
Annals of Emerging Technologies in Computing (AETiC)

Vol. 5, No. 5, 2021

Shreya Banerjee, Sourabh Bhaskar, Anirban Sarkar and Narayan C. Debnath, "A Formal OLAP Algebra for NoSQL based

Data Warehouses”, Annals of Emerging Technologies in Computing (AETiC), Print ISSN: 2516-0281, Online ISSN: 2516-029X, pp.

154-161, Vol. 5, No. 5, 20th March 2021, Published by International Association of Educators and Researchers (IAER), DOI:

10.33166/AETiC.2021.05.019, Available: http://aetic.theiaer.org/archive/v5/v5n5/p19.html.

Research Article

A Formal OLAP Algebra for NoSQL

based Data Warehouses

 Shreya Banerjee1,*, Sourabh Bhaskar2, Anirban Sarkar3 and Narayan C. Debnath1

1Eastern International University, Binh Duong, Vietnam
shreya.banerjee@eiu.edu.vn; narayan.debnath@eiu.edu.vn

2Sardar Vallabhbhai National Institute of Technology, India
sourabhb440@gmail.com

3National Institute of Technology, India
sarkar.anirban@gmail.com

*Correspondence: shreya.banerjee@eiu.edu.vn

Received: 17th October 2020; Accepted: 15th November 2020; Published: 20th March 2021

Abstract: NoSQL solutions are started to be increasingly used in modern days’ Data Warehouses (DW).

However, business analysts face challenges when performing On Line Analytical Processing (OLAP)

queries on these NoSQL systems. The lack of uniform representation of various OLAP operations over

different types of NoSQL based DWs is one of them. In addition, deficiency of precise semantics in OLAP

operations create obstacles to effective query interpretation over distinct types DWs. This paper is aiming

to deal with aforementioned challenges. Formal and rigorous specification are represented in this paper for

different kinds of OLAP operators and operations. These precise specifications are capable to analyse

business queries. Further, the proposed formal specifications are implemented in a document-oriented

database using a suitable case study. In addition, the proposed approach aids efficient visualization

techniques of data cubes over NoSQL based DWs.

Keywords: Data Cube; NoSQL Data Warehouses; OLAP query algebra; Ontology

1. Introduction

Modern Data Warehouses (DW) solutions demand to act more in internet-style than to enforce

the user to act within predefined structures [1]. Consequently, nowadays DWs need to handle a

variety of subject areas, diverse data sources and heterogeneous data types like structured, semi-

structured and unstructured. Accordingly, On Line Analytical Processing (OLAP) operations

require dealing with related business queries based on that irregular information [2]. To manage

these new characteristics of DWs, business analysts focuses on using of NoSQL databases.

Flexible deployment, high read/write efficiency as well as scaling to very large data sets – these

are remarkable features of NoSQL databases [3]. Yet, these databases are categorized based on

various data models at physical level such as Document Store, Key-Value stores, Graph databases

and Column-Family store [4]. Each physical level data model has their own approach towards

handling OLAP algebra. In general, every kind of NoSQL database has a query language of its own.

For example, Cassandra database has developed Cassandra Query Language (CQL); MongoDB

query language is used in MongoDB database; Neo4j database has Cypher query language etc. [5].

Thus, lack of a common specification of OLAP operations over different NoSQL databases make

serious problems when DWs using these databases are required to be portable. This challenge

creates a research question, that how to provide a uniform standard towards OLAP operations for

distinct types of NoSQL based DWs.

http://aetic.theiaer.org/
http://www.theiaer.org/index.htm
http://aetic.theiaer.org/archive/v5/v5n5/p19.html

AETiC 2021, Vol. 5, No. 5 155

www.aetic.theiaer.org

 This paper is aiming to address the aforementioned research question. The research

methodology followed in this paper is described next. Ontology is applied to resolve the challenge.

It is defined as an explicit specification of shared conceptualization [6]. Axioms are used to enable

the ontology to provide enriched and formal semantics towards related concepts. OLAP operations

on different NoSQL based DWs are varied due to both syntactic and semantic differences. These

variances need to be decreased to get a standard specifications of OLAP operation over disparate

NoSQL based DWs [7]. An ontology based specification can provide common conceptualization

towards the elements of DW domain in terms of concepts and related axioms. Thus, syntactic

differences can be omitted. In this context, the ontology driven conceptual model described in [8] is

adopted to express a set of OLAP operators and operations formally. Further, semantics differences

among OLAP operations can also be omitted with the help of ontology. Figure 1 has described the

overall process. Although, the proposed conceptualization is implemented in a document-oriented

database, it can also be implemented in other NoSQL based DWs.

2. Related Work

In literature, several research works exist related to formalization and implementation of

OLAP queries on NoSQL based DW. In [9], authors have described ways to implement columnar

NoSQL DW (CN-DW) and OLAP queries in Hbase. In [10], authors are using OLAP queries to

know about the popularity in recent tweeter trends. In [11], authors used dice and drill-down

operation to evaluate the performance on different enterprise scenarios of columnar family. In [12],

authors have proposed an approach where an ontology serves as superimposed conceptual layer

between multidimensional data and business analysts. The Ontology based OLAP is proposed

using UML (Unified Modelling Language) diagram. In [13], a model is described for extracting

OLAP dimensions from document-oriented SQL database based on parallel similarity techniques.

In [14], authors have presented a Personalization System based on three interrelated ontologies -

resources ontology, DW ontology, and domain ontology. They presented these three ontology

models in UML and in OWL (Web Ontology Language). However, in all these approaches any

common formal specifications of OLAP operations over distinct NoSQL DWs are not provided.

Majority of existing works described OLAP operations specific to its physical level

implementations. However, very few works have focused on formal representation of OLAP

algebra. Moreover, very few proposals have addressed how to adapt flexible data for OLAP in

NoSQL based DW systems. In this context, this paper proposed a universal OLAP interface for

disparate NoSQL based DWs. The proposed uniform OLAP interface is devised based on formal

semantics of OLAP operators and operations and further implemented in a document-oriented

NoSQL based DW.

3. Summarization of Ontology Driven Conceptual Modelling of NoSQL based Data Warehouses

The conceptual model described in [8] has three main layers namely - Collection (Top-Most

layer), Family (Intermediate Layer) and Attribute (Bottom-Most Layer). Attribute layer realizes the

measure and dimension attributes of DWs. Family layer represents fact and dimension hierarchies

in DW. Further, the data cubes based on facts are mapped towards Collection layer. Attribute layer

has its construct types - Attribute (AT). Likewise, Family layer has construct type – Family (FA) and

Collection layer has construct type Collection (col). AT is the group of all possible instances of a data

item. This can be classified in two types namely- Measure Attribute (MAT) and Dimension Attribute

Figure 1. Overall process of Proposed OLAP Query Algebra and related implementation in NoSQL based

DWs

Physical Level Data Model

Proposed Formal Specification of

OLAP operations and operators

Key-Store Database
 Document Database
 Columnar Database
 Graph Database

NoSQL

Database

AETiC 2021, Vol. 5, No. 5 156

www.aetic.theiaer.org

(DAT). FA is constructed by grouping several semantically related AT. It can be of two types - Fact

Family (FF) and Dimension Family (DF).

FF has single level. A DF can be decomposed into multiple levels to form the dimension

hierarchies. Col is created from group of FF those are semantically related. Thus, from the top level

a whole DW can be observed as a group of cols. Cube can be created from FF and realized as a col.

Further, using different relationships, distinct types of constructs in the conceptual model are

linked with each other. These relationships are of two kinds –Inter-layer kind and Intra-layer kind.

Containment and Inverse Containment relationships are included towards both intra-layer kind and

inter-layer kind relationships category. Further, Association relationship can only be included

towards Inter-layer kind relationship group. In addition, different relationships of this conceptual

has distinct properties such as Cardinality, Modality, and Ordering. Figure 2 has illustrated the

conceptual model described in [8].

4. Proposed OLAP Algebra for NoSQL based DWs

Proposed OLAP algebra is classified in two groups. Those groups are OLAP operators and

OLAP operations. Two operators are included in the first category namely, Select and Aggregate

operator. On the other hand, five types of operations are included in the second category. These five

operations used those two operators.

4.1. Proposed OLAP operators

Formal representations of two OLAP operators are proposed next.

(a) Select Operator (𝝅): This operator will extract the dimension and its hierarchy from

dimension family depending on some predicate p. This can be atomic predicate, denoted as p or it

can be a composite predicate denoted as 𝑝1 < 𝑜𝑝 > 𝑝2 < 𝑜𝑝 >. . . . < 𝑜𝑝 > 𝑝𝑛 . In the composite

predicate, <op> acts as a logical operator such as AND, OR etc. The p can be either dimensional

family (DF) or dimension hierarchy (DFH). The algebraic notation of the operator is
𝜋𝑝 (𝐷𝐹) = 𝐷𝐹𝑜

Here DF is the original dimension family on measure and DFo is the output dimension family

on measure after the restriction. Null predicate operator will return the original DF. Hence

𝜋∅(𝐷𝐹) = 𝐷𝐹

(b) Aggregate Operator (𝜶): The aggregate operator will perform the grouping function GF on

measure attribute (𝑀𝐴𝑇) of the specified set of DFs in a cube C. The GF is the relational aggregation

function, which will operate on the 𝑀𝐴𝑇 only. These GFs can be SUM, MIN, MAX, AVG, and

COUNT. The algebraic notation of the aggregate operator is
𝛼𝐺𝐹(𝑀𝐴𝑇) {𝐷𝐹1 𝑉 𝐷𝐹2 𝑉 𝐷𝐹3 … 𝑉 𝐷𝐹𝑛}(𝐶)

4.2. Proposed OLAP Operations

In this section, five OLAP operations are formally specified.

Figure 2. Conceptual model for NoSQL based data warehouses

AETiC 2021, Vol. 5, No. 5 157

www.aetic.theiaer.org

 (a) Slice operation (sl): The slice operation pick out one specific dimension from an input cube

and provides a new sub-cube. The algebraic notation for the slice operation is
𝑠𝑙(𝐶) = 𝛼𝐺𝐹(𝑀𝐴𝑇){𝐷𝐹},𝐶𝑂𝑁(𝐶)

Here, CON is the condition defined as,
𝐶𝑂𝑁 = 𝜋𝑝(𝐷𝐹)

(b) Dice operation (di): The dice operation picks two or more dimensions from an input cube

and provides a new sub-cube. The algebraic notation for the dice operation is
𝑑𝑖(𝐶) = 𝛼𝐺𝐹(𝑀𝐴𝑇){𝐷𝐹},𝐶𝑂𝑁(𝐶)

Here, CON is the condition defined as,
𝐶𝑂𝑁 = 𝜋𝑝1(𝐷𝐹1) < 𝑜𝑝 > 𝜋𝑝2(𝐷𝐹2) … < 𝑜𝑝 > 𝜋𝑝𝑛(𝐷𝐹𝑛)

(c) Roll-up operation (Rup): The Roll-up operation performs aggregation on a data cube by

moving down a dimension in the dimensional hierarchy or by adding a new dimension. The

algebraic notation for the Roll-up operation is
𝑅𝑢𝑝(𝐷𝐹𝑖𝑗)(𝐶) = 𝛼𝐺𝐹(𝑀𝐴𝑇){𝐷𝐹𝑖(𝑗+1)} (𝐶)

Here, the roll-up operation going from higher granularity to lower granularity by increasing

the value of j by 1 for one level roll-up. If roll-up operation is 2 or more than 2 level up, then the

operation (Rup) is computed in every level and give the result. Here, j and i are used only for

indexing purpose and have numerical positive integer. i is defined for DF and j is defined for

dimensional hierarchy.

(d) Drill-down operation (Ddn): Drill-down is the reverse operation of roll-up. The drill-down

operation is performed by stepping up in the dimension hierarchy. Thus, it goes to higher

granularity from lower granularity. The algebraic notation for the drill-down operation is
𝐷𝑑𝑛(𝐷𝐹𝑖𝑗)(𝐶) = 𝛼𝐺𝐹(𝑀𝐴𝑇){𝐷𝐹𝑖(𝑗−1)} (𝐶)

 (e) Pivot operation (pvt): The pivot operation delivers an alternate presentation of a data by

rotating the data axes in a view. Thus, this operation is also called as rotation. It is about analyzing

the combination of pair of selected dimension. The algebraic notation for the pivot operation is
𝑃𝑣𝑡(𝐶) = 𝛼𝐺𝐹(𝑀𝐴𝑇){𝐷𝐹1,𝐷𝐹2}𝑇 (𝐶)

 = 𝛼𝐺𝐹(𝑀𝐴𝑇){𝐷𝐹2,𝐷𝐹1}(𝐶)

5. Illustration of Proposed OLAP Algebra Using a Case Study

In this section, proposed OLAP algebra is illustrated using a case study described in [8]. The

case study is based on sales and shipping. Sales of different products can be done in sale branches.

Branches can be located in multiple locations. Shipping can have multiple shippers who will

shipped the product from one location to another.

This case study has two facts – Sales and Shipping. These two facts may have multiple

dimensions with hierarchy. For example, Sales is associated with four dimensions - Location, Branch,

Product, and Time. Further, two facts can share their dimensions. Several dimensions have hierarchy

and specific attributes. For example, dimension Time has hierarchy – Time→Day→Month→Year and

several attributes such as Time Id, and Time. In addition, each fact are associated with two measures.

For example, Shipping is associated with measures Units Shipped and Dollars Cost. In some cases,

attributes of specific dimension either is changed or absent.

Collections (Cubes created from
Fact Families)
FACT FAMILY 1 (SALES)
FACT FAMILY 2 (SHIPPING)
SALES(Location, Branch, Product,
Time, units sold, dollars sold)
SHIPPING (Location, Shipper,
Product, Time, units shipped,
dollars shipped)
Location (location_Id, pin code,
{street}, city_Id)
City (city_id, city, state_Id)
State (state_Id, state, country_Id)

Country (country_Id, country)
Branch (branch_Id, branchName)
Product (product_Id, product_Name,
productType_Id)
ProductType (productType_Id,
productType_Name)
Time (time_Id, time, day_Id)
Day (day_Id, day, month_Id)
Month (month_Id, month, year_Id)
Year (year_Id, year)
Shipper (shipper_Id, shipperName,
locaton_Id)

Nomenclature

Collections: In Capitalize and bold;
Fact Families: in UPPERCASE and italic
Dimension Families: in Capitalize and italic
Measure Attributes: in lowercase and italic
Dimension Attributes: in lowercase
Optional Construct Type: within {}

Figure 3. Key elements of the specified case study

AETiC 2021, Vol. 5, No. 5 158

www.aetic.theiaer.org

Distinct features of this described case study is irregular. This requires flexible data

representation. Consequently, NoSQL databases are required to demonstrate these data set in DWs.

Figure 3 represents the main elements of the case study as described in [8]. Data cubes related to the

case study can be realized through distinct cols based on different FF.

Several queries founded on the proposed OLAP algebra are demonstrated next using the

described case study.

Query 1: Find the derived dimension of Time for the month “November”.

Select operator (𝜋) is required to accomplish this query. The formal expression of the query is

as,
𝜋𝑇𝑖𝑚𝑒.𝐷𝑎𝑦.𝑀𝑜𝑛𝑡ℎ.𝑚𝑜𝑛𝑡ℎ="𝑁𝑜𝑣𝑒𝑚𝑏𝑒𝑟"(𝑇𝑖𝑚𝑒) = 𝑇

It will yield the derived dimension called T, which will be contain the instance of time_id, time,

day_id, day, month_id, month, year_id, and year related to month=”November”.

Query 2: The total number of Electronics product type units sold across all of the dimensions

(Time, Location, Branch, and Shipper).

Slice operation is required to accomplish this query. The formal expression of the query is as,
𝑠𝑙(𝐶) = 𝛼𝑆𝑈𝑀(𝑢𝑛𝑖𝑡_𝑠𝑜𝑙𝑑){𝑃𝑟𝑜𝑑𝑢𝑐𝑡.𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑇𝑦𝑝𝑒.𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑇𝑦𝑝𝑒_𝑁𝑎𝑚𝑒},𝐶𝑂𝑁 (𝐶)

𝐶𝑂𝑁 = (𝜋𝑃𝑟𝑜𝑑𝑢𝑐𝑡.𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑇𝑦𝑝𝑒.𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑇𝑦𝑝𝑒_𝑁𝑎𝑚𝑒(𝑃𝑟𝑜𝑑𝑢𝑐𝑡))

Here, slice operation is accomplished for the dimension “Product” based on the criterion

Product.ProductType.productType_Name = “Electronics”.

Query 3: The total unit sold for a particular product type “electronics”, city “Durgapur” and

month “November”.

Dice operation is required to accomplish this query. The formal expression of the query is as,
𝑑𝑖(𝐶) = 𝛼𝑆𝑈𝑀(𝑢𝑛𝑖𝑡𝑠𝑠𝑜𝑙𝑑){𝐴,𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛.𝐶𝑖𝑡𝑦,𝑇𝑖𝑚𝑒.𝐷𝑎𝑦.𝑀𝑜𝑛𝑡ℎ.𝑚𝑜𝑛𝑡ℎ},𝐶𝑂𝑁 (𝐶)

A={𝑝𝑟𝑜𝑑𝑢𝑐𝑡. 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑇𝑦𝑝𝑒. 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑇𝑦𝑝𝑒𝑁𝑎𝑚𝑒
𝐶𝑂𝑁 = ((𝜋𝑃𝑟𝑜𝑑𝑢𝑐𝑡.𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑇𝑦𝑝𝑒.𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑇𝑦𝑝𝑒_𝑁𝑎𝑚𝑒="Electronics"(𝑃𝑟𝑜𝑑𝑢𝑐𝑡))

∪ (𝜋𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛.𝐶𝑖𝑡𝑦.𝑐𝑖𝑡𝑦="𝐷𝑢𝑟𝑔𝑎𝑝𝑢𝑟" (𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛))

∪ (𝜋𝑇𝑖𝑚𝑒.𝐷𝑎𝑦.𝑀𝑜𝑛𝑡ℎ.𝑚𝑜𝑛𝑡ℎ="𝑁𝑜𝑣𝑒𝑚𝑏𝑒𝑟" (𝑇𝑖𝑚𝑒)))

The dice operation is performed on the cube using the following selection criteria. The criteria

involves three dimensions - Product Type Name = Electronics, City = Durgapur, and Month = November.

Query 4: Find the total unit sold across all product by increasing the aggregation levels of time:

from Day to Year (Day→Month→Year).

The roll-up operation is required to accomplish this query.

First step: 𝑅𝑢𝑝(𝐷𝐹41)(C) = 𝛼SUM(units_sold){𝐷𝐹4(1+1)} (C)

= 𝛼SUM(units_sold){𝐷𝐹42} (C)

Second step: 𝑅𝑢𝑝(𝐷𝐹42)(C) = 𝛼SUM(units_sold){𝐷𝐹4(2+1)} (C)

= 𝛼SUM(units_sold){𝐷𝐹43} (C)

= 𝛼SUM(units_sold){𝑇𝑖𝑚𝑒.𝐷𝑎𝑦.𝑀𝑜𝑛𝑡ℎ.𝑌𝑒𝑎𝑟} (C)

Query 5: Find the total units sold across all product by decreasing the aggregation level on

time: from year to day (Year→Month→Day).

Drill-down (Ddn) operation is required to accomplish this query.

First step: 𝐷𝑑𝑛(𝐷𝐹43)(C) = 𝛼SUM(units_sold){𝐷𝐹4(3−1)} (C)

= 𝛼SUM(units_sold){𝐷𝐹42} (C)

Second step: 𝐷𝑑𝑛(𝐷𝐹42)(C) = 𝛼SUM(units_sold){𝐷𝐹4(2−1)} (C)

= 𝛼SUM(units_sold){𝐷𝐹41} (C)

= 𝛼SUM(units_sold){𝑇𝑖𝑚𝑒.𝐷𝑎𝑦} (C)

Query 6: Analyze the total units sold by product and location.

Pivot operation is required to accomplish this query. The formal expression of the query is as,
𝑃𝑣𝑡(𝐶) = 𝛼𝑆𝑈𝑀(𝑢𝑛𝑖𝑡𝑠_𝑠𝑜𝑙𝑑){𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛,𝑃𝑟𝑜𝑑𝑢𝑐𝑡}𝑇 (𝐶)

= 𝛼𝑆𝑈𝑀(𝑢𝑛𝑖𝑡𝑠_𝑠𝑜𝑙𝑑){𝑃𝑟𝑜𝑑𝑢𝑐𝑡,𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛} (𝐶)

AETiC 2021, Vol. 5, No. 5 159

www.aetic.theiaer.org

6. Implementation of Proposed Algebra

In this section, proposed OLAP operators and operations are implemented using MongoDB.

The case study described in section 5 is used to illustrate the implementation. The transformation

between the conceptual model and MongoDB is described in [8]. Figure 4(a) represents the general

form of Select operator. Figure 4(b) specifies the general form of Aggregate operator. In these figures,

Dij is the dimension with related hierarchy. Dimension number is represented through i and j is

used for changing hierarchy level in a particular ith dimension. The XYZ represents MAT.

In these general forms, a cube represents a dimension, or a fact with related dimensions or a

view. A dimension and a fact with related dimensions can be implemented as “Collection” in

MongoDB [8]. Further, views can be implemented in different ways. The first view is created for a

cube that includes both facts (shipping and sales) present in the case study. This cube also comprises

three shared dimensions between these two facts. Figure 5 has illustrated this view. The second

view is created for a cube that includes the fact shipping and corresponding dimension hierarchy.

Figure 6 has illustrated this view. Likewise, the third view can be created for a cube that includes

the fact sales and corresponding dimension hierarchy.

Next, query examples described in section 5 are implemented based on proposed OLAP

operators and operations in MongoDB.

(1). Slice operation (sl):

Query1: The total number of Electronics product type units sold across all of the dimensions

(Time, Location, Branch, and Shipper). The implementation of the above query is specified in figure

7. This query realizes the slice operation of OLAP algebra. In the above query the “salesView” will

be sliced by the predicate productType_Name=”electronics”.

 (2). Dice operation (di):

Query2: The total unit sold for a product type electronics, city Durgapur and month

“November”.

The above query is implemented as specified in figure 8. Results of the above query realize

dice operation by restricting two dimensions of data cube. The salesView will be diced by the

predicate productType_Name=”electronics” and year=”2017”.

Figure 4. (a) General Implementation form of Select operator; (b) General Implementation form of

Aggregate operator

db.cube.select([{"$match":{"𝐷10 . 𝐷11. … . 𝐷1𝑛":”value”,”𝐷20. 𝐷21. … . 𝐷2𝑛”:”value”,..., ”𝐷𝑛0. 𝐷𝑛1. … . 𝐷𝑛𝑛”:”value” }}])

(a)

db.cube.aggregate([{"$group":{_id:{P1:"$ 𝐷10 . 𝐷11. … . 𝐷1𝑛",P2:”$ 𝐷20. 𝐷21. … . 𝐷2𝑛”, …,

Pn:”$ 𝐷𝑛0. 𝐷𝑛1. … . 𝐷𝑛𝑛”},XYZ:{$GF:"$𝑀𝐴𝑇"}}}])

 (b)

db.createView('dbview','sales', [{"$lookup":{"from":"shipping","localField":"location_Id---{"$unwind":"$collection5_doc"},

{"$lookup":{"from":"branch","localField":"branch_Id-----

{"$lookup":{"from":"product","localField":"product_Id-----

{"$lookup":{"from":"time","localField":"time_Id-------

{"$lookup":{"from":"location","localField-----

{"$lookup":{"from":"shipper","localField":"collection5_doc.shipper_Id","foreignField":"Shipper.shipper_Id","as":"collection6_

doc"}}, {"$unwind":"$collection6_doc"},

{"$project":{"dollars_cost":"$collection5_doc.dollars_cost","units_shipped":"$collection5_doc.units_shipped","Shipper":"$colle

ction6_doc.Shipper","Branch------}}])

Figure 5. MongoDB based illustration of a view consisting of both sales and shipping fact

db.createView('shippingView','shipping',[{"$lookup":{"from":"shipper","localField":"shipper_Id","foreignField":"Shipper.shipper

_Id","as":"collection1_doc"}},{"$unwind":"$collection1_doc"},

{"$lookup":{"from":"location","localField------

{"$lookup":{"from":"product","localField-------

{"$lookup":{"from":"time","localField":"time_Id-----

{"$project":{"Shipper":"$collection1_doc.Shipper","Product":"$collection3_doc.Product","Time":"$collection4_doc.Time",---}}])

Figure 6. MongoDB based illustration of a view consisting of only shipping fact

db.salesView.aggregate([{"$match": {"Product.ProductType.productType_Name":"electronics"}},

{"$group":{_id:"$Product.ProductType.productType_Name",total_cost:{$sum:"$units_sold"}}}])

Figure 7. MongoDB based illustration of the Query 1

AETiC 2021, Vol. 5, No. 5 160

www.aetic.theiaer.org

(3). Roll-up operation (Rup):

Query 3: Find the total unit sold across all product by increasing the aggregation levels of time:

from Day to Year (Day→Month→Year).

This query can be executed as systematic as specified in figure 9. The query is realized by Roll-

up operation. According to proposed Roll-up operation, Intermediate Cube IC1 and IC2 are

generated. IC2 is Roll-up output of IC1, which is Roll-up output of C0.

(4). Drill-down operation (Ddn):

Query 4: Find the total units sold across all product by decreasing the aggregation level on

time: from year to day (Year→Month→Day). This query can be executed as systematic as specified in

figure 10. The query is realized by Drill-down operation. According to proposed Drill-down

operation, Intermediate Cube IC1 and IC2 are generated. IC2 is Drill-down output of IC1, which is

Drill-down output of C0.

 (5). Pivot operation (pvt):

 Query 5: Analyze the total dollars sold in respect to product and Time and vise-versa.

This query realizes the pivot operation. It rotates or transposes the data axes to view the data

from different perspective. The implementation of the query is represented in figure 11. Figure 11(a)

has represented total dollars sold in respect to Product and Time. On the other hand, figure 11(b)

has represented total dollars sold in respect to Time and Product.

 7. Conclusion

The lack of uniform representation of OLAP operations over distinct NoSQL based DWs make

them less portable. Addressing this challenge, in this paper, an ontology based formal and rigorous

specification of OLAP operations are proposed. The main contribution of the proposed work is to

provide uniform precise syntax and semantics towards different OLAP operators and operations.

These proposed formal specifications are independent of any physical level implementation. Thus,

proposed operators are able to be applied in distinct type of NoSQL based DWs. Further, the

db.salesView.aggregate([{"$match":{"Product.ProductType.productType_Name":"electronics","Time.Day.

Month.Year.year":2017}}, {"$group":{_id:{productType:"$Product.ProductType.productType_Name",Year:

"$Time.Day.Month.Year.year"}, total_cost:{$sum:"$units_sold"}}}])

Figure 8. MongoDB based illustration of the Query 2

Figure 10. MongoDB based illustration of the Query 4

Query C0

db.salesView.aggregate([{"$group":{_id:{Year:"$Time.Day.Month.monthYear.year"},total_cost:{$sum:"$units_sold"}}}])

Intermediate Result 1: IC1

db.salesView.aggregate([{"$group":{_id:{Month:"$Time.Day.Month.month"},total_cost:{$sum:"$units_sold"}}}])

Intermediate Result 1: IC2

db.salesView.aggregate([{"$group":{_id:{Day:"$Time.Day.day"}, total_cost:{$sum:"$units_sold"}}}])

Figure 9. MongoDB based illustration of the Query 3

Query C0

db.salesView.aggregate([{"$group":{_id:{Day:"$Time.Day.day"}, total_cost:{$sum:"$units_sold"}}}])

Intermediate Result 1: IC1

db.salesView.aggregate([{"$group":{_id:{Month:"$Time.Day.Month.month"},total_cost:{$sum:"$units_sold"}}])

Intermediate Result 1: IC2

db.salesView.aggregate([{"$group":{_id:{Year:"$Time.Day.Month.Year.year"},total_cost:{$sum:"$units_sold"}}}])

Figure 11. MongoDB based illustration of the Query 5

db.salesView.aggregate([{"$group":{_id:{productType:"$Product.ProductType.productType_Name",Year:"$Time.Day.Month.Year.

year"}, total_cost:{$sum:"$dollars_sold"}}}])

db.salesView.aggregate([{"$group":{_id:{Year:"$Time.Day.Month.Year.year",productType:"$Product.ProductType.produ

ctType_Name"}, total_cost:{$sum:"$dollars_sold"}}}])

(a)

(b)

AETiC 2021, Vol. 5, No. 5 161

www.aetic.theiaer.org

proposed formal specification is implemented in a document-oriented database MongoDB.

Moreover, the proposed approach is suitable for web-scale analytical applications. Future work will

include automated query answering through incorporating prescribed formal semantics of OLAP

operators in a rule based reasoner. Besides this, another important future work will be automated

conversion of formal operators towards specific NoSQL based DWs.

References

[1] Bicevska Z., and Oditis I. (2017). Towards NoSQL-based Data Warehouse Solution, In ICTE 2016, Procedia

Computer Science, Riga Technical University, pp. 104-111, Latvia, doi: 10.1016/j.procs.2017.01.080.

[2] Chevalier M., Malki M. El, Kopliku A., Teste O., and Tournier R. (2015). Benchmark for OLAP on NoSQL

technologies comparing NoSQL multidimensional data warehousing solution. In 9th Int. Conf. on

Research Challenges in Information Science (RCIS), IEEE, pp. 480-485, Athens, DOI:

10.1109/RCIS.2015.7128909.

[3] Oditis I., Bicevska Z., Bicevskis J., and Karnitis G. (2018). Implementation of NoSQL-based Data

Warehouses, Baltic Journal of Modern Computing. Riga. vol. 6, no. 1, pp. 45-55, DOI:

10.22364/bjmc.2018.6.1.04.

[4] Hecht R., and Jablonski S. (2011). NoSQL evaluation: A use case oriented survey. In Cloud and Service

Computing (CSC '11), IEEE Computer Society, pp. 336-341, Hong Kong, China, DOI:

10.1109/CSC.2011.6138544.

[5] Xu J., Shi M., Chen C., Zhang Z., Fu J., and Liu C.H. (2016). ZQL: A Unified Middleware Bridging Both

Relational and NoSQL Databases. In 14th Int. Conf. on Dependable, Autonomic and Secure Comp., 14th

Int. Conf. on Pervasive Intelligence and Comp., 2nd Intl Conf. on Big Data intelligence and Comp. and

Cyber ScienceandTechnologyCongress (DASC/ PiCom/ DataCom/ CyberSciTech), IEEE, pp. 730-737,

Auckland, DOI: 10.1109/DASC-PICom-DataCom-CyberSciTec.2016.129.

[6] Guarino N., Oberle D., and Staab S.(2009). What is an Ontology?. In Handbook on Ontologies, 2nd ed. S.

Staab, R. Studer, Eds. Verlag, Berlin Heidelberg, Germany: Springer, pp.1-17, DOI: 10.1007/978-3-540-

92673-3.

[7] Max C., El Malki M., Kopliku A., Teste O., and Tournier R.(2016). Document-oriented data warehouses:

Models and extended cuboids, extended cuboids in oriented document’, In 10th Int. Conf. on Research

Challenges in Information Science (RCIS), IEEE, pp. 1-11, Grenoble, DOI: 10.1109/RCIS.2016.7549351.

[8] Banerjee S., Bhaskar S., Sarkar A., and Debnath N. C. (2020). A Unified Conceptual Model for Data

Warehouses. In Global Research Conference (GRaCe, 2020), Malaysia, 16th-18th October.

[9] Boussahoua M., Boussaid O., and Bentayeb F. (2017). Logical Schema for Data Warehouse on Column-

Oriented NoSQL Databases. In Proc. Database and Expert Systems Applications (DEXA 2017), Lecture

Notes in Computer Science, Springer, Cham, pp.247-256, Bratislava, Slovakia, DOI: 10.1007/978-3-319-

64471-4_20.

[10] Cuzzocrea A., De Maio C., and Fenza G. (2016). Towards OLAP Analysis of Multidimensional Tweet

Streams. In ACM Eighteenth International Workshop on Data Warehousing and OLAP, pp. 992–999,

ACM, NY, USA, DOI: 10.1145/2811222.2811233.

[11] Scabora L. C., Brito J. J., Ciferri R. R., Ciferri C. D. A. (2016). Physical Data Warehouse Design on NoSQL

Databases. In 18th Int. Conf. on Enterprise Information Systems, Lecture Notes in Business Information

Processing, Springer, pp. 111-118, Poland, DOI: 10.5220/0005815901110118.

[12] Neumayr B., Anderlik S., and Schrefl M. (2012). Towards ontology-based OLAP: Datalog-based reasoning

over multidimensional ontologies. In fifteenth international workshop on Data warehousing and OLAP

(DOLAP), pp. 41-48, ACM, NY, USA, DOI: 10.1145/2390045.2390053.

[13] Davardoost F., Babazadeh Sangar A. and Majidzadeh K. (2020). Extracting OLAP Cubes From Document-

Oriented NoSQL Database Based on Parallel Similarity Algorithms. Canadian Journal of Electrical and

Computer Engineering. vol. 43, no. 2, pp. 111-118, Spring 2020, DOI: 10.1109/CJECE.2019.2953049.

[14] El Sarraj L., and Espinasse B. (2014). An Ontology-Driven Personalization Approach for Data Warehouse

Exploitation. International Journal on Advances in Software. vol.7, no.1, pp. 253–265.

© 2020 by the author(s). Published by Annals of Emerging Technologies in Computing

(AETiC), under the terms and conditions of the Creative Commons Attribution (CC BY)

license which can be accessed at http://creativecommons.org/licenses/by/4.0.

