planes. In particular, switches in the data plane perform

packet forwarding related functions as determined by the control plane. The so-called NOS runs on

computer hardware [1], and the control plane represents the business logic in SDN paradigm as it is the

controller of network functions. Specifically, it determines how to handle incoming data packets using

protocols such as OpenFlow [2]. On the other hand, SDN paradigm also provides a network abstraction

for applications at the management plane so that the operator can efficiently perform different network

tasks. Figure 1 shows the layers of the SDN paradigm. The layers separation provides flexibility for

introducing new solutions for problems of the traditional network paradigm. The layered architecture

provided by SDN simplifies the deployment of network services and functions such as virtualization,

packet forwarding, troubleshooting, etc. SDN layers communicate with each other using dedicated

Application Programming Interface (API) as depicted in Figure 1. Therefore, adopting the suitable NOS

has significant impacts.

CDC motivated to develop SDN paradigm as it relies on virtualization technologies to provide

services within the cloud environment. In this context, the traditional network paradigm does not provide

the required flexibility to apply these technologies. In addition, data centers have unique traffic patterns,

which are different from those in the traditional networks [3]. As a result, CDC becomes one of the most

implemented use case of SDN paradigm [4]. Therefore, many commercial companies, organizations and

http://aetic.theiaer.org/
http://www.theiaer.org/index.htm
http://aetic.theiaer.org/archive/v6/v6n1/p3.html
mailto:zaher@tmit.bme.hu
mailto:molnar@tmit.bme
mailto:zaher@tmit.bme

AETiC 2022, Vol. 6, No. 1 44

www.aetic.theiaer.org

research centers have developed NOSs, but no specific NOS that can be used for all use cases because

there are several alternatives according to the requirements. Hence, the research problem was embodied

in answering the following questions:

(i) Which NOS is the best suited for CDC?

(ii) What are the functional and non-functional specifications to be verified for this use case?

(iii) How important is each of the specifications to answer the first question?

Figure 1. SDN paradigm

The importance of this research lies in the following aspects:

1) There are many NOSs, and their development frequency is rapid. Therefore, selection of the

appropriate NOS for CDC requires an analytically comparative study.

2) The selection of the appropriate NOS for the aimed use case profoundly impacts the offered

services as it is the control plane in SDN paradigm.

3) This study is expected to help researchers and operators in this field to transform from traditional

network to SDN paradigm, identifying the most common open-source NOSs and determine the most

appropriate NOS for CDC.

This paper has the following contributions:

a) Framework to determine the best suited NOS to be used in CDC.

b) Provide an analytical study of the functional and non-functional specifications of six open-source

NOSs.

The paper consists of the following sections. In Related works section, we present the literature

review. In Research Methodology section, we overview the used research methodology. We introduce the

problem and explain the employed decision-making method in the problem statement and AHP analysis

section. We discuss the results in Results and discussion section. Finally, we present the conclusion in

Conclusion section.

2. Related Works

Several research works compared NOSs. Khondoker et al. [5] conducted a comparison of

specifications for each of the following NOSs, (ODL, Ryu, POX, Ryu, Floodlight, Trema). Ryu was found

to be the best NOS according to the adopted criteria for the evaluation. Khondoker et al. did not consider

so common NOSs such as ONOS and this study considered no specific use case. The study in [6]

compared southbound API, Openflow version, programming language and round-trip time (RTT) delay

of POX, ODL, ONOS, Ryu. They found that Ryu has the best score based on TOPSIS method. The work in

[6] considered a small set of criteria which are OpenFlow version, NOS programming language, RTT,

interfaces and documentation. However, we consider more criteria in this study to evaluate different NOS

specifications. The work in [7] presented a feature AHP-based comparison of ODL, NOX, Beacon, Trema,

POX, OpenMUL, Ryu, Floodlight, OpenContrail and ONOS in terms of traffic classification as the targeted

use case. They found that ODL provides the best specifications for the use case. However, the study did

not consider criteria related to cloud based data center similar to what we consider in Table 3. The work in

[8] presented an ANP-based comparative study of features and performance of Floodlight, ONOS, ODL,

POX, Ryu and Trema. The authors found ODL has the best score. However, this study considered many

quantitative measurements such delay, throughput and CPU utilization to find the optimal NOS whereas

we consider only the qualitative criteria in this study. The comparison conducted in [9] presented the

optimum NOS for deploying SDN-WAN. The authors compared Ryu, ODL, POX, Trema, Floodlight.

AETiC 2022, Vol. 6, No. 1 45

www.aetic.theiaer.org

Using AHP, the authors tackled the problem of finding the best NOS might be used for real use case

which is connecting university campuses using SDN instead of Multiprotocol Label Switching (MPLS)

Border Gateway Protocol (BGP) technology. Amiri et al. [10] compared features and performance of many

open-source NOSs by using Best-Worst Method (BWM) decision-making method and Cbench to assess

the qualitative and quantitative criteria of NOSs. The work in [10] employs Cbench to measure

throughput and latency as quantitative criteria and ODL has the highest rank in both. However, the

authors did not aim a specific use case. Ali at el. [11] proposed a prioritized features method used for

selecting the best NOS. The authors employed ANP to implement the proposal. The investigated NOSs

are ODL, ONOS, POX, RYU and Trema. The aim of this study was reducing the computational complexity

of the selection process by selecting high weight features and ignoring low weight features. However, the

study did not consider a wide spectrum of criteria and it did not aim CDC as a use case. The work in [12]

investigated many features of ODL, ONOS, Floodlight, POX, RYU and Trema to find the NOS which has

the best feature set. In particular, the authors’ final target was creating a hierarchical cluster of the best

NOS to improve performance such as delay, throughput, fault tolerance and scalability. This work is not

tailored for specific use case but it aimed to improve the cluster performance, and it did not consider CDC

related features. On the other hand, many studies reviewed SDN state of the art to investigate different

aspects of SDN solutions and NOSs. In this context, our study introduces different aspects of NOSs as

well but for identifying the best NOS for CDC. In this context, Abuarqoub [13] reviewed SDN NOSs in

terms of scalability. On the other hand, Sarmiento et al. [14] surveyed SDN NOSs in terms of the

challenges yielded from inter-site networking services. Studies in [15-16] observed SDN based load

balancing techniques and [18] reviewed SDN NOSs according to NOS placement problem.

However, to the best of our knowledge, we consider a use case that has not been considered in the

literature. In this study, we aimed to find the best suited NOS for CDC. In addition, our study covers the

support of different features such as fault verification and troubleshooting, traffic security and packet

forwarding techniques. We conducted a qualitative comparison only since there are many previously

published papers on performance comparisons, such as in [6-8, 18].

3. Research Methodology

We experimentally verified the NOS specifications to decide on criteria and alternatives weights. We

installed NOSs, and many of their features and services were investigated. Furthermore, we investigated

information provided on their official websites. Several criteria were imposed according to the aimed use

case. Initially, the specifications required to be provided by the suitable NOS were identified, as shown in

Table 1. Then AHP [19] was applied by which the studied specifications of each NOS were evaluated.

Table 1. Version of the considered NOS
NOS Version
POX dart1
Ryu 4.232
Floodlight v1.23
ODL Sodium4
ONOS Sparrow5
Tungsten Tungsten 5.16

3.1. The Studied NOS

The most common open-source NOSs presented at the time of this study were studied, which are

ONOS, POX, RYU, ODL,Floodlight and Tungsten. The reason for choosing these NOSs is that they are

considered the most widespread open-source NOSs. Most of the other open-source NOSs are either

1 “Pox-doc“, McCauley, last modified 2019, https://noxrepo.github.io/pox-doc/html/
2 “ryu the network operating system(nos)”, RYU Community, last modified 2019, https://ryu.readthedocs.io/en/latest/index.html
3 “Floodlight controller“, Floodlight Community, last modified 2019, https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/
4 “Start guide”, Opendaylight, last modified 2019, https://docs.opendaylight.org/en/stable-sodium/getting-started-guide/index.html
5 “Onos“, ONOSProject, last modified 2019, https://wiki.onosproject.org/display/ONOS/ONOS
6 “Tungsten fabric”, Linux Foundation, last modified 2019, https://tungstenfabric.github.io/website/

https://noxrepo.github.io/pox-doc/html/
https://ryu.readthedocs.io/en/latest/index.html
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/
https://docs.opendaylight.org/en/stable-sodium/getting-started-guide/index.html
https://wiki.onosproject.org/display/ONOS/ONOS
https://tungstenfabric.github.io/website/

AETiC 2022, Vol. 6, No. 1 46

www.aetic.theiaer.org

designed for a specific purpose or no longer being developed. However, all unconsidered NOSs in this

study are used less according to the frequency of their appearance in research works [20] [21]. ONOS is

the most recent NOS produced. It is developed by ON-Lab, which is a non-profit organization. One of its

main aspects is that it supports legacy networks. POX was developed to be the successor to NOX. an open

research community developed POX. It is suitable for conducting SDN-based researches . According to

the component-based model, Ryu has been developed by NTT company to facilitate the process of adding

and modifying its components in any programming language. Big Switch developed Floodlight, and its

main goal was to provide a NOS capable of dealing with open network hardware (i.e., hardware that does

not contain software and is called "white box"). As a result of the effort of a consortium of several

international companies, under Linux Foundation, ODL was introduced to obtain the acceptance of

companies and users and to receive improvements continuously. Finally, some NOSs are considered as

cloud oriented SDN NOSs where they aim at managing the network infrastructure of CDC. In this

context, we consider Tungsten which is the open source version of Juniper Contrail and now it is a project

of Linux Foundation. Table 1 lists versions of NOSs involved in this study.

3.2. Characteristics of Cloud Data Center

Nowadays, cloud computing drives most businesses and shapes a new era of technology delivery.

Cloud computing provides different services such as software, storage, and virtual resources, so it

abstracts the technical complexities, and it eliminates the cost and risk associated with hardware

maintaining and acquisition [4]. In recent years, SDN has been employed in CDCs since SDN provides

central control of the network. SDN-based Data Center Network (DCN) is preferred to the traditional

DCN since it can improve DCN efficiency [22]. Furthermore, hypervisors are used in CDC to enable the

deployment of virtual resources, so functions such as traffic control and isolation are crucial for providing

efficient services. In this context, SDN and Network Function Virtualization (NFV) are seen as enablers of

network slicing to create multiple virtual networks over a shared infrastructure. Each virtual network can

be logically isolated from other virtual networks and assigned to serve specific requirements. Since SDN

NOS has a global view of the network, traffic routing decisions can satisfy service demands, and

each network slice can be provisioned with network and cloud resources based on QoS and Service Level

Agreement (SLA). Due to the programmable model of SDN and the separation of the control plane and

data plane, SDN facilitates the deployment of network functions that are essential for managing virtual

resources where Virtualized Network Function (VNF) can be deployed in networks dynamically by

SDN’s configuration and automation functionalities.

In this context, many protocols are used as a southbound interface so that NOS can programmatically

contact the switches to exchange information and send instructions. Besides, many NOSs expose

northbound interfaces that can be used by the management plane and cloud orchestrator to implement

different solutions (e.g., Quality of Service (QoS) management, traffic engineering, fault recovery, network

statistics, topology discovery, etc.). Furthermore, the dynamically changing status of the network should

be considered by the cloud systems in terms of the management of computing and storage resources,

Virtual Machine (VM) provisioning, and addressing virtual resources requirements [23, 24]. The massive

scale of a CDC, which consists of thousands of compute nodes and network devices, imposes the necessity

for network management, performance improvement and dynamic provisioning of computing and

network resources [25]. Therefore, the architecture of the control plane should be taken into account

whether it should be centralized or distributed. The centralized control plane represents a single point of

failure. Although centralized architecture might be an efficient solution for small scale CDCs, it may not

be efficient for large scale CDCs. Therefore, a distributed control plane consisted of many NOSs should be

deployed. However, such architecture yields other challenges such as synchronization and heterogeneity

of the underlying data plane [26]. On the other hand, SDN paradigm triggers additional motivations for

the attackers. SDN NOSs and OpenFlow are considered potential security vulnerabilities which require

efficient security solutions to improve the safety [27]. In particular, cloud orchestrator and SDN NOS

integrate each other. Cloud orchestrator manages virtual resources like VMs provisioning, while SDN

NOS manages physical and virtual network resources by southbound API (e.g. Openflow) and VM traffic.

Besides, they communicate by north-bound API (e.g., Rest API) [28]. Hence, since SDN NOS and CDC

AETiC 2022, Vol. 6, No. 1 47

www.aetic.theiaer.org

orchestrator are integrated, maintaining the security is vital. Therefore, security solutions should utilize

SDN capabilities and protect SDN components as well.

Table 2. Non-functional features of studied NOS

Table 3. Functional features of studied NOS
Feature Description

Virtualization

Overlay

Networks
Creation of virtual networks based on physical network hardware

Isolation Maintaining the isolation of the shared virtual resources

Packet Forwarding

Techniques

Load

Balancing
Improve network utilization according to the network situation

Quality of

Service
Mechanisms used to ensure that the required level of service is achieved

Traffic Protection

Solutions

Detect security threats by monitoring network situation and applying pre-

defined security policies

Fault Verification and

Troubleshooting
 Mechanisms used for faults recovery and avoidance

In this context, SDN can be employed to prevent a distributed denial-of-service (DDoS) attack by

utilizing SDN functions such as traffic analysis. On the other hand, the SDN NOS must be secured itself as

it represents the central control layer in SDN paradigm [29]. As Big Data and Internet of Things (IoT)

applications exploit CDC, utilizing SDN-based CDC can enhance the performance of these applications by

applying load balancing and QoS solutions [30]. For this sake, SDN can provide different QoS

mechanisms for different applications, such as bandwidth slicing. In addition, scalability is an essential

concern [31]. Since SDN NOS gathers information from data plane devices, it is crucial to avoid deploying

a single SDN NOS in large scale CDC. Single SDN NOS represents a single point of failure, which could

be problematic because there is a big number of devices in the data plane of CDC. Therefore, the

distributed architecture of many SDN NOSs, to improve the availability, can be employed using

westbound and eastbound APIs to maintain the synchronization [32][33]. Furthermore, the faults

represent a critical challenge to meet SLAs. In CDC, fault tolerance techniques provide the ability to

maintain QoS. In this context, improving the reliability in CDC can be proactively achieved to avoid fault

occurrence. For example, system load can be identified as an indication of potential future failures so that

new resources might be added to avoid failures proactively [34] [35]. Although there are many open-

source NOSs, and they are differently matured in terms of CDC requirements. It is challenging to find

NOS that can provide CDC requirements, and it can integrate with the CDC orchestrator. As a result,

based on the former characteristics of CDC, we summarize in Tables 1 and 2 the functional and non-

functional features, respectively, which are required to be provided by the best suited NOS.

Feature Description

Easy to use

Usability
GUI Display information about network components and metrics

Documentation Information required for utilizing and developing NOS

Development

North API
The standard used for communications between the control and

management planes

Modularity NOS architecture based which new modifications may be introduced

Community
The contributions by developers and operators to improve open source

NOSs

Maturity

Update

Frequency

The rate of developments the NOS receives

Application

Availability
Applications provided to be used based on NOS

Interoperability

Control

Protocols

Communication protocols used to control network hardware by NOS

Management

Protocols

The protocols used to manage the settings of network hardware by

NOS

Security The security features provided by NOS to perform its functions safely

Scalability
The ability of running multiple instances of NOS within a distributed

and consistent cluster

Availability The ability of providing services by NOS in case of failures

AETiC 2022, Vol. 6, No. 1 48

www.aetic.theiaer.org

3.3. Decision support system

In this study, AHP [19] is used to make a decision according to multiple criteria. It is the most

appropriate method according to the nature of the problem since it is a mathematical method for decision-

making, which generates criteria weights through pair-wise comparisons. This comparison is also used to

evaluate alternatives against each criterion. According to AHP, criteria and alternatives are treated

separately. In addition, AHP presents problems in a hierarchical structure, which helps classify the criteria

into levels according to the nature of the studied problem. Therefore, AHP reduces the size of the

comparison matrices, thus maintaining the accuracy and consistency of results. Furthermore, AHP checks

the consistency of the evaluation as long as the dimensions of the comparison matrices are under ten. On

the other hand, other decision support systems like Technique for Order Preference by Similarity to Ideal

Solution (TOPSIS) [36] is suitable for problems with negative criteria, while all criteria in this study have

positive values only. Analytical Network Process (ANP) [37] is appropriate in case of correlated criteria

and alternatives, while all the criteria and alternatives in this study are independent. On the other hand,

Best-Worst Method (BWM) [38] identifies the worst and the best criteria in advanced so that the rest

criteria are compared with them. However, in our case, we have many criteria, in different levels of the

hierarchy, with similar importance what makes AHP the prefer method for this problem as well [39][40].

4. The Problem Statement and AHP Analysis

This section presents the problem as a decision making problem applying AHP. The studied

alternatives are 𝐴𝑛where 𝑛 = 6, and the adopted criteria are 𝐶𝑚 where 𝑚 ∈ 𝑍+. We aim to find the

optimum NOS among the investigated NOSs using AHP according to the features listed in Table 2 and

Table 3. Therefore, the hierarchical presentation of the studied criteria is depicted in Figure 2-4. AHP

requires to assign weights for the evaluation criteria. For this sake, we created 𝑚 × 𝑚 matrices for the

criteria on the same levels of the hierarchy, and their elements are the priorities for each pair of the criteria

to signify the importance of a single criterion to another, as shown in Eq. 1 where 𝐶𝑖𝑗 represents the

importance of criterion 𝐶𝑖 in comparison to 𝐶𝑗. In order to assign priority, AHP defines a scale between 1

and 9 to present the prioritization, as shown in Table 4 [19].

Table 4. Priority scale

Priority Value Indication

1 equally important

3 moderately more important

5 strongly more important

7 very strongly more important

9 extremely more important

[
𝟏 ⋯ 𝑪𝟏𝒎

⋮ ⋱ ⋮
𝑪𝒎𝟏 ⋯ 𝟏

] , 𝑪𝒊𝒋 > 𝟎, 𝑪𝒊𝒋 =
𝟏

𝑪𝒊𝒋
 (1)

Then, the columns are normalized to find the relative weights by applying Eq. 2

�̅�𝒊𝒋 =
𝑪𝒊𝒋

∑ 𝑪𝒊𝒋
𝒎
𝒊=𝟏

 𝒘𝒉𝒆𝒓𝒆 ∑ �̅�𝒊𝒋
𝒎
𝒊=𝟏 = 𝟏 (2)

Next, vectors of adding the elements of each row are created as shown in Eq. 3

𝒗𝒊 = ∑ �̅�𝒊𝒋
𝒎
𝒊=𝟏 (3)

By calculating the average of the previous values, we obtain a vector of weights Wm×i, which shows

the weights of the criteria according to their pair-wise priorities, as shown in Eq. 4-5:

𝑾𝒊 =
𝒗𝒊

𝒎
 𝒘𝒉𝒆𝒓𝒆 ∑ 𝒘𝒊

𝒎
𝒊=𝟏 = 𝟏 (4)

𝑾𝒊×𝒋 = [

𝑾𝟏×𝒋

⋮
𝑾𝒎×𝒋

] (5)

The final weights of the leaf criteria are calculated by finding the resulted values in Eq. 5 multiplied

with their parent criteria. Figure 2-4 present the final global weights, which indicate the significance of

each criterion to achieve the goal. Then, the priority vector consistency is verified by employing the notion

of Eigen-value to compute Consistency Index (CI) as in Eq. 6:

AETiC 2022, Vol. 6, No. 1 49

www.aetic.theiaer.org

𝑪𝑰 =
𝝀𝒎𝒂𝒙− 𝒎

𝒎−𝟏
 (6)

𝝀𝒎𝒂𝒙 is the summation of multiply weight vectors with the summation vectors of columns of the pair

wise comparison matrix. Consistency Ratio (CR) can be computed as in Eq. (7) using Random Index (RI).

𝑪𝑹 =
𝑪𝑰

𝑹𝑰
 (7)

Figure 2. Criteria hierarchy

The values of RI are presented in Table 5. According to [19], RI is the pre-calculated average

consistency index computed by [19] of randomly generated comparison matrices with different scales,

denoted as scale in Table 5. RI can be used as a reference value to check how CI, which is computed in Eq.

6, of our comparison matrices is far or close to the matched-scale RI. In particular, if CR, in Eq. 7, is 1, this

means that we have completely random priorities. Therefore, we have no meaningful comparisons, and

we have to revise our comparisons. The opposite is true in case Eq. 7 (i.e., CR) equals zero. In case CR is

below 10%, the priority values are supposed to be consistent; otherwise, pair-wise priorities should be

modified, and the pairwise comparisons should be repeated. Similarly, the alternatives are pair-wise

compared against each criterion as in Eq. 8 based on the convention in Table 4, and weight vectors of the

alternatives are computed, and their consistency is inspected as in Eq. 7, as well. Finally, the final value of

each alternative is computed as in Eq. 9 where 𝑾𝒎×𝟏is the weight vector of child criteria, �́�𝒎×𝟏 is the

alternative’s weights against all criteria, and 𝑿𝒏×𝟏 is a vector contains the final result of each alternative.

[
𝟏 ⋯ 𝑨𝟏𝒏

𝒎

⋮ ⋱ ⋮
𝑨𝒏𝟏

𝒎 ⋯ 𝟏
] , 𝑨𝒊𝒋 > 𝟎, 𝑨𝒊𝒋 =

𝟏

𝑨𝒋𝒊
 (8)

𝑿𝒏×𝟏 = �́�𝒏×𝒎 × 𝑾𝒎×𝟏 (9)

Figure 3. Non-functional Requirements

AETiC 2022, Vol. 6, No. 1 50

www.aetic.theiaer.org

Figure 4. Functional Requirements

Table 5. Values of Random Index
Scale 1 2 3 4 5 6 7 8 9

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45

Tables 6-15 present the matrices resulted from Eq. 1. The pair-wise comparisons of criteria show that

functional and non-functional criteria have equal importance. In relation to the non-functional

requirements, we set weights of Ease of Use and Maturity less than that of the remaining criteria since all

considered NOSs are open-source, and they can be developed according to the requirements. On the other

hand, Development has a higher weight than Usability as NOSs might be modified to propose new

functions and services. As a result, Modularity has a higher weight in comparison to Development

Community and North API as it simplifies NOSs modification. As shown in Table 10, Documentation has

a higher weight than GUI, where it is essential to adopt, use and develop NOSs. Finally, all remaining

criteria have similar weights except Virtualization since we aim to find the optimal NOS for CDC. We

present pair-wise comparison of the alternatives resulted from Eq. 8 in Table 16-33. Table 35 presents Ẃ

𝒏 × 𝒎 of all alternatives according to all leaf criteria. Final values of all alternatives, 𝑿𝒏×𝟏, are presented in

Figure 5.

5. Results and Discussion

5.1. Non-functional features

As shown in Figure 5, ODL is the best suited NOS for CDC according to the specified criteria. The

final values of ONOS and ODL are close since they are being developed continuously by a large and

active community, and they are supported by many industrial and research groups in comparison to the

other NOSs. This presents the importance of adopting open-source software projects by relevant

companies and institutions. Table 34 summarizes the detailed features of NOSs.

5.1.1. Scalability

ONOS, ODL and Tungsten are more scalable than the other NOSs, since they support distributed

model in which multiple NOS instances can inter-operate simultaneously. However, ONOS can assign

segments of Wide Area Network (WAN) or DCN to a specific instance to mitigate the instance load.

ONOS employs Atomix database to store network information, which is also used for coordinating

between the instances. In particular, ONOS represents a logically centralized control plane since the

infrastructure might consist of multiple domains with one ONOS instance for each domain. On the other

hand, ODL employs Advanced Message Queuing Protocol (AMQP)7 to exchange information between

ODL instances where each instance maintains information of its own domain. ODL leverages Federation

and NetVirt projects to create virtual networks across many OpenStack instances, but these inter-site

7 “Amqp is the internet protocol for business messaging”, OASIS, last modified 2021, https://www.amqp.org/about/what

https://www.amqp.org/about/what

AETiC 2022, Vol. 6, No. 1 51

www.aetic.theiaer.org

communications are managed at ODL levels, so overlapping is likely at Neutron level, e.g., duplicated IPs

in different OpenStack instances is probable. Tungsten has control nodes run in a cluster to maintain

scalability.

5.1.2. Security

All NOSs provide secure connections with the devices in the data plane by applying Transport Layer

Security/Secure Sockets Layer (TLS)/(SSL). Moreover, ODL has Unified Secure Channel (USC), which

consists of an agent, plugin and manager to initiate and maintain the connection with ODL, authenticates

ODL and presents the state of USC in ODL DLUX user interface. Besides, ODL provides authentication,

authorization, and accounting (AAA) framework controlling access to ODL features, applying policies to

use those features and auditing the usage.

Table 6. Top level criteria
Criteria non-Functional Requirements Functional Requirements

non-Functional Requirements 1 1

Functional Requirements 1

inconsistency ratio = 0.00%

Table 7. non-Functional Requirements
Criteria Scalability Security Easy to Use Maturity Interoperability Availability

Scalability 1 1 3 3 1 1

Security 1 3 3 1 1

Easy to Use 1 1/2 1/3 1/3

Maturity 1 1/3 1/3

South API 1 1

Availability 1

inconsistency ratio = 0.22%

Table 8. Easy to Use
Criteria Development Usability

Development 1 1

Usability 1

inconsistency ratio = 0.00%

Table 9. Development
Criteria Modularity Development Community North API

Modularity 1 2 1

Development Community 1 1/2

North API 1

inconsistency ratio = 0.00%

Table 10. Usability
Criteria GUI Documentation

GUI 1 1/3

Documentation 1

inconsistency ratio = 0.00%

Table 11. Maturity
Criteria Update Frequency Application Availability

Update Frequency 1 3

Application Availability 1

inconsistency ratio = 0.00%

Table 12. Interoperability

Criteria Management Protocols Control Protocols

Management Protocols 1 1/3

Control Protocols 1

inconsistency ratio = 0.00%

Table 13. Functional Requirements

Criteria
Fault Verification &

Troubleshooting

Packet Forwarding

Techniques
Virtualization

Traffic Protection

Solutions

Fault Verification & Troubleshooting 1 1 1/3 1

Packet Forwarding Techniques 1 1/3 1

Virtualization 1 3

Traffic Protection Solutions 1

inconsistency ratio = 0.00%

AETiC 2022, Vol. 6, No. 1 52

www.aetic.theiaer.org

Table 14. Packet Forwarding Techniques
Criteria Load Balancing Quality of Service

Load Balancing 1 1

Quality of Service 1

inconsistency ratio = 0.00%

Table 15. Virtualization
Criteria Overlay Networks Isolation

Overlay Networks 1 1

Isolation 1

inconsistency ratio = 0.00%

5.1.3. Easy to use & Maturity

In terms of Modularity, new modules can be added to all NOSs feasibly either as Python component

or Apache Karaf. However, ONOS provides Yang management system that abstracts data modelling

details of applications and device drivers by generating YANG modelled JAVA objects corresponding to

device and application schema so that the business logic will be the sole concern. Hence, it can seamlessly

support any interface like Representational state transfer (REST), Network Configuration Protocol

(NETCONF), Extensible Markup Language (XML), etc. ONOS and ODL have the richest documentations.

In addition, ODL and ONOS have the fastest update frequency and the most varied and numerous

applications, but Tungsten provides richer GUI than other NOSs as configurations in terms of QoS, IP

addressing, Ports, policies, etc can be depicted and defined using the web-based GUI. Finally, ONOS and

ODL have the largest development communities as they are supported by many technological companies

researching centers, and organizations.

5.1.4. Interoperability

Tungsten, ONOS and ODL provide Simple Mail Transfer Protocol (SNMP) as a management protocol

which provides so many facilities in an environment such as CDC. In relation to south API control

protocols, ODL provides Model-Driven Service Adaptation Layer (MD-SAL), which simplifies the

communications between ODL modules and data plane through the available southbound APIs by

supporting user-defined payload formats, including payload serialization and adaptation. ODL provides

OpFlex8, which is an extensible policy protocol designed to exchange abstract policy between ODL and

the devices support policy rendering. On the other hand, Tungsten provides Extensible Messaging and

Presence Protocol (XMPP)9 as a southbound API to communicate with vRouter10, which can be deployed

either as a kernel module, Data Plane Development Kit (DPDK)11 in user space, SmartNIC programmable

network interface12, or by using Single Root I/O Virtualization (SR-IOV) for accessing Network Interface

Card (NIC) from VMs directly.

5.1.5. Availability

Availability has been boosted in all NOSs except POX by applying Master/Slave model. The

continuous mirroring operates between master and slave instances so that the slave takes responsibility

upon master failure. However, since ODL maintains the virtual network information on ODL level in case

of multiple CDC sites, non-disconnected ODL instances can provide inter-site services during network

disconnections where ODL instances employ AMQP to communicate with each other so that no need to

share information between instances. On the contrary, ONOS instances present a logically distributed

control plane by sharing information using Atomix database13.

8 “Opflex control protocol”, IETF, last modified 2016, https://datatracker.ietf.org/doc/html/draft-smith-opflex-03
9 “An overview of xmpp”, last modified 2021, https://xmpp.org/about/technology-overview/
10 “vrouter”, ONOS project, last modified 2016, https://wiki.onosproject.org/display/ONOS15/vRouter
11 “About dpdk”, Linux Foundation, last modified 2021, https://www.dpdk.org/about/
12 “What is a smartnic?”, Nvidia, last modified 2021, https://blogs.nvidia.com/blog/2021/10/29/what-is-a-smartnic/
13 “Atomix “, Open Network Foundation, last modified 2021, https://atomix.io/

https://datatracker.ietf.org/doc/html/draft-smith-opflex-03
https://xmpp.org/about/technology-overview/
https://wiki.onosproject.org/display/ONOS15/vRouter
https://www.dpdk.org/about/
https://blogs.nvidia.com/blog/2021/10/29/what-is-a-smartnic/
https://atomix.io/

AETiC 2022, Vol. 6, No. 1 53

www.aetic.theiaer.org

5.2. Functional features

5.2.1. Fault verification and troubleshooting

Most outstanding troubleshooting capabilities have been found in ODL and ONOS as well. ODL

provides a diagnostics framework to report the status of ODL itself by performing continuous monitoring

of registered modules and built-in services to maintain the overall health of the system, and it additionally

triggers alarms. On the other hand, ONOS provides a framework to break the routing loop, routing black

holes and applications conflicts. As well, ONOS integrates with services like CPMan14 and Ganglia15 to

maintain the information of the ONOS state. In addition, ONOS provides fault management by polling

SNMP capable network devices to track events like device adding, updating, link down, etc. Users can

access and manipulate alarms by CLI, Rest API or GUI. FlowScale16 provided by Floodlight diverts all

traffic directed to a down port to other up ports. Tungsten’s analytic nodes collect metrics from compute,

storage and network nodes as well as their workloads to facilitate troubleshooting and monitoring. In

particular, Zookeeper17 is used to distribute the responsibility of collecting data among analytic nodes to

avoid nodes overwhelming.

5.2.2. Packet forwarding technique

For the sake of improving the availability and the performance, ONOS balances the load between the

instances in a cluster. Tungsten balances the load among the virtual resources by providing load

balancing as a service employing different drivers such as HAproxy18. On the other hand, ONOS

improves QoS by providing SDNi, which manages flow setup by considering information such as path

requirement, QoS and Service Level Agreement (SLA). Besides, ONOS provides intent framework by

which applications can specify their network control desires as a policy (e.g., tunnel provisioning, flow

rule installation). Hence, different packet forwarding techniques can be applied at run-time. However, the

other NOSs support QoS by creating queues, Openflow meters, Differentiated Services (DiffServ) or

creating Label-Switched Path (LSP) by Path Computation Element Configuration Protocol (PCEP).

5.2.3. Virtualization

In relation to virtualization, all NOSs except POX integrate with Openstack orchestrator, support

Virtual Local Area Network (VLAN), moreover, Tungsten, ODL and ONOS support Virtual Extensible

LAN (VxLAN) and L3 tunnelling. In this context, ODL manages overlay tunnels established within a

transport zone using VxLAN, Generic Routing Encapsulation (GRE), Generic Protocol Extension for

VxLAN (VxLAN-GPE) and MPLS over GRE (MPLSoGRE). Besides, ODL provides L2, L3 tunneling,

network address translation (NAT) and access control list (ACL) services for the virtualized resources

using Neutron northbound API, which communicates with ODL driver in Openstack. On the other hand,

ONOS provides a tenant network virtualization service for CDC provisioning using L2 VxLAN or L3

GRE. Furthermore, ONOS provides L2, L3 tunneling and NAT services using Open Virtual Switch (OVS)19

in the compute nodes and provides horizontal scalability of the gateway node, which connects the virtual

networks with the outside by BGP. ONOS isolates the virtual network traffic by Ethernet Virtual

Connections (EVC), which uses VLAN ID to tag traffic of different EVCs uniquely and define the

associated components like User Network Interface (UNI) and bandwidth profile. Similarly, ODL

provides UNI manager, which provisions EVC in physical and virtual network elements of multi-vendor

using YANG based APIs and drivers. In addition, ONOS Simplified Overlay Network Architecture

(SONA) and ODL NetVirt integrate with Kubernetes as well. On the other hand, Tungsten employs BGP

Ethernet Virtual Private Network (EVPN) and VxLAN to connect VMs in different orchestrator domains

like Kubernetes, OpenStack and VMWare vCenter. Furthermore, Tungsten enables virtual networks to

connect with external network by BGP peering with gateway routers. Tungsten employs vRouter instead

14 “Control plane management application”, ONOS Project, last modified 2016,

https://wiki.onosproject.org/display/ONOS/Control+Plane+Management+Application
15 Ganglia monitoring system, http://ganglia.sourceforge.net/
16 Flowscale, https://floodlight.atlassian.net/wiki/spaces/FlowScale/overview
17 “What is zookeeper?”, Apache, last modified 2021, https://zookeeper.apache.org/
18 “the reliable high performance tcp/http load balancer”, Haproxy, http://www.haproxy.org/
19 “Production quality, multilayer open virtual switch”, Linux Foundation, last modified 2021, https://www.openvswitch.org/

https://wiki.onosproject.org/display/ONOS/Control+Plane+Management+Application
http://ganglia.sourceforge.net/
https://floodlight.atlassian.net/wiki/spaces/FlowScale/overview
https://zookeeper.apache.org/
http://www.haproxy.org/
https://www.openvswitch.org/

AETiC 2022, Vol. 6, No. 1 54

www.aetic.theiaer.org

of Linux bridge or OVS in hosts where Tungsten configures vRouter to implement the network and

security policies. Tungsten maintains the isolation using MPLS over User Datagram Protocol MPLSoUDP

or VxLAN encapsulation tunneling between fabric Virtual Routing and Forwarding (VRF) and VM VRFs.

Table 16. Scalability
NOS Floodlight RYU ODL ONOS POX Tungsten

Floodlight 1 1 1/3 1/4 1 1

RYU 1 1/3 1/4 1 1

ODL 1 1/3 3 3

ONOS 1 5 3

POX 1 1

Tungsten 1

 inconsistency ratio = 1.55%

Table 17. Security
NOS Floodlight RYU ODL ONOS POX Tungsten

Floodlight 1 2 1/3 1/2 2 1

RYU 1 1/4 1/3 1 1/2

ODL 1 2 4 3

ONOS 1 2 3

POX 1 1/2

Tungsten 1

 inconsistency ratio = 0.66%

Table 18. Modularity
NOS Floodlight RYU ODL ONOS POX Tungsten

Floodlight 1 1 1/3 1/3 1 3

RYU 1 1/3 1/3 1 3

ODL 1 1 3 6

ONOS 1 3 6

POX 1 3

Tungsten 1

 inconsistency ratio = 0.44%

Table 19. Development community
NOS Floodlight RYU ODL ONOS POX Tungsten

Floodlight 1 1 1/6 1/6 3 1/4

RYU 1 1/6 1/6 3 1/4

ODL 1 1 6 2

ONOS 1 6 2

POX 1 1/5

Tungsten 1

 inconsistency ratio = 3.29%

Table 20. North API
NOS Floodlight RYU ODL ONOS POX Tungsten

Floodlight 1 3 1/3 2 5 2

RYU 1 1/5 1 3 1

ODL 1 3 7 3

ONOS 1 3 1

POX 1 1/2

Tungsten 1

 inconsistency ratio = 1.87%

Table 21. GUI
NOS Floodlight RYU ODL ONOS POX Tungsten

Floodlight 1 2 1/3 1/3 3 1/6

RYU 1 1/3 1/3 1 1/6

ODL 1 1 5 1/3

ONOS 1 5 1/3

POX 1 1/9

Tungsten 1

 inconsistency ratio = 2.08%

Table 22: Documentation
NOS Floodlight RYU ODL ONOS POX Tungsten

Floodlight 1 1 1/3 1/3 3 1

RYU 1 1/3 1/3 3 1

ODL 1 1 5 3

ONOS 1 5 3

POX 1 1/3

Tungsten 1

 inconsistency ratio = 0.93%

Table 23. Update frequency
NOS Floodlight RYU ODL ONOS POX Tungsten

Floodlight 1 1/3 1/6 1/6 3 1/5

RYU 1 1/3 1/3 7 1/2

ODL 1 1 9 2

ONOS 1 9 2

POX 1 1/7

Tungsten 1

 inconsistency ratio = 2.22%

Table 24. Application availability
NOS Floodlight RYU ODL ONOS POX Tungsten

Floodlight 1 2 1/3 1/3 4 1

RYU 1 1/6 1/6 3 1/2

ODL 1 1 9 3

ONOS 1 9 3

POX 1 1/4

Tungsten 1

 inconsistency ratio = 0.73%

Table 25. Management protocols
NOS Floodlight RYU ODL ONOS POX Tungsten

Floodlight 1 1/2 1/6 1/5 3 1

RYU 1 1/6 1/3 4 2

ODL 1 2 6 6

ONOS 1 6 5

POX 1 1/3

Tungsten 1

 inconsistency ratio = 4.06%

Table 26. Control protocols
NOS Floodlight RYU ODL ONOS POX Tungsten

Floodlight 1 1 1/2 1 4 2

RYU 1 1/2 1 4 2

ODL 1 2 6 3

ONOS 1 4 2

POX 1 1/2

Tungsten 1

 inconsistency ratio = 0.22%

Table 27. Availability
NOS Floodlight RYU ODL ONOS POX Tungsten

Floodlight 1 2 1/5 1/5 5 1

RYU 1 1/7 1/7 4 1/2

ODL 1 1 7 5

ONOS 1 7 5

POX 1 1/4

Tungsten 1

 inconsistency ratio = 4.87%

Table 28. Faults verification and troubleshooting
NOS Floodlight RYU ODL ONOS POX Tungsten

Floodlight 1 1 1/3 1/3 3 1/2

RYU 1 1/3 1/3 3 1/2

ODL 1 1 5 2

ONOS 1 5 2

POX 1 1/4

Tungsten 1

 inconsistency ratio = 1.11%

Table 29. Load balancing
NOS Floodlight RYU ODL ONOS POX Tungsten

Floodlight 1 5 1 1/7 1 1

RYU 1 1/5 1/9 1/5 1/5

ODL 1 1/7 1 1

ONOS 1 7 7

POX 1 1

Tungsten 1

 inconsistency ratio = 3.54%

Table 30. Quality of service
NOS Floodlight RYU ODL ONOS POX Tungsten

Floodlight 1 1 1/3 1/5 3 1

RYU 1 1/3 1/5 3 1

ODL 1 1/3 5 3

ONOS 1 7 5

POX 1 1/3

Tungsten 1

 inconsistency ratio = 1.99%

Table 31. Overlay networks
NOS Floodlight RYU ODL ONOS POX Tungsten

Floodlight 1 1 1/5 1/5 1 1/5

RYU 1 1/5 1/5 1 1/5

ODL 1 1 5 1

ONOS 1 5 1

POX 1 1/5

Tungsten 1

 inconsistency ratio = 0.00%

AETiC 2022, Vol. 6, No. 1 55

www.aetic.theiaer.org

Table 32. Isolation
NOS Floodlight RYU ODL ONOS POX Tungsten

Floodlight 1 1 1/5 1/5 1 1/5

RYU 1 1/5 1/5 1 1/5

ODL 1 1 5 1

ONOS 1 5 1

POX 1 1/5

Tungsten 1

 inconsistency ratio = 0.00%

Table 33. Traffic protection solutions
NOS Floodlight RYU ODL ONOS POX Tungsten

Floodlight 1 3 1/7 1/5 3 1/3

RYU 1 1/9 1/7 1 1/5

ODL 1 3 7 5

ONOS 1 5 3

POX 1 1/5

Tungsten 1

 iconsistency ratio = 5.51%

5.2.4. Traffic protection solutions

Finally, Floodlight provides proactive ACL and basic firewall by installing Openflow flow entries

reactively in terms of secure traffic. Besides, POX can block connections based on Media Access Control

(MAC) address. RYU can apply firewall principles based on VLAN and Switch id. However, Tungsten,

ONOS and ODL provide Service Function Chaining (SFC) by which an ordered list of network services

(e.g. firewalls, intrusion detection system, etc.) can be defined, consequently deploying softwarized

security functions in CDC becomes more flexible. In this context, OpenStack provides integrating SFC

drivers to implement SFC using ODL and ONOS. Moreover, ODL provides a logical service function

forwarder that facilitates service function mobility, load balancing and failover. In addition, ONOS

provides a policy framework as an abstraction layer that hides the details of the control and data planes.

This framework simplifies the enforcement of actions to the network by installing OpenFlow rules to

provide functionalities like firewall and NAT. ODL provides NetVirt to apply ACL in ingress and egress

modes to VMs created by Neutron northbound API. Tungsten provides security policies based on tags

applied to projects, networks, vRouters, VMs and interfaces. Consequently, more granular policies can be

created as well as security policy administration and troubleshooting are more feasible.

Figure 5: Total final scores

6. Conclusion

In this study, we presented the best suited NOS to be used in CDC by assessing the specifications of

six NOSs, according to the criteria imposed by cloud data center requirements. Besides, we presented to

which extend each NOS meets these criteria. To the best of our knowledge, this is the first study in the

literature tackling such a problem. For this sake, first, we determined the requirements of CDC by

investigating the characteristics of such an environment. Then, we classified the CDC requirements into

functional and non-functional criteria based on which we inspected the specifications of the investigated

NOSs. AHP was used, which requires much input conducted by pair-wise comparisons of the criteria to

determine their importance by calculating their weights. As well as, we pair-wise compared the

alternatives to determine the best one accurately against each criterion. Therefore, AHP’s flaw is that it

imposes many comparisons. We found that ODL and ONOS have the higher scores in comparison to the

other NOSs. In particular, ODL has 31.29%, ONOS has 30.98% whereas Tungsten, Floodlight, Ryu and

POX have 15.66%, 8.99%, 7.67% and 5.42%, respectively. A continuous follow-up of the NOSs should be

conducted since Software Defined Cloud Computing (SDCC) is still in the stages of maturity and

AETiC 2022, Vol. 6, No. 1 56

www.aetic.theiaer.org

adoption. Moreover, the related technologies are developing rapidly because of the tendency to convert

CDC into Software Defined Environment (SDE). In this work, we also presented the essential

requirements for SDN based CDC. However, several requirements need more investigation under other

use cases. In this context, it is essential to extend the current NOSs to provide network services in case of

inter-CDCs, e.g., deploying SFC whose VMs belong to multiple CDCs managed by different cloud

orchestrating instances. Furthermore, maintaining the synchronization between multiple NOSs belong to

different CDCs managed by different cloud orchestrating instances is still problematic, and it needs more

investigation to resolve potential synchronization conflicts. In addition, considering container based cloud

environment sheds the light on new challenges in relation to the integration between the container

orchestrator and SDN NOS. The previous challenges will be in our future work plans, where we need to

investigate the NOSs capabilities and deficiencies to propose new solutions addressing the mentioned

challenges.

Table 34. Functional and non-functional feature comparison between NOS

Criterion Alternatives

 Floodlight RYU ODL ONOS POX Tungsten

Scalability Centralized Centralized Distributed

Distributed

(Network

Segmentation)

Centralized Distributed

Security TLS/SSL TLS/SSL USC TLS/SSL, HTTPs TLS/SSL TLS/SSL

Modularity Maven
Python

components
Apache Karaf Apache Karaf

Python

Components
Unknown

Development

Community
Good Good Excellent Excellent Poor Very Good

North API Rest API Rest API
Rest/Restconf

API
Rest API Rest API Rest API

GUI Yes Yes Yes Yes NO Yes

Documentation Good Good Excellent Excellent Poor Excellent

Update Frequency Poor Good Excellent Excellent Poor Very Good

Application Availability Good Good Excellent Excellent Poor Very Good

South API –

Management Protocols
N/A

OF-config,

NETCONF,

OVSDB,

Nicira ext

NETCONF,

OVSDB,

SNMP

NETCONF,

OVSDB, SNMP
N/A

NETCONF,

SNMP

South API – Control

Protocols

OF 1.0, 1.3,

OpenFlowJ-

Loxigen

OF 1.0-1.5,

BGP

OF 1.1, 1.3,

OpFlex,

PCEP, BGP,

LISP,

MD-SAL

OF 1.1, 1.3,

PCEP, BGP
OF 1.0 XMPP, BGP

Availability Master/Slave Master/Slave Active/Backup Master/Standby N/A Active/Backup

Faults Verification &

Troubleshooting

Oftest,

Flowscale

ofctl, of13,

ofctl_test

Status And

Diagnostics

Framework,

networking-

odl ML2

CPMan, Ganglia

Troubleshooting

module

N/A Analytic Nodes

Load Balancing Basic N/A Basic
Mastership

rebalancing
Basic Third party

Quality of Service
OF meter &

queue
DiffServ PCEP SDNi N/A DiffServ

Overlay Networks
Virtual

Network
VLAN

VLAN,

VxLAN, L3

GRE

VLAN, VxLAN,

L3VPN
VLAN

BGP EVP,

VxLAN

Isolation L2 Based L2 Based

L2 & L3

Tunneling,

EVC

L2 & L3

Tunneling, EVC
N/A

MPLSoUDPGRE,

VxLAN

Traffic Protection

Solutions

Forwarding

rules, ACL

VLAN-id &

SW-id based
SFC SFC

MAC

blocker

SFC,

Applications tag

AETiC 2022, Vol. 6, No. 1 57

www.aetic.theiaer.org

Table 35. Final numbers of the pair wise comparison of all alternatives regarding all criteria

Criterion Alternatives

 Floodlight RYU ODL ONOS POX Tungsten

Scalability 0.0876 0.0876 0.2345 0.4129 0.0842 0.0932

Security 0.131 0.0736 0.3631 0.2276 0.0736 0.131

Modularity 0.1111 0.1111 0.312 0.312 0.1111 0.0428

Development Community 0.0628 0.0628 0.3226 0.3226 0.0361 0.1932

North API 0.2164 0.1 0.4162 0.115 0.0446 0.1077

GUI 0.0837 0.0548 0.1857 0.1857 0.0403 0.4498

Documentation 0.1128 0.1128 0.3075 0.3075 0.0466 0.1128

Update Frequency 0.0499 0.1216 0.3068 0.3068 0.0252 0.1898

Application Availability 0.117 0.0636 0.3359 0.3359 0.0306 0.117

South API – Management

Protocols
0.0692 0.1121 0.434 0.2789 0.0367 0.0692

South API – Control Protocols 0.1782 0.1782 0.3252 0.1782 0.0468 0.0936

Availability 0.0953 0.0598 0.3621 0. 3621 0.0302 0.0905

Faults Verification &

Troubleshooting
0.1016 0.1016 0.2897 0.2897 0.0447 0.1726

Load Balancing 0.0988 0.0274 0.0988 0.5772 0.0988 0.0988

Quality of Service 0.0916 0.0916 0.2292 0.4564 0.0395 0.0916

Overlay Networks 0.0556 0.0556 0.2778 0.2778 0.0556 0.2778

Isolation 0.0556 0.0556 0.2778 0.2778 0.0556 0.2778

Traffic Protection Solutions 0.0703 0.0331 0.4684 0.2516 0.0377 0.1389

Acknowledgement

Project no. 135074 has been implemented with the support provided from the National Research,

Development and Innovation Fund of Hungary under the FK_20 funding scheme.

References

[1] Shuo Fang, Yang Yu, Chuan Heng Foh and Khin Mi Mi Aung, “A Loss-Free Multipathing Solution for Data

Center Network Using Software-Defined Networking Approach”, IEEE Transactions on Magnetics, pp. 2723-2730,

Vol. 49, No. 6, 2013, DOI: 10.1109/tmag.2013.2254703, Available: https://ieeexplore.ieee.org/document/6522268.

[2] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson et al., “OpenFlow: Enabling

Innovation in Campus Networks”, SIGCOMM Computer Communication Review, pp. 69-74, Vol. 38, No. 2, DOI:

10.1145/1355734.1355746, Available: https://dl.acm.org/doi/10.1145/1355734.1355746.

[3] Christina Delimitrou, Sriram Sankar, Aman Kansal and Christos Kozyrakis, “ECHO: Recreating Network Traffic

Maps for Datacenters with Tens of Thousands of Servers”, in Proceeding of the IEEE International Symposium on

Workload Characterization (IISWC), 4 November 2012, pp. 14-24, DOI: 10.1109/IISWC.2012.6402896, published by

IEEE, Available: https://ieeexplore.ieee.org/document/6402896.

[4] Yaomin Wang, Xia Wang, Haiyan Li, Yi Dong, Qing Liu et al., “A Multi-Service Differentiation Traffic

Management Strategy in SDN Cloud Data Center”, Computer Networks, Vol. 171, No. C, April 2020, DOI:

10.1016/j.comnet.2020.107143, Available: https://dl.acm.org/doi/abs/10.1016/j.comnet.2020.107143.

[5] Rahamatullah Khondoker, Adel Zaalouk, Ronald Marx and Kpatcha Bayarou, “Feature-Based Comparison and

Selection of Software Defined Networking (SDN) Controllers”, in Proceeding of the IEEE World Congress on

Computer Applications and Information Systems (WCCAIS), 17 January 2014, pp. 1-7, published by IEEE, DOI:

10.1109/WCCAIS.2014.6916572, Available: https://ieeexplore.ieee.org/document/6916572.

[6] Firas Fawzy Zobary, “Applying TOPSIS Method for Software Defined Networking (SDN) Controllers

Comparison and Selection”, in Proceedings of the International Conference on Communications and Networking, 24-26

September 2016, pp. 132–141, Print ISBN: 978-3-319-66627-3, DOI: 10.1007/978-3-319-66628-0_13, Available:

https://link.springer.com/chapter/10.1007%2F978-3-319-66628-0_13.

[7] Omayma Belkadi and Yassin Laaziz, "A systematic and generic method for choosing a SDN controller",

International Journal of Computer Networks and Communications Security, Vol. 5, No. 11, 2017, PP. 239-247, available:

https://ijcncs.org/published/volume5/issue11/.

[8] Jehad Ali, Byeong-hee Roh and Seungwoon Lee, "QoS improvement with an optimum controller selection for

software-defined networks", Plos One, Vol. 14, No. 5, 2019, pp. 1-37, Published by Public Library of Science, DOI:

10.1371/journal.pone.0217631, Available: https://doi.org/10.1371/journal.pone.0217631.

https://dl.acm.org/doi/10.1145/1355734.1355746
https://doi.org/10.1109/IISWC.2012.6402896
https://ieeexplore.ieee.org/document/6402896
https://dl.acm.org/doi/abs/10.1016/j.comnet.2020.107143
https://ieeexplore.ieee.org/document/6916572
https://link.springer.com/chapter/10.1007%2F978-3-319-66628-0_13
https://ijcncs.org/published/volume5/issue11/
https://doi.org/10.1371/journal.pone.0217631

AETiC 2022, Vol. 6, No. 1 58

www.aetic.theiaer.org

[9] Mohammed Abdul Rahman AlShehri and Shailendra Mishra, "Feature based comparison and selection of SDN

controller", International Journal of Innovation and Technology Management, Vol. 16, No. 5, 2019, DOI:

10.1142/S0219877019500305, Available: https://www.worldscientific.com/doi/abs/10.1142/S0219877019500305.

[10] Esmaeil Amiri, Emad Alizadeh and Mohammad Hossein Rezvani, "Controller selection in software defined

networks using best-worst multi-criteria decision-making", Bulletin of Electrical Engineering and

Informatics, Vol. 9, No. 4, 2020, pp. 1506-1517, DOI: https://doi.org/10.11591/eei.v9i4.2393, Available:

https://beei.org/index.php/EEI/article/view/2393.

[11] Jehad Ali, Byungkyu Lee, Jimyung Oh, Jungtae Lee and Byeong-hee Roh, "A Novel Features Prioritization

Mechanism for Controllers in Software-Defined Networking", Computers, Materials & Continua, Vol. 69, No. 1,

2021, pp. 267–282, DOI: 10.32604/cmc.2021.017813, Available: http://www.techscience.com/cmc/v69n1/42766.

[12] Jehad Ali and Byeong-hee Roh, "Quality of service improvement with optimal software-defined networking

controller and control plane clustering", Computers, Materials & Continua, Vol. 67, No. 1, 2021, pp. 849-875, DOI:

10.32604/cmc.2021.014576, Available: http://www.techscience.com/cmc/v67n1/41200.

[13] Abdelrahman Abuarqoub, "A review of the control plane scalability approaches in software defined

networking", Future Internet, Vol. 12, No. 3, 2020, Published by MDPI, DOI: 10.3390/fi12030049, Available:
https://www.mdpi.com/1999-5903/12/3/49.

[14] David Espinel Sarmiento, Adrien Lebre, Lucas Nussbaum and Abdelhadi Chari, "Decentralized SDN Control

Plane for a Distributed Cloud-Edge Infrastructure: A Survey", IEEE Communications Surveys & Tutorials, Vol. 23,

No. 1, pp. 256-281, DOI: 10.1109/COMST.2021.3050297, Available: https://ieeexplore.ieee.org/document/9319748.

[15] Mohammad Riyaz Belgaum, Shahrulniza Musa, Muhammad Mansoor Alam and Mazliham Mohd Su’ud, "A

systematic review of load balancing techniques in software-defined networking", IEEE Access, Vol. 8, 2020, pp.

98612-98636, DOI: 10.1109/ACCESS.2020.2995849, Available: https://ieeexplore.ieee.org/document/9097181.

[16] Mosab Hamdan, Entisar Hassan, Ahmed Abdelaziz, Abdallah Elhigazi, Bushra Mohammed et al., "A

comprehensive survey of load balancing techniques in software-defined network", Journal of Network and

Computer Applications, Vol. 174, pp. 102856, 2021, DOI: 10.1016/j.jnca.2020.102856, Available:

https://www.sciencedirect.com/science/article/pii/S1084804520303222.

[17] Bassey Isong, Reorapetse Ramoliti Samuel Molose, Adnan M. Abu-Mahfouz, and Nosipho Dladlu,

"Comprehensive review of SDN controller placement strategies", IEEE Access, Vol. 8, 2020, pp. 170070-170092,

DOI: 10.1109/ACCESS.2020.3023974, Available: https://ieeexplore.ieee.org/document/9195810.

[18] Liehuang Zhu, Md M. Karim, Kashif Sharif, Chang Xu, Fan Li et al., "SDN controllers: A comprehensive analysis

and performance evaluation study", ACM Computing Surveys, Vol. 53, No. 6, 2020, pp. 1-40, DOI:

https://doi.org/10.1145/3421764, Available: https://dl.acm.org/doi/fullHtml/10.1145/3421764.

[19] Thomas L. Saaty, The Hierarchy Analytical Process, New York, USA: McGraw-Hill, 1980.

[20] Diego Kreutz, Fernando Ramos, Paulo Esteves Verissimo, Christian Esteve Rothenberg, Siamak Azodolmolky et

al., "Software-defined networking: A comprehensive survey", in Proceedings of the IEEE, Vol. 103, No. 1, 2014, pp.

14-76, DOI: 10.1109/JPROC.2014.2371999, Available: https://ieeexplore.ieee.org/document/6994333.

[21] Surbhi Saraswat, Vishal Agarwal, Hari Prabhat Gupta, Rahul Mishra, Ashish Gupta et al., "Challenges and

solutions in Software Defined Networking: A survey", Journal of Network and Computer Applications, Vol. 141, 1

September 2019, pp. 23-58, Published by Elsevier Ltd., DOI: 10.1016/j.jnca.2019.04.020, Available:

https://www.sciencedirect.com/science/article/pii/S1084804519301444.

[22] Jiuxin Cao, Zhuo Ma, Jue Xie, Xiangying Zhu, Fang Dong et al., "Towards tenant demand-aware bandwidth

allocation strategy in cloud datacenter", Future Generation Computer Systems, Vol. 105, 2020, pp. 904-915, DOI:

10.1016/j.future.2017.06.005, Available: https://www.sciencedirect.com/science/article/pii/S0167739X17311834.

[23] Davide Adami, Barbara Martini, Andrea Sgambelluri, Lisa Donatini, Molka Gharbaoui et al., "An SDN

orchestrator for cloud data center: System design and experimental evaluation", Transactions on Emerging

Telecommunications Technologies, Vol. 28, No. 11, 2017, DOI: 10.1002/ett.3172, Available:

https://onlinelibrary.wiley.com/doi/10.1002/ett.3172.

[24] Richard Cziva, Simon Jouët, David Stapleton, Fung Po Tso and Dimitrios P. Pezaros, "SDN-based virtual machine

management for cloud data centers", IEEE Transactions on Network and Service Management, Vol 13, No. 2, 2016, pp.

212-225, DOI: 10.1109/TNSM.2016.2528220, Available: https://ieeexplore.ieee.org/document/7416246.

[25] Jungmin Son and Rajkumar Buyya, "A taxonomy of software-defined networking (SDN)-enabled cloud

computing", ACM Computing Surveys, Vol. 51, No. 3, 2018, pp. 1-36, DOI: 10.1145/3190617, Available:

https://dl.acm.org/doi/10.1145/3190617.

[26] Yaser Jararweh, Mahmoud Al-Ayyoub, Elhadj Benkhelifa, Mladen Vouk and Andy Rindos, "Software defined

cloud: Survey, system and evaluation", Future Generation Computer Systems, Vol. 58, 2016, pp. 56-74, DOI:

10.1016/j.future.2015.10.015, Available: https://www.sciencedirect.com/science/article/pii/S0167739X15003283.

[27] Seung Won Shin, Phillip Porras, Vinod Yegneswara, Martin Fong, Guofei Gu et al., "Fresco: Modular composable

security services for software-defined networks", In proceeding of 20th Annual Network & Distributed System

Security Symposium, 26 February 2013, Published by NDSS, Available: http://hdl.handle.net/10203/205914.

https://www.worldscientific.com/doi/abs/10.1142/S0219877019500305
https://beei.org/index.php/EEI/article/view/2393
http://www.techscience.com/cmc/v69n1/42766
http://www.techscience.com/cmc/v67n1/41200
https://www.mdpi.com/1999-5903/12/3/49
https://ieeexplore.ieee.org/document/9319748
https://ieeexplore.ieee.org/document/9097181
https://www.sciencedirect.com/science/article/pii/S1084804520303222
https://ieeexplore.ieee.org/document/9195810
https://dl.acm.org/doi/fullHtml/10.1145/3421764
https://ieeexplore.ieee.org/document/6994333
https://www.sciencedirect.com/science/article/pii/S1084804519301444
https://www.sciencedirect.com/science/article/pii/S0167739X17311834
https://onlinelibrary.wiley.com/doi/10.1002/ett.3172
https://ieeexplore.ieee.org/document/7416246
https://dl.acm.org/doi/10.1145/3190617
https://www.sciencedirect.com/science/article/pii/S0167739X15003283
http://hdl.handle.net/10203/205914

AETiC 2022, Vol. 6, No. 1 59

www.aetic.theiaer.org

[28] Jungmin Son and Rajkumar Buyya, "SDCon: Integrated control platform for software-defined clouds", IEEE

Transactions on Parallel and Distributed Systems, Vol. 30, No. 1, 2019, pp. 230-244, DOI: 10.1109/TPDS.2018.2855119,

Available: https://ieeexplore.ieee.org/document/8409965.

[29] Qiao Yan, F. Richard Yu, Qingxiang Gong and Jianqiang Li, "Software-defined networking (SDN) and distributed

denial of service (DDoS) attacks in cloud computing environments: A survey, some research issues, and

challenges", IEEE communications surveys & tutorials, Vol. 18, No. 1, 2016, pp. 602-622, DOI:

10.1109/COMST.2015.2487361, Available: https://ieeexplore.ieee.org/document/7289347.

[30] Peng Qin, Bin Dai, Benxiong Huang and Guan Xu, "Bandwidth-aware scheduling with sdn in hadoop: A new

trend for big data", IEEE Systems Journal, Vol. 11, No. 4, 2015, pp. 2337-2344, DOI: 10.1109/JSYST.2015.2496368,

Available: https://ieeexplore.ieee.org/document/7332913.

[31] Murat Karakus and Arjan Durresi, "A survey: Control plane scalability issues and approaches in software-

defined networking (SDN)", Computer Networks, Vol. 112, 2017, pp. 279-293, DOI: 10.1016/j.comnet.2016.11.017,

Available: https://www.sciencedirect.com/science/article/pii/S138912861630411X.

[32] Fouad Benamrane, Mouad Ben Mamoun and Redouane Benaini, "An East-West interface for distributed SDN

control plane: Implementation and evaluation", Computers & Electrical Engineering, Vol. 57, January 2017, pp. 162-

175, Published by Elsevier Ltd., DOI: 10.1016/j.compeleceng.2016.09.012, Available:

https://www.sciencedirect.com/science/article/pii/S0045790616302798.

[33] Basem Almadani, Abdurrahman Beg and Ashraf Mahmoud, "DSF: A distributed sdn control plane framework for

the east/west interface", IEEE Access, Vol. 9, 2021, pp. 26735-26754, DOI: 10.1109/ACCESS.2021.3057690, Available:

https://ieeexplore.ieee.org/document/9349440.

[34] Ziad A Al-Sharif, Yaser Jararweh, Ahmad Al-Dahoud and Luay M. Alawneh, "ACCRS: autonomic based cloud

computing resource scaling", Cluster Computing, Vol. 20, No. 3, 2017, pp. 2479-2488, DOI: 10.1007/s10586-016-0682-

6, Available: https://link.springer.com/article/10.1007/s10586-016-0682-6.

[35] Aaqif Afzaal Abbasi, Almas Abbasi, Shahaboddin Shamshirband, Anthony Theodore Chronopoulos, Valerio

Persico et al., "Software-defined cloud computing: A systematic review on latest trends and developments", IEEE

Access, Vol. 7, 2019, pp. 93294-93314, Published by IEEE, DOI: 10.1109/ACCESS.2019.2927822, Available:

https://ieeexplore.ieee.org/document/8758941.

[36] Gwo-Hshiung Tzeng and Jih-Jeng Huang, Multiple attribute decision making: methods and applications, Florida, USA:

CRC press, 2011, ISBN 9781439861578.

[37] Thomas L. Saaty, Decision making with dependence and feedback: The analytic network process, Pittsburgh, USA: RWS

Publications, Vol. 4922, No. 2, 1996, ISBN: 9780962031793.

[38] Jafar Rezaei, "Best-worst multi-criteria decision-making method", Omega, Vol. 53, 2015, pp. 49-57, DOI:

10.1016/j.omega.2014.11.009, Available: https://www.sciencedirect.com/science/article/pii/S0305048314001480.

[39] Mehmet Şahin, "A comprehensive analysis of weighting and multicriteria methods in the context of sustainable

energy", International Journal of Environmental Science and Technology, Vol. 18, No. 6, 2021, pp. 1591-1616, DOI:

10.1007/s13762-020-02922-7, Available: https://link.springer.com/article/10.1007/s13762-020-02922-7.

[40] Meenu Singh and Millie Pant, "A review of selected weighing methods in MCDM with a case study", International

Journal of System Assurance Engineering and Management, Vol. 12, No. 1, 2021, pp. 126-144, DOI: 10.1007/s13198-020-

01033-3, Available: https://link.springer.com/article/10.1007/s13198-020-01033-3.

© 2022 by the author(s). Published by Annals of Emerging Technologies in Computing

(AETiC), under the terms and conditions of the Creative Commons Attribution (CC BY)

license which can be accessed at http://creativecommons.org/licenses/by/4.0.

https://ieeexplore.ieee.org/document/8409965
https://ieeexplore.ieee.org/document/7289347
https://ieeexplore.ieee.org/document/7332913
https://www.sciencedirect.com/science/article/pii/S138912861630411X
https://www.sciencedirect.com/science/article/pii/S0045790616302798
https://ieeexplore.ieee.org/document/9349440
https://link.springer.com/article/10.1007/s10586-016-0682-6
https://ieeexplore.ieee.org/document/8758941
https://www.sciencedirect.com/science/article/pii/S0305048314001480
https://link.springer.com/article/10.1007/s13762-020-02922-7
https://link.springer.com/article/10.1007/s13198-020-01033-3

