
Annals of Emerging Technologies in Computing (AETiC)

Vol. 5, No. 5, 2021

Shreya Banerjee, Sourabh Bhaskar, Anirban Sarkar and Narayan C. Debnath, "A Unified Conceptual Model for Data

Warehouses”, Annals of Emerging Technologies in Computing (AETiC), Print ISSN: 2516-0281, Online ISSN: 2516-029X, pp. 162-

169, Vol. 5, No. 5, 20th March 2021, Published by International Association of Educators and Researchers (IAER), DOI:

10.33166/AETiC.2021.05.020, Available: http://aetic.theiaer.org/archive/v5/v5n5/p20.html.

Review Article

A Unified Conceptual Model for Data

Warehouses

 Shreya Banerjee1,*, Sourabh Bhaskar2, Anirban Sarkar3 and Narayan C. Debnath1

1Eastern International University, Binh Duong, Vietnam

shreya.banerjee@eiu.edu.vn; narayan.debnath@eiu.edu.vn
2Sardar Vallabhbhai National Institute of Technology, India

sourabhb440@gmail.com
3National Institute of Technology, Durgapur, India

sarkar.anirban@gmail.com

*Correspondence: shreya.banerjee@eiu.edu.vn

 Received: 17th October 2020; Accepted: 17th November 2020; Published: 20th March 2021

Abstract: These days, NoSQL (Not only SQL) databases are being used as a deployment tool for Data

Warehouses (DW) due to its support for dynamic and scalable data modeling capabilities. Yet, decision-

makers have faced several challenges to accept it as a major choice for implementation of their DW. The

most significant one among those challenges is a lack of common conceptual model and a systematic design

methodology for different NoSQL databases. The objective of this paper is to resolve these challenges by

proposing an ontology based formal conceptual model for NoSQL based DWs. These proposed concepts

are capable of realizing the cube concepts for visualization of multi-dimensional data in NoSQL based DW

solutions. In this context, two strategies are specified, implemented and illustrated using a case study for

devising of the proposed conceptual model.

Keywords: Conceptual Model; MongoDB based Implementation; NoSQL Data Warehouse; Ontology-driven

Model

1. Introduction

Over the last few years, NoSQL databases have achieved strong popularity. These new

generation databases are different from traditional relational databases for possessing several

significant features such as persistent and non-relational data, flexible schemas, high availability,

dynamic insertion of different kinds of data, replication, massive horizontal scaling and

distribution. Modern Data Warehouses (DWs) are competent to cope with and excel with emerging

data analysis trends such as fast query expectations from users, data generated from cloud,

unstructured or non-relational data, and rapid synthesis of data [1]. Thus, DWs solutions nowadays

demand to act more in internet-style than to enforce the user to act within predefined structures [2].

Usually, classical DW and On Line Analytical Processing (OLAP) are comprised of a set of concepts

like, facts, dimensions, measures and dimension hierarchies, those are used for structured schema

representations [3]. The concept of cube is used for multi-dimensional data visualization. However,

in case of web-scale applications, many of the dimensional information may not be available in

regular structure. Consequently, decision makers are increasingly using NoSQL databases to

implement their business solutions [4].

NoSQL databases are classified based on different physical level data models. Those are

Document Store, Graph databases, Key-Value stores, and Column-Family store [5]. This

heterogeneity brings several dimensions of challenges in systematic design methodology for

NoSQL based DW solutions. Firstly, lack of common conceptual model for different NoSQL

http://aetic.theiaer.org/
http://www.theiaer.org/index.htm
http://aetic.theiaer.org/archive/v5/v5n5/p20.html

AETiC 2021, Vol. 5, No. 5 163

www.aetic.theiaer.org

databases poses significant research challenges in design of DWs. Secondly, NoSQL based

implementation of DWs requires a systematic design methodology, comprises of different levels of

abstraction in DW design including, conceptual level, logical level and physical level [6]. A

conceptual DW model will isolate the purpose of designer from its execution. Thirdly,

representation of agreeable numerical data (DW concepts like, facts and measures) and contextual

data (dimensions and its hierarchies) are needed in order to illustrate the effective associations

among Fact, Measure and Dimension [1]. Fourthly, De-normalization of both contextual and

numerical data is also required to achieve flexible characteristics of NoSQL databases. Fifthly,

realizations of data cubes are important for visualizing and executing analytical queries effectively.

The objective of this paper is to address these abovementioned challenges. The research

methodology followed in this paper is described next. An ontology driven common conceptual

model for NoSQL based DW system is proposed to resolve the mentioned challenges. Ontology is

defined as an explicit specification of shared conceptualization of the elements of DW domain in

terms of concepts and related axioms [7]. Axioms enable ontology to provide enriched and formal

semantics towards different concepts. The proposed conceptual model is capable to represent a

generalized and rigorous formal set of concepts at the conceptual level design phase of DW using

NoSQL database features. In the proposed conceptual model, several generic concepts of the model

described in [8], are extended for DW domain. Further, the proposed conceptual model is

implemented in a document-oriented database MongoDB. However, it can be transformed towards

other NoSQL based DWs, such as Columnar, Key-Valued and Graph oriented. Figure 1 describes

the proposed design methodology of NoSQL based DW system.

2. Related Work

Several research works exist in representation of formal conceptual model for NoSQL based

DW. In [1], [9-11] authors have described a conceptual model for NoSQL based OLAP systems that

can be mapped towards either Column or Document oriented DW using a set of rules. In [6], an

existing benchmark for relational database based DWs is improved towards a generalized

benchmark for distinct NoSQL based DWs. This approach is based on Star schema for DW. In [12],

physical DW design is investigated over column-oriented databases through Map-Reduce

framework using Hbase. In [4] and [13], authors described rules for implementing DW in

document-oriented database systems and Hive respectively. In [14], authors have described a

method that has used ontology to generate the multidimensional schema from a conceptual

formalization of a domain. However, NoSQL databases are not considered in this approach. In [15],

a new aggregation operator, known as CN-CUBE (Columnar NoSQL CUBE) is described. Further, it

is implemented in column-oriented NoSQL database. Majority of existing works described models

for NoSQL based DW system specific to its physical level implementations. These models are

transformed towards either columnar or document oriented NoSQL databases using a set of rules.

Further, semantics of distinct concepts are not well explored in these approaches. Moreover,

illustrations of data cubes are represented by few approaches and are confined towards specific

NoSQL solutions.

Figure 1. Proposed systematic design methodology for NoSQL based data warehouses
Physical Level Data Model

Conceptual Level Data

Model for NoSQL based DW

Logical Level Data

Model for NoSQL

based DW

Key-Store Database
 Document Database

Columnar Database

Graph Database

NoSQL
Databases

AETiC 2021, Vol. 5, No. 5 164

www.aetic.theiaer.org

3. Proposed Conceptual Model for NoSQL Based DWs

Proposed conceptual model is consisting of group of constructs, relationships and a number of

significant properties to unify conceptual level representations of different NoSQL based DW

solutions. Ontology is applied for the proposed conceptualization to provide rigorous and formal

vocabularies towards distinct facets. The proposed conceptualization is consisting of all details

those are necessary for representation the concepts of facts, dimensions and measures in DW.

Further, it provides the concepts of data cubes and dimension hierarchies when multi-dimensional

data are heterogeneous types, and ranged from structured to semi-structured. The proposed

conceptual model is equally useful for traditional DW modelling using relational databases when

related dimensional data, fact data and their relationships are strictly structured and homogeneous

in nature. All concepts in the proposed model are represented through axioms expressed using

mathematical logic. Figure 2 has illustrated the proposed conceptual model.

3.1. Constructs and Layers in proposed conceptual model

Proposed conceptual model has a layered organization. This model is consisting of three main

layers namely- Collection, Family and Attribute. All these three layers have their respective construct

types- Collection (col), Family (FA), and Attribute (AT). Fact and dimension hierarchies in DW map

towards Family layer of the proposed conceptualization. The measure and members of dimensions

are mapped towards Attribute layer. Further, Collection layer realizes the data cubes based on facts.

 (a) Attribute Layer: It is the base layer of the proposed conceptual model. Key construct type

of this layer is Attribute (AT) that is the group of all possible instances of a data item. AT is

elementary in nature. This can be of two types namely- Measure Attribute (MAT) and Dimension

Attribute (DAT). A MAT represents single measure of a fact in a DW. On the other hand, a DAT

represents single attribute belonging to a dimension in a DW. Formalization of AT is,

 F1:∀𝑥(𝐴𝑇(𝑥) → (𝑀𝐴𝑇(𝑥)⨁𝐷𝐴𝑇(𝑥)))

Explanation: F1 specifies that an AT instance x can be either MAT type or DAT type.

(b) Family Layer: It is the middle layer of conceptual model. Main Construct type of this layer

is Family (FA). An FA is created from a group of semantically related AT. It can be of two types

namely- Fact Family (FF) and Dimension Family (DF). DF can be decomposed into multiple levels as

per the designer’s choice. However, an FF has single level. Multiple levels in DF represent

hierarchies in dimensions. The lowest level DF will demonstrate the high level of granularity in

NoSQL based DWs. This kind of DF will be composed from the set of DAT only. The upper layer DF

in the dimension hierarchy is the assembling of one or more DAT and associated DFs of adjacent

inner layer. FF comprises of related topmost layer DFs and a group of MAT defined on measures.

Formalization of Family is,

F2: ∀𝑥∃𝑟∃𝑣(𝐹𝐴(𝑥) ↔ (𝐴𝑇(𝑣) ∧ 𝐶𝑛𝑡𝐹𝐴(𝑟) ∧ 𝑟(𝑥, 𝑣) ∧ (𝐹𝐹(𝑥) ∨ 𝐷𝐹(𝑥))))

Explanation: If there exists an FA then that FA may encapsulate several AT.

F3:∀𝑥∃𝑟1∃𝑦∃𝑣∃𝑟2(𝐹𝐹(𝑥) ↔ (𝐶𝑛𝑡𝐹𝐹(𝑟1) ∧ 𝑀𝐴𝑇(𝑣) ∧ 𝑟1(𝑥, 𝑣) ∧ 𝐴𝑆(𝑟2) ∧ 𝐷𝐹(𝑦) ∧ 𝑟2(𝑥, 𝑦)))

Figure 2. Proposed conceptual level data model for NoSQL based data warehouses

warehouses .

AETiC 2021, Vol. 5, No. 5 165

www.aetic.theiaer.org

Explanation: If there exists an FF then that FF should encapsulates several MAT and associated

DF. Here, x, v and y are instances of FF, MAT and DF respectively.

F4:∀𝑥1∃𝑥2∃𝑟1∃𝑟2∃𝑟3∃𝑣1∃𝑣2((𝐷𝐹(𝑥1) ∧ 𝐷𝐹(𝑥2)) → (𝐶𝑛𝑡𝐷𝐹(𝑟1) ∧ 𝐶𝑛𝑡𝐷𝐹(𝑟2) ∧ 𝐼𝑐𝑛𝑡𝐷𝐹(𝑟3) ∧

𝐷𝐴𝑇(𝑣1) ∧ 𝐷𝐴𝑇(𝑣2) ∧ 𝑟1(𝑥1, 𝑣1) ∧ 𝑟2(𝑥2, 𝑣2) ∧ 𝑟3(𝑥1, 𝑥2) ∧ 𝑛𝑜𝑡𝐸𝑞𝑢𝑎𝑙(𝑥1, 𝑥2)))
Explanation: If there exists a DF then it should encapsulate several DAT. Further, those DF can

be encapsulated in another DF dynamically.

(c) Collection Layer: This is the top most layer of the conceptual model. Key construct type of

this layer is Collection (col). A col is created from a combination of semantically related FF. Thus,

from the top level the whole DW can be seen as set of Collections. Formalization of Collection is,

F5: ∀𝑥∃𝑟∃𝑣(𝑐𝑜𝑙(𝑥) ↔ (𝐹𝐴(𝑣) ∧ 𝐶𝑛𝑡𝑐𝑜𝑙(𝑟) ∧ 𝑟(𝑥, 𝑣)))

Explanation: If there exists a col then it should encapsulate several FF. Here, x and v are

instances of col and FF respectively.

(d) Cube: Cube is the de-facto logical representation for data visualization. Cube can be created

from FF and realized as a col in the proposed conceptual model. If there are multiple FF, then a cube

can be devised for each FF or combinations of FF. In the latter case, FF can share DF and related

MA. Formalization of cube as,

F6: ∀𝑥∃𝑟1∃𝑒∃𝑣∃𝑟2∃𝑘∃𝑟3(𝑐𝑢𝑏𝑒(𝑥) ↔ (𝐹𝐹(𝑣) ∧ 𝐷𝐹(𝑒) ∧ 𝑀𝐴𝑇(𝑘) ∧ 𝐶𝑛𝑡𝑐𝑜𝑙(𝑟1) ∧ 𝐶𝑛𝑡𝐹𝐹(𝑟2) ∧

𝐴𝑆(𝑟3) ∧ 𝑟1(𝑥, 𝑣) ∧ 𝑟3(𝑣, 𝑒) ∧ 𝑟2(𝑣, 𝑘)))
Explanation: Several instances Cube (v) can be realized from each instance of FF (x) including

base and apex level cubes.

3.2. Relationships in the Proposed Conceptual Model

In the proposed conceptual model, distinct construct types are connected with each another

using different relationships. Proposed relationships can be classified in two types. One is inter-layer

kind relationships and another is intra-layer kind of relationships. Inter-layer kind relationships exist

between disparate construct types of two distinct layers. Whereas, Intra-layer kind relationships exit

between analogous construct types of a similar layer.

(a) Containment (Cnt): These relationships exist when one construct type encapsulates another

construct type. Thus, Cnt are present between three pairs of concepts in the proposed conceptual

model – (i) one col can contain several FF, (ii) an FF can contain several MAT and (iii) a DF can

contain several DAT. Therefore, both inter-layer and intra-layer kind relationships can include Cnt

relationships. Formal axioms of Cnt are

F7(i):∀𝑟∃𝑦∃𝑛𝑧(𝐶𝑛𝑡𝑐𝑜𝑙(𝑟) ↔ (𝐶𝑜𝑙(𝑦) ∧ 𝐹𝐹(𝑧) ∧ 𝑟(𝑦, 𝑧) ∧ (𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑡ℎ𝑎𝑛𝐸𝑞𝑢𝑎𝑙(𝑣𝑎𝑙𝑢𝑒(𝑛), 1))))

F7(ii):∀𝑟∃𝑦∃𝑛𝑧(𝐶𝑛𝑡𝐹𝐹(𝑟) ↔ (𝐹𝐹(𝑦) ∧ 𝑀𝐴𝑇(𝑧) ∧ 𝑟(𝑦, 𝑧) ∧ (𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑡ℎ𝑎𝑛𝐸𝑞𝑢𝑎𝑙(𝑣𝑎𝑙𝑢𝑒(𝑛), 1))))

F7(iii):∀𝑟∃𝑦∃𝑛𝑧(𝐶𝑛𝑡𝐷𝐹(𝑟) ↔ (𝐷𝐹(𝑦) ∧ 𝐷𝐴𝑇(𝑧) ∧ 𝑥(𝑦, 𝑧) ∧ (𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑡ℎ𝑎𝑛𝐸𝑞𝑢𝑎𝑙(𝑣𝑎𝑙𝑢𝑒(𝑛), 1))))

 (b) Inverse Containment (Icnt): This relationship is intra-layer kind and connects two

construct types when one is encapsulated towards another construct type dynamically. Direction of

this relationship is opposite to the Cnt relationship. In the proposed conceptual model, lower level

DFs are encapsulated towards higher-level DFs using Icnt relationships. This relationship is helpful

to represent distinct levels of granularity in dimension hierarchies. It is capable to add different

dimensions in distinct granular level on the fly and useful to change granularity level dynamically.

F8: ∀𝑥∃𝑦∃𝑛𝑧(𝐼𝑐𝑛𝑡𝐷𝐹(𝑟) ↔ (𝐷𝐹(𝑦) ∧ 𝐷𝐹(𝑧) ∧ 𝐷𝐹_𝑙𝑒𝑣𝑒𝑙(𝑦) ∧ 𝐷𝐹_𝑙𝑒𝑣𝑒𝑙_𝑛𝑒𝑥𝑡(𝑧) ∧ 𝑟(𝑧, 𝑦) ∧

(𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑡ℎ𝑎𝑛𝐸𝑞𝑢𝑎𝑙(𝑣𝑎𝑙𝑢𝑒(𝑛), 1))))
 (c) Association (AS): These relationships are intra-layer kind and connect constructs types

anticipated to achieve several goals together. An AS may exist between FF and DF. Further, AS can

be present between two different cols.

F9(i): ∀𝑥∃𝑛𝑦, 𝑧 ∃𝑙(𝐴𝑆(𝑟) ↔ (𝐹𝐹(𝑦) ∧ 𝐷𝐹(𝑧) ∧ 𝑟(𝑦, 𝑧) ∧ (𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑡ℎ𝑎𝑛𝐸𝑞𝑢𝑎𝑙(𝑣𝑎𝑙𝑢𝑒(𝑛), 1))))

F9(ii):):∀𝑥∃𝑛𝑦, 𝑧 ∃𝑙(𝐴𝑆(𝑟) ↔ (𝐶𝑜𝑙(𝑦) ∧ 𝐶𝑜𝑙(𝑧) ∧ 𝑛𝑜𝑡𝐸𝑞𝑢𝑎𝑙(𝑦, 𝑧) ∧ 𝑟(𝑦, 𝑧) ∧

(𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑡ℎ𝑎𝑛𝐸𝑞𝑢𝑎𝑙(𝑣𝑎𝑙𝑢𝑒(𝑛), 1))))

AETiC 2021, Vol. 5, No. 5 166

www.aetic.theiaer.org

3.3. Properties of various relationships

The proposed set of relationships support several properties like, Cardinality, Ordering, and

Modality to handle both structured and flexible nature in the model.

(a) Cardinality (Crd) and Modality (Mdl): Numbers of participate instances in Cnt, Icnt and AS

Relationships are represented through Crd. Mdl defines optional and/or mandatory participation of

constructs in a relationship. Optional participation is formally represented through possibility

operator- ◊ and mandatory participation is represented through the necessity operator - □. Crd and

Mdl is shown in the proposed conceptual model graphically using P. There can be different values

for P. Those are

(i) 1:1 – This represents AT and FA relationship with mandatory total participation

(ii) 0:1 – This represents AT and FA relationship with optional one participation.

(iii) 1:M – This represents AT and FA relationship with mandatory multiple participation.

(iv) 0:M – This represents optional multiple participation of AT and FA in a relationship.

(v) 0:X – This represents optional exclisive participation of AT and FA in a relationship.

(vi) 1:X – This represents AT and FA relationship with mandatory exclusive participation.

Formally, Crd and Mdl for Icnt relationship can be expressed as,

F10: ∀𝑟∃𝑦∃𝑧∃𝑃((𝐼𝑐𝑛𝑡𝐷𝐹(𝑟)𝐶𝑟𝑑(𝑟) ∧ 𝑀𝑑𝑙(𝑟)) ↔ (𝐷𝐹(𝑦) ∧ 𝐷𝐹(𝑧) ∧ 𝑟(𝑦, 𝑧) ∧ 𝑞(𝑣𝑎𝑙𝑢𝑒(𝑃))))

In the similar way, Crd and Mdl for other relationships can be expressed.

(b) Ordering (Ord): This property realizes whether the constructs participating in a relationship

are in order or not. Ord is shown in the proposed conceptual model graphically using. If value of is 1, then

participants are in order. On the other hand, if value of is 0, then participants are not in order.

Formally, Ord for Icnt relationship can be expressed as,

F11(v): ∀𝑟1∃𝑟2∃𝑦∃𝑧∃𝑎((𝐼𝑐𝑛𝑡𝐷𝐹(𝑟1) ∧ 𝐼𝑐𝑛𝑡𝐷𝐹(𝑟2) ∧ 𝐷𝐹(𝑦) ∧ 𝐷𝐹(𝑧) ∧ 𝐷𝐹(𝑎) ∧ 𝑟1(𝑧, 𝑦) ∧ 𝑥2(𝑎, 𝑦) ∧

𝑛𝑜𝑡𝐸𝑞𝑢𝑎𝑙(𝑧, 𝑎) ∧ 𝑂𝑟𝑑(𝑟1) ∧ 𝑂𝑟𝑑(𝑟2)) → 𝑂𝑟𝑑𝑒𝑟𝑒𝑑_𝑆𝑒𝑡(𝑟1, 𝑟2))
In the similar way, Ord for other relationships can be represented.

4. Illustration of the proposed conceptual model using a case study

Let, a case study related to a DW system based on sales and shipping. Sales of different

products can be done in sale branches. Branches can be located in multiple locations. Shipping can

have multiple shippers who will ship the product from one location to another.

This case study has two facts – Sales and Shipping. These two facts may have multiple

dimensions with hierarchy. Several dimensions can be shared by both facts. Sales is associated with

four dimensions - Location, Branch, Product, and Time. Further, Shipping is associated with four

dimensions - Location, Shipper, Product, and Time. Thus, two facts share three dimensions. Several

dimensions have hierarchy and specific attributes. For example, dimension Time has hierarchy –

Time→Day→Month→Year. Time has several attributes for example Time Id, and Time. Beside this,

each fact are associated with two measures. Sales is associated with Units Sold and Dollars Sold.

Shipping is associated with Units Shipped and Dollars Cost. In some cases, Location dimension has

attributes either Pin Code or Street and information related to Branch dimension is missing.

Last two statements in the previous paragraph specify that the described data set is irregular.

This requires flexible representation. Consequently, this data set need to be demonstrated using

NoSQL databases. According to the case study, Sales and Shipping are FF in proposed conceptual

Collections (Cubes created from

Fact Families)
FACT FAMILY 1 (SALES)
FACT FAMILY 2 (SHIPPING)
SALES(Location, Branch, Product,
Time, units sold, dollars sold)
SHIPPING (Location, Shipper,
Product, Time, units shipped,
dollars shipped)
Location (location_Id, pin code,
{street}, city_Id)
City (city_id, city, state_Id)
State (state_Id, state, country_Id)

Country (country_Id, country)
Branch (branch_Id, branchName)
Product (product_Id, product_Name,
productType_Id)
ProductType (productType_Id,
productType_Name)
Time (time_Id, time, day_Id)
Day (day_Id, day, month_Id)
Month (month_Id, month, year_Id)
Year (year_Id, year)
Shipper (shipper_Id, shipperName,
locaton_Id)

Nomenclature

Collections: In Capitalize and bold;
Fact Families: in UPPERCASE and italic
Dimension Families: in Capitalize and italic
Measure Attributes: in lowercase and italic
Dimension Attributes: in lowercase
Optional Construct Type: within {}

Figure 3. Key elements of the specified case study

AETiC 2021, Vol. 5, No. 5 167

www.aetic.theiaer.org

model. Further, all dimensions and its related hierarchy are mapped towards DFs. Attributes

contained in dimensions are mapped towards DAT and measures are mapped towards MAT. Figure 3

represents the key elements of the case study. Data cubes related to the case study can be realized

through distinct cols based on different FFs. Figure 4 has illustrated Shipping FF along with related

DFs and MAT with corresponding cardinality and dimension hierarchy.

 5. Implementation Strategy

In this section, two kinds of strategies are proposed for implementation of data cubes in

NoSQL based DW systems. Further, the proposed conceptual model is transformed towards a

Document Oriented database MongoDB. In addition, two implementations strategies are illustrated

using MongoDB based on the case study specified in section 4. Proposed implementation strategies

are useful for visualization of multi-dimensional nature of NoSQL based DW systems. However,

there is no binding to use other kinds of NoSQL databases for implementation inline of the

proposed strategies.

Single Collection based Implementation Strategy: In this strategy, data cubes will be realized as a

single col of a FF. Thus, numbers of data cubes in DW system depend on numbers of FFs. Hence, if

there are n numbers of FFs, then there should be n numbers of data cubes. These FFs have nested

related DFs, DF Hierarchies, DAT and MAT.

Multiple Collection based Implementation Strategy: In this strategy, a data cube can be realized

based on multiple cols of FFs and related DFs. These multiple cols include cols of each DFs related

with a FF and a col of the FF itself. These DFs nest related dimension hierarchies and DAT. Further,

the MAT are nested in the FF. In this strategy, data cubes will be devised dynamically (on the fly) by

associating multiple cols of FF and DF. This strategy is capable of creation of flexible schema for

NoSQL based DWs by adding of measure and dimension definitions using Icnt and AS

relationships. Table 1 has described the differences between these two different strategies.

5.1. Mapping towards MongoDB

Table 2 specifies the transformation between constructs of proposed conceptual model and

MongoDB. In single collection based Implementation Strategy, data cubes are realized through

single“Collection” element of MongoDB that is comprised of “Documents” elements corresponding

to a FF. Based on the case study specified in section 4, data cubes are created from Sales fact and

realized as a single “Collection” element that nests “Document” element corresponding to Sales fact.

Further, Sales fact encapsulates “Documents” elements for related dimension hierarchies, namely,

Table 1. Comparison Table between Multiple Collection based and Single Collection based Implementation
Multiple Collection based Implementation Single Collection based Implementation

This strategy has less redundancy, because, a fact or
shared dimensions are defined once

This strategy has high-level redundancy, since a fact or
shared dimensions are defined multiple times

After defining once, insertion of new data definitions are
propagated to other places. Hence, addition of data
definitions can be handled easily

addition of data definitions is costlier, as newly added
dimensions and measures have to be defined multiple
times

maintenance is inexpensive than single one maintenance is expensive than multiple one

due to more data integration policy, query execution time
will be higher

due to less data integration policy, query execution time
will be lower

Figure 4. Shipping and Sales Fact Family with related Dimension Families and Measure Attributes

AETiC 2021, Vol. 5, No. 5 168

www.aetic.theiaer.org

Location, Branch, Product and Time. “Document” elements for Sales fact also encapsulate measures

Units Sold and Dollars Sold. Similarly, another data cube can be created from Shipping fact

separately. Figure 5 has illustrated the corresponding implementation in MongoDB.

In multiple collections based implementation strategy, data cubes from multiple “Collection”

elements in MongoDB are created for all FF and DF elements and further aggregated towards

creation of required data cube. Based on the case study specified in section 4, a data cube created for

Shipping fact is based on an aggregated “Collection” element. This aggregated “Collection” is

implemented by associating “Collection” elements of the fact Shipping and each related dimension

hierarchies Location, Shipper, Time, and Product. “Document” element representing Shipping fact

also encapsulates measures Units Shipped and Dollars Shipped. In MongoDB, a data cube can be

built for Multiple Collections based Implementation Strategy using “aggregate()” function. Figure 6

has specified multiple “Collection” elements. Figure 7 has illustrated a data cube that is created

from multiple “Collection” elements (figure 6) using “aggregate” operator.

6. Conclusion

This paper has proposed an ontology driven conceptual model for NoSQL based DW

solutions, which is independent of physical level implementation. The proposed conceptual model

defines the formal semantics of the related DW concepts in NoSQL based solutions. The novelties of

the proposed work are manifolds. Besides proposing a systematic methodology for implementation

of NoSQL based DWs, it facilitates, (i) a generalized and rigorous formal conceptual model that can

be transformed towards different kinds of NoSQL databases; (ii) handling dimension hierarchies at

different granular levels; (iii) realization of flexible characteristics of NoSQL based DWs by de-

normalizing both contextual and numerical data; (iv) multiple implementation strategies of data

Table 2. Summarization of Mapping from proposed conceptual model towards MongoDB
Facets of proposed conceptual model Equivalent MongoDB representation

Collection construct type Collection

Fact family construct type Document

Dimension family construct type Document

Dimension attributes Field

Measure attributes Field

Association Represented using Nested document

Containment Represented using Nested document

Inverse Containment Dynamic insertion of document towards another document without
specifying its schema

Cardinality 1: M:- The construct type with participation M will be parent
document or member field, and the construct type with participation
1 will be the nested document or member field.
1: 1:- Any one of two construct types can become nested document or
nested member field of another construct type.

Optional modality Flexible modality of all relationships.

Ordering Ordered set is mapped towards “Array” and unordered set mapped
towards “document”.

Figure 5. Single Collection based Implementation Strategy in MongoDB based on the specified case study

{ "_id" : ObjectId("5a1806f29933a9a339ae590a"), "units_sold" : 10.0, "dollars_sold" : 18.0, "Location" : {"location_Id" : 101.0, -----}

Collection of Location Dimension (collection2){ "_id" : ObjectId("5a155ec53b820e506813c9f9"),"Location" : {"location_Id" :---}
Collection of Product Dimension (collection3){"_id" : ObjectId("5a1560733b820e506813c9fc"),"Product" : {"product_Id" :----}
Collection of Time Dimension (collection4){ "_id" :ObjectId("5a1561643b820e506813c9fe"), "Time" : {"time_Id" : 401.0, "----}

Collection of Shipping Fact { "_id" :ObjectId("5a17b7728d4ca0e7112c7931"), "location_Id" : 101.0, "shipper_Id" : 501.0, ---}

Figure 6. MongoDB based implementation for Collections of Shipping fact and related dimensions

Collection of Shipper Dimension (collection1){"_id" : ObjectId("5a140bd51b94b042474b8fd7"),"Shipper" : {"shipper_Id" : ----}

db.shipping.aggregate([{"$lookup":{"from":"shipper","localField":"shipper_Id","foreignField":"Shipper.shipper_Id","as":"collection1_
doc"}},{"$unwind":"$collection1_doc"},
{"$lookup":{"from":"location","localField":"location_Id","foreignField":"Location.location_Id","as":"collection2_doc"}},
{"$unwind":"$collection2_doc"}, ---------"Location":"$collection2_doc.Location","dollars_cost":1,"units_shipped":1}}]).pretty()
 OUTPUT:
{ "_id" : ObjectId("5a17b7728d4ca0e7112c7931"), "dollars_cost" : 64.0, "units_shipped" : 4.0,"Shipper" : {"shipper_Id" : 501.0,

"shipper_Name" : "Ankur", "loction_Id" : 132.0}, -----------

Figure 7. Multiple Collection based Implementation Strategy in MongoDB for the specified case study

AETiC 2021, Vol. 5, No. 5 169

www.aetic.theiaer.org

cubes and efficient visualization techniques over NoSQL based databases; and (v) realization of

traditional DWs when ordering and modality of distinct relationships are strictly set to 1 and Inverse

Containment relationships do not exist. Validation and performance evaluation of the proposed

conceptual model will be an important future work. Further, automated transformation mechanism

from proposed conceptual model into specific physical databases will also be a crucial future task.

References

[1] Chevalier M., Malki M. El, Kopliku A., Teste O. and Tournier R. (2015). Benchmark for OLAP on NoSQL

technologies comparing NoSQL multidimensional data warehousing solution. In 9th Int. Conf. on

Research Challenges in Information Science (RCIS), IEEE, pp. 480-485, Athens.

[2] Bicevska Z. and Oditis I. (2017). Towards NoSQL-based Data Warehouse Solution, In ICTE 2016, Procedia

Computer Science, Riga Technical University, pp. 104-111, Latvia, DOI: 10.1016/j.procs.2017.01.080.

[3] Sarkar A., Choudhury S. and Debnath N. C. (2012). Graph semantic based design of XML Data

Warehouse: A conceptual perspective. In 10th Int. Conf. on Industrial Informatics (IEEE INDIN), IEEE, pp.

992-997, Beijing, DOI: 10.1109/INDIN.2012.6300839.

[4] Yangui R., Nabli A. and Gargouri F. (2017). ETL Based Framework for NoSQL Warehousing. In

Information Systems, European, Mediterranean, and Middle Eastern Conference on Information Systems

(EMCIS 2017), Lecture Notes in Business Information Processing, Springer, Cham, pp. 40-53, Coimbra,

Portugal, DOI: 10.1007/978-3-319-65930-5_4.

[5] Hecht R. and Jablonski S. (2011). NoSQL evaluation: A use case oriented survey. In Cloud and Service

Computing (CSC '11), IEEE Computer Society, pp. 336-341, Hong Kong, China, DOI:

10.1109/CSC.2011.6138544.

[6] Chevalier M., Malki M. E., Kopliku A., Teste O. and Tournier R. (2015). Implementing Multidimensional

Data Warehouses into NoSQL. In 17th Int. Conf. on Enterprise Information Systems (ICEIS 2015)

SCITEPRESS - Science and Technology Publications, pp. 172-183, Lda, Portugal, DOI: 10.1007/978-3-319-

29133-8_6.

[7] Guarino N., Oberle D. and Staab S.(2009) . What is an Ontology?. In Handbook on Ontologies, 2nd ed. S.

Staab, R. Studer, Eds. Verlag, Berlin Heidelberg, Germany: Springer, pp.1-17, DOI: 10.1007/978-3-540-

92673-3.

[8] Banerjee S. and Sarkar A. (2016). Ontology Driven Meta-Modeling for NoSQL Databases: A Conceptual

Perspective. International Journal of Software Engineering and Its Applications, Science & Engineering

Research Support Society (SERSC), vol. 10, no.12, pp.41 – 64, DOI: 10.14257/IJSEIA.2016.10.12.05.

[9] Max C., El Malki M., Kopliku A., Teste O. and Tournier R.(2016). Document-oriented data warehouses:

Models and extended cuboids, extended cuboids in oriented document. In 10th Int. Conf. on Research

Challenges in Information Science (RCIS), IEEE, pp. 1-11, Grenoble, DOI: 10.1109/RCIS.2016.7549351.

[10] Yangui R., Nabli A. and Gargouri F. (2016). Automatic Transformation of Data Warehouse Schema to

NoSQL Data Base. In 20th Int. Conf. on Knowledge-Based and Intelligent Information & Engineering

Systems (KES-2016), Procedia Comput. Sci., pp.255-264, York, UK, DOI: 10.1016/j.procs.2016.08.138.

[11] Khaled D., Bentayeb F., Boussaid O. and Kabachi N. (2015). Using the column oriented NoSQL model for

implementing big data warehouses. In Int. Conf. on Parallel and Distributed Processing Techniques and

Applications (PDPTA), CSREA Press, pp. 469-475, Las Vegas, Nevada, USA.

[12] Scabora L. C., Brito J. J., Ciferri R. R. and Ciferri C. D. A. (2016). Physical Data Warehouse Design on

NoSQL Databases. In 18th Int. Conf. on Enterprise Information Systems, Lecture Notes in Business

Information Processing, Springer, pp. 111-118, Poland, DOI: 10.5220/0005815901110118.

[13] Santos M. Y., Martinho B. and Costa C. (2017). Modelling and implementing big data warehouses for

decision support. Journal of Management Analytics, vol. 4, no. 2, pp.111-129,

doi:10.1080/23270012.2017.1304292.

[14] Romero O. and Abelló A. (2010). A framework for multidimensional design of data warehouses from

ontologies, Data and Knowledge Engineering, vol. 69, no. 11, pp.1138-1157, DOI:
10.1016/j.datak.2010.07.007.

[15] Dehdouh K., Bentayeb F., Boussaid O. and Kabachi N. (2014), Columnar NoSQL CUBE: Aggregation

operator for columnar NoSQL data warehouse. In Int. Conf. on Systems, Man, and Cybernetics (SMC),

IEEE, pp. 3828-3833, San Diego, CA, USA, DOI: 10.1109/SMC.2014.6974527.

© 2020 by the author(s). Published by Annals of Emerging Technologies in Computing

(AETiC), under the terms and conditions of the Creative Commons Attribution (CC BY)

license which can be accessed at http://creativecommons.org/licenses/by/4.0.

