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Abstract: In the fourth industrial revolution, data-driven intelligent fault diagnosis for industrial purposes serves 

a crucial role. In contemporary times, although deep learning is a popular approach for fault diagnosis, it requires 

massive amounts of labelled samples for training, which is arduous to come by in the real world. Our contribution 

to introduce a novel comprehensive intelligent fault detection model using the Case Western Reserve University 

dataset is divided into two steps. Firstly, a new hybrid signal decomposition methodology is developed comprising 

Empirical Mode Decomposition and Variational Mode Decomposition to leverage signal information from both 

processes for effective feature extraction. Secondly, transfer learning with DenseNet121 is employed to alleviate the 

constraints of deep learning models.  Finally, our proposed novel technique surpassed not only previous outcomes 

but also generated state-of-the-art outcomes represented via the F1 score. 

Keywords: Deep learning; Intelligent fault diagnosis; Signal decomposition techniques; Transfer learning  
 

1. Introduction 

In manufacturing applications, the primary roles of fault detection and diagnosis are to produce a 

reliable indicator that can detect a process's faulty state. To optimize the efficiency of their activities, several 

significant industries have stressed the importance of fault prediction and detection [1]. Early detection can 

help avoid incredulous incidents from occurring and save potential industrial damage. The most common 

fault form appears to be a bearing fault, accounting for the majority of all machinery flaws [2]. 

From the Case Western Reserve University (CWRU) database, vibration data is retrieved from the 

Rolling Bearing Motor, which needs to go through signal decomposition. Also, detection methods heavily 

rely on signal processing for feature extraction to generate an accurate output. Several signal processing 

methods followed by machine learning and deep learning-based approaches have been proposed and 

implemented to date for detecting and diagnosing faults especially in rolling element bearings. Our 

developed system transforms one-dimensional vibration signals into two-dimensional images after 

decomposing the raw vibrational signals. 

Empirical Mode Decomposition (EMD) is a signal processing technique that extracts signals from 

distorted and non-stationary data [3]. However, a more potent model known as Variational Mode 

Decomposition (VMD) has excellent noise immunity, better decomposing efficiency, and consistency for 

http://aetic.theiaer.org/
http://www.theiaer.org/index.htm
http://aetic.theiaer.org/archive/v5/v5n3/p1.html
http://aetic.theiaer.org/archive/v5/v5n3/p1.html
mailto:zuru00001@stud.uni-saarland.de
mailto:sigma.jahan@dal.ca
mailto:jia.uddin@wsu.ac.kr
mailto:jia.uddin@wsu.ac.kr


AETiC 2021, Vol. 5, No. 4 38 

www.aetic.theiaer.org 

feature extraction and fault diagnosis when compared to EMD decomposition [4]. Furthermore, compared 

to the short-time Fourier transform (STFT) or the wavelet transform (WT), the momentary spectrum after 

VMD provides more excellent spectral and spatial resolution. As a result, the technique can better be used 

for seismic signal processing and analysis [4]. Rather than using the retrieved signals from EMD or VMD 

separately, we created a hybrid signal decomposing model that integrates the advantages of both while 

avoiding the respective model’s pitfalls.  

The most prevalent approaches used in the fault diagnosis domain are machine learning methods like 

support vector machines (SVM) and artificial neural networks (ANN). Nevertheless, determining which 

characteristics should be extracted is challenging, and these features have a significant effect on the ultimate 

results of machine learning algorithms [5]. Deep learning resolves the aforementioned feature extraction 

difficulty by spontaneously learning the feature representation and, hence, outperforms traditional 

computer vision models [6]. As a result, deep learning approaches, namely the Deep Belief Network (DBN), 

Sparse Auto Encoder (SAE), Convolutional Neural Network (CNN), Deep Neural Network (DNN), and 

Recurrent Neural Network (RNN), have been extensively used in the defect diagnostic sector [7]. 

Unfortunately, there are two fundamental disadvantages found for implementing deep learning (mainly 

for deep CNN). To begin with, tweaking the hyperparameters of deep learning models takes much longer 

[6]. The second factor is the minimal volume of labelled data in fault diagnosis, which restricts the aggregate 

prediction performance because deep CNN models are difficult to train without a substantial and plausible 

training dataset [8].  

In our proposed method, a novel signal-to-image method is built that uses our proposed hybrid signal 

decomposition technique combining the signals of both EMD and VMD to transform time-domain fault 

signals into grayscale image format as the input. Then, a relatively new intelligent transfer learning-based 

DenseNet121 model is introduced to detect industrial faults in machinery. Deep CNN employs 

DenseNet121 trained on ImageNet, which works as a feature extractor for fault diagnostics, integrating it 

with transfer learning. Ultimately, the suggested model was tested utilizing the CWRU motor bearing 

dataset, which yielded state-of-the-art outcomes. Given the drawbacks of employing deep learning, the 

strategy is to use transfer learning. Transfer learning saves information learned from the solution of one 

problem and applies it to a new but associated problem. The proposed scheme, which is based on the 

transfer learning framework (DenseNet121), has a depth of 121 layers and exhibits excellent image 

classification accuracy by extracting high-quality features from photos on ImageNet. With deeper network 

layers and more robust feature extraction layers, this system can quickly construct a deep neural network 

with superior performance than contemporary deep learning methods for fault identification. Other well-

known standards used in the transfer learning model include ResNet18, ResNet34, ResNet50, VGG16, and 

MobileNetv2. Transfer learning (DenseNet121) likewise surpasses all different variations, according to the 

research. In a nutshell, the novelty of this research paper can be illustrated with two different contributions 

of ours for industrial fault diagnostics. 

1. Creating a hybrid signal decomposition technique leveraging signals retrieved from both EMD 

and VMD 

2. Representing a transfer learning-based DenseNet121 model to overcome the constraints of using 

traditional deep learning models for classification  

2. Literature Review 

Numerous studies have been conducted in the field of fault identification to take the required 

precautions to avoid malfunction or undesirable crashes. In a recent paper, they introduced a CNN 

architecture called AlexNet as a classifier for bearing fault diagnosis, where the inputs are time-frequency 

images of raw signals of four different states while using Stochastic Gradient Descent with momentum for 

training [9].  

Continuous wavelet transforms (CWT) and Fourier synchrosqueezed transform (FST) were found to 

be the most effective for bearing diagnosis, with accuracy ranging from 99 to 100% when 5% to 90% of 

images were trained in the suggested technique [9]. Although they used a transfer learning system, they 

still needed to train, which takes longer due to the increased number of training sets than traditional 

machine learning models [9]. AlexNet has eight layers (five convolutional layers and three fully 
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interconnected layers). It operates considerably better due to some unique characteristics, such as using 

Rectified Linear Units (ReLu) instead of the tanh function for rapid computation, enabling multiple GPUs 

to train a larger model in less time, and finally reducing error with concurrent pooling1.  In relevant research 

from Nazir, to approach the robust turbine failure diagnosis challenge, a reference model-based strategy is 

adopted with GLR (generalized likelihood ratio) applied for residual evaluation [10].  

Another paper used the SVM-CNN model for image classification to investigate indiscretion in rolling 

bearings after turning the vibration signal (1D) into time-frequency images (2D) and pre-training the 

ResNet18 network for feature extraction [11]. They achieved an overall accuracy of 98.75% after ten trials 

after converting the signal into images and pre-training the ResNet18 network for feature extraction. That 

being said, in addition to using transfer learning, some notable works on fault diagnosis have been done 

with auto-encoders and modified auto-encoders. They developed a hybrid feature pool composed of three 

different features (time-domain statistical, envelope power spectrum, and wavelet energy) to derive more 

precise data from raw vibration signals. This can go further than the ambulatory behaviour of the signals 

characterized by different crack sizes for a given fault form. They then used deep neural networks (DNNs) 

based on sparse stacked autoencoders to track down bearing flaws. The accuracy obtained from this 

proposed two-layered fault diagnosis model was 99.5% [12]. 

Jia et al. [13] presented a five-layer auto-encoder relying on a DNN that has been pre-trained layer by 

layer through an unsupervised manner. The DNN with a back-propagation algorithm for classification of 

the Fast Fourier transforms after fine-tuning After ten grades, the accuracy of transformed faults carrying 

data ranged from 99.68% to 99.95%. Moving on, Shao [14] introduces a robust deep belief network (DBN) 

with three layers of dual-tree complex wavelet packets, which is designed to upgrade the speed of 

convergence and prediction precision with multiple stacked adaptive restricted Boltzmann machines. The 

adaptive DBN is directly cultivated with the normalized function parameters, resulting in a 94.37% accuracy 

without picking features manually.  

Cheng proposed a Wasserstein distance-based deep transfer learning method for sophisticated fault 

detection, which had the best transfer levels of accuracy with a 95.75 % average score with three transfer 

plots (two unsupervised and one supervised) and sixteen transfer fault diagnosis experiments with 

inadequate labeled data of both unsupervised and supervised [15]. Another paper demonstrated a fault 

identification algorithm hinge on global optimization of Generative adversarial networks (GAN) when the 

data are inconsistent and resolving the misdiagnosis [16]. They combined DNN's flexible feature derivation 

competence with GAN's data generation capabilities to overcome the issue. They used global optimization 

to create a new GAN generator and discriminator that produces more discriminant fault samples. The 

precision of this system for the 10:1 unbalanced accuracy ratio is 94.58%, 96.85%, and 93.28% for inner-race, 

roller, and outer-race faults.  

3. Dataset Description 

We have chosen the Case Western Reserve University (CWRU) dataset, making bearing test data for 

normal and faulty bearings easily attainable. This dataset works perfectly to feed on various machine 

learning or deep learning models [17]. Here, the dataset is gathered for normal bearings, single-point drive 

end (DE), and fan end (FE) defects2. There are 161 records in the dataset which are divided into four 

categories. Among those four classes (Normal Baseline Data, 12k Drive End Bearing Fault Data, 48k Drive 

End Bearing Fault Data, Fan-End Bearing Fault Data), we have elected 48k Drive End Bearing Fault Data to 

work with. The outputs in the experiment show that the variables of our dataset are named 'Fault Diameter', 

'Motor Load (HP)', 'Approx. Motor Speed (rpm)', 'Inner Race', 'Ball', 'Outer Race' [17]. The vibration 

acceleration signals for normal bearings and bearings with three types of faults are included in this study's 

dataset. Three faults have diameters ranging from 0.007, 0.014, and 0.021 inches, were implemented 

                                                             
1  "Alexnet: The Architecture That Challenged Cnns", Medium, Last modified 2021, https://towardsdatascience.com/alexnet-the-

architecture-that-challenged-cnns-e406d5297951. 
2  "Bearing Data Center", Case Western Reserve University CSE group, Last modified 2021, 

https://csegroups.case.edu/bearingdatacenter/pages/download-data-file. 
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respectively at the inner raceway, ball, and outer raceway using SKF bearings. There are in total four signals 

in the dataset for normal bearings, one for each shaft load. 

4. Proposed Hybrid Signal Decomposition Technique 

All the signals of our dataset are in Matlab format. The signals were collected and concatenated to form 

one signal per environment specification using MATLAB R2021a. The signals are visualized in Figure 1:   

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1. Signals (Load 0) visualized in MATLAB 

(a) Normal signal; (b) Inner raceway fault; (c) Ball fault; (d) Outer raceway fault 

4.1. Conventional Signal Decomposition techniques 

There are three popular approaches to analysis in signal processing: time domain, frequency domain, 

and time-frequency domain [18]. For fault signal examination, a variety of signal processing schemes have 

been evolved and implemented, including the fast Fourier transform, wavelet transformation, EMD, 

empirical wavelet transforms, wavelet packet transform, VMD, and so on. 

4.1.1. Empirical Mode Decomposition (EMD) 

Empirical Mode Decomposition (EMD) is a method for signal decomposition where the system takes 

signal as input and provides the fundamental elements of the signal, which is based on Intrinsic Mode 
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Function (IMF). The primary difference between Fast Fourier transform (FFT) and EMD is that FFT assumes 

the signal is periodic, but EMD is wholly based on data without any presumption3.  

It is possible to have more than one frequency for the IMF and the signal that's been previously reduced 

by the IMF is identified as residuum4. The technique's general premise is to use partial signal 

transformations, with the relevant IMFs referring to the signal's most critical structures (low-frequency 

components) [19]. Sample extraction with residual denoting mostly noise and first three IMFs from our 

experiment with EMD is given in Figure 2:  

 
Figure 2. EMD showing 3 out of 10 IMFs for Inner Raceway Fault 

4.1.2. Variational Mode Decomposition (VMD) 

EMD is commonly practiced for signal processing but EMD is notorious for flaws such as noise 

sensitivity and sampling [20]. Where on the other hand, another signal decomposition technique known as 

Variational Mode Decomposition (VMD) prevents errors during the estimation of recursion and the end of 

recursion compared to EMD-based decomposition methods [21]. VMD is another process that uses non-

recursive methods to decompose the non-stationary signal into several band-limited intrinsic mode 

functions (BLIMFs) [21]. The functional decomposition findings for VMD on various artificial and real data 

are impressive. Moreover, the VMD-based model has shown noise robustness and precision for component 

separation at the same time in our own experiment as well. Figure 3 shows the first 3 IMFs and the residual 

signal extracted using VMD on a signal sample: 

 
Figure 3. VMD showing 3 out of 5 IMFs for Inner Raceway Fault 

                                                             
3  "Decomposing signal using Empirical Mode decomposition algorithm", Towards data science, 

https://towardsdatascience.com/decomposing-signal-using-empirical-mode-decomposition-algorithm-explanation-for-dummy-

93a93304c541 
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4.2. Proposed Hybrid Signal Technique 

After retrieving data from MatLab, the signals are first passed on to EMD and VMD, respectively. EMD 

produces ten intrinsic modes using recursive functions, where VMD generates five signals. EMD converts 

signals from high frequency to low frequency where the benefit of VMD is to get rid of noise and sampling. 

Thus, the column which is denoted as '0' has the highest frequency and lowest noise. Gradually, the noise 

keeps increasing and ends up with the highest noise in the 9th column for EMD and the 4th column for 

VMD. 

After decomposing them individually through EMD and VMD, a hybrid model is built by merging 

EMD and VMD as one column. Three hybrid signals represented as Sh are created following the below 

equation: 

𝑆ℎ =  ∑ ∑(𝐼𝑀𝐹𝑖 + 𝑢𝑖)                                                                                                                                        

𝑛

𝑖=1

𝑚

ℎ=1

 (1) 

IMFi is derived from EMD, and ui is derived from VMD equations represented in paper [19-20]. In the 

first hybrid signal, IMF 1 from both the outputs from EMD and VMD is taken, and the values are merged 

to create a new signal as shown in figure 4. This concatenation is done using Python 3.6.9 after the 

converting the mat files as Python dictionaries. We then separately selected the IMFs and used Numpy 

library to merge and create the hybrid signals as per equation 1. The figures (5-6) below illustrates the 

process of selecting corresponding individual signals for form one hybrid signal:  

 
Figure 4.  Hybrid signal 1 merging IMF 1 from EMD for (Inner Raceway Fault) 

We chose the hybrid signal decomposition method instead of using EMD and VMD, respectively, 

mainly because of the benefits of both while omitting most of the drawbacks at the same time. Since it can 

decompose the signal IMFs defined by the signal itself, EMD is an adaptive process [23]. Even though EMD 

is an excellent choice for signal decomposition, it tends to be prone to noise sensitivity. Due to mode juggling 

and end effect, EMD also struggles during the process of decomposition. However, for some signals, the 

improvement methods (e.g., ensemble EMD, complementary EEMD, partial EEMD) primarily solve the end 

effect and mode mixing challenge, but not all signals [24].  

On the other hand, VMD reduces the noise handicap of EMD and aids in the solution of the mode 

mixing issue in decomposition outcomes. Even so, the pre-determination of the mode number represents a 

significant challenge for the VMD model as the efficiency of VMD is wholly reliant on it [24]. Over and 

under decomposition can occur if the mode number is incorrect while EMD does not have such constraints. 
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EMD decomposes the signal from high to low frequency, while VMD decomposes in the opposite direction. 

VMD decomposed signals have more high-frequency components than EMD signals.  

 
Figure 5. Hybrid signal 2 merging IMF 1 & IMF 2 from EMD for (Inner Raceway Fault) 

 
Figure 6. Hybrid signal three merging IMF 1, IMF 2 & IMF 3 from EMD (Inner Raceway Fault) 

Similarly, EMD modes have a higher proportion of low-frequency components than VMD modes. 

However, the amplitude of the signal in the EMD system is reduced significantly [25]. Since it is more 

sensitive to the high-frequency signal, the amplitude of the VMD processed signal is almost identical to that 

of the input signal. As a result, the efficacy of the forms on various frequencies varies. The VMD method's 

output (measured by signal-to-noise ratio) is notably greater for high-frequency processing signals, while 
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EMD is better for low-frequency processing [25]. Weighing the advantages and disadvantages of both EMD 

& VMD separately, the proposed hybrid model is developed combining both and can leverage the best of 

both and tackle the corresponding challenges effectively. The result of the hybrid signal decomposition 

method abets the claim mentioned above successfully while outperforming both of the model's discrete 

performances. 

4.3. Proposed Fault Diagnosis Method  

This section first presents the workflow of our study, which is divided into the following steps. Figure 

7 illustrates the workflow:  

 
Figure 7. Block diagram of the proposed approach 

4.3.1. Data Pre-Processing 

After applying our proposed signal processing technique, we converted the one-dimensional data into 

2D (32*32) arrays [26]. This is done using the Numpy array library which allows us to reshape arrays into 

our desired shapes keeping the signals intact. Later, to convert this 2D array into 3D images, one extra 

dimension is added, generating grayscale images of shape = (32,32,1). Figure 8 illustrated the conversion 

steps: 

 
Figure 8. Signal-to-Image conversion 

This conversion allows us to utilize advanced neural networks that exhibit efficient performance in 

classification tasks. The folder containing the images is now labelled as follows: '0' for images of Normal, '1' 

for images of Inner, '2' for images of Ball, '3' for images of Outer. At this stage, 20% of data from each class 

is separated and kept in a folder without any label. This segregation aims to ensure unseen data is passed 

later on to test the performance of deep learning models. The training set consisted of 3777 images, of which 

388 were normal samples, 1186 with inner raceway defects, 1041 ball, and 1162 outer race fault samples. For 

the training samples available, the same amount of manual labelling is required by one-hot encoding. One 
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hot encoding is a categorical variable binary depiction in which each row has one character with a value of 

1, and the others have a value of 0. After that, this labelled data will be passed for training to learn and the 

other 20% data for validation. Figure 9 shows sample images from all four classes, each representing a sub-

signal of their corresponding full-length signal: 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9. Sample Images  
Normal (a), Inner (b), Ball (c), Outer (d) 

4.3.2. Data Normalization 

The data is then normalized because it contains attributes of different scales which can affect the 

training process. After rescaling the data using a standard scaler (255.0), we used the ImageNet statistics to 

normalize our data. This is known as feature scaling, and the dataset is standardized using this formula: 

 z=(x-μ)/σ                                                                                                                                                                 (2) 

Where, z= Standard Value of the sample; x= Real Value of a sample; Standard deviation: σ = [0.229, 

0.224, 0.225], Mean: μ = [0.485, 0.456, 0.406]. 

The total amount of samples is split by 80:20 for training & testing. Then the remaining 80% of the 

training data is divided again into 80:20 for training and validation. 

4.3.3. Deep Learning Classifiers 

ResNet [27] proposed a skip connection-based solution to network output degradation, also known as 

the vanishing gradient problem. This issue commonly occurs in large networks and causes the network to 

lose feature information as it enters the deeper layers. Skip connections allow the network to preserve data 

and pass the feature maps into deeper layers. Inspired by this same simple methodology, DenseNet [28] 

uses dense connections to pass feature maps with an aim to solve the vanishing gradient problem. However, 

it uses fewer parameters than ResNet, as seen in Table 2. Instead of summation of feature maps, DenseNet 

concatenates the features maps by creating L(L+1)/2 connection for an L-layer network. These connections 

allow DenseNet to improve performance and preserve information even in intense layers. Table 1 shows 

the parameters and blocks set up to build a DenseNet with 121 layers:  

Table 1. DenseNet Parameters 
Models Depth 

Layer 121 

Growth rate  32 

Block configuration 6,12,24,16 

0th Feature map length  64 

Multiplicative factor 4 

Dropout rate 0.2 

Models Depth 
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VGG16, ResNet18, ResNet34, ResNet50, and MobileNetV2 were selected in this paper to compare the 

effects of hybrid signals on the existing models. As we intend to reduce computational cost as well, we 

included architectures of varying depth to find the most optimized model. Without considering the dataset, 

increasing layers and neurons cause the models to converge rather than harness their full potential poorly. 

The specification of the models discussed in this paper is given in table 2: 

Table 2. Model Specifications 

Models Depth  Size (MB)  Parameters (millions) 

DenseNet 121 30.8 8 

ResNet18 18 44.7 11.7 

ResNet34 34 83.3 21.8 

ResNet50 50 97.8 25.6 

VGG16 16 528 15.2 

MobileNetV2  53 13.6 3.5 

*Sizes given are for pre-trained models 

Other specifications of respective models can be found here: VGG16 [29], ResNet18-50 [27], and 

MobileNetV2 [30].  

4.3.4. Transfer Learning 

By transferring information gained in one or more source tasks and enhancing learning in a related 

target task, transfer learning aims to enhance conventional machine learning. Information transfer 

approaches are a significant advancement in making machine learning as functional as human learning. 

Transfer methods are also called extensions of the machine learning algorithms used to learn the tasks since 

they rely on them. Inductive learning includes expanding well-known classification and inference 

algorithms such as neural networks, Bayesian networks, and Markov Logic Networks [31]. By leveraging 

information from the source task, transfer learning aims to enhance learning in the target task. 

 
Figure 10. Transfer learning process for training the classifiers 

Transfer learning is essential for deep learning techniques to succeed in a wide range of small-data 

situations. Although deep learning is widely used in science, many real-world scenarios do not have 

millions of labeled data points to train a model. To tune the millions of parameters in a neural network, 

deep learning techniques necessitate much data. This necessitates a large amount of (expensive) labeled 

data, particularly in supervised learning. Transfer learning is one method for minimizing the 

dimensionality of data sets needed for neural networks to be viable [31]. Many high-performing models 

have been developed for image classification and illustrated on the annual ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC)4. Given the source of the image used in the competition, this challenge is 

commonly referred to as ImageNet. It has culminated in many advances in the design and training of 

                                                             
4  "A Gentle Introduction to the ImageNet Challenge (ILSVRC)", Machine Learning Mastery, 

https://machinelearningmastery.com/introduction-to-the-imagenet-large-scale-visual-recognition-challenge-ilsvrc/ 

https://machinelearningmastery.com/introduction-to-the-imagenet-large-scale-visual-recognition-challenge-ilsvrc/


AETiC 2021, Vol. 5, No. 4 47 

www.aetic.theiaer.org 

convolutional neural networks. Different deep learning libraries, like PyTorch6, can download the model 

weights and use them in the same model architecture. The top three image recognition models can be 

downloaded and used to perform image recognition and other computer vision tasks. VGG (e.g., VGG16 or 

VGG19), GoogLeNet (e.g., InceptionV3), and Residual Network are some of them (e.g., ResNet50).  

We used ImageNet weights5  to initialize all models as our primary purpose was to evaluate the 

performance of the proposed decomposition technique. The fully connected layer of the pre-trained models 

was removed, and a custom head is created by adding two fully connected layers followed by adaptive 

pooling layers [32] instead of extensive hyperparameter tuning. Figure 10 shows the transfer learning 

process of our work where the head is replaces as described earlier: 

We also added two dropout layers that randomly drop information units to prevent the network from 

memorizing a specific pattern to reduce overfitting. AdamW [33] optimizer with a weight decay of 0.1 was 

used. Finally, the output layer was accompanied by a softmax activation function to classify the inputs. All 

layers were set to trainable, and each model was trained for five epochs with a batch size of 64. This enables 

our transfer learning model to be more adaptive and tuned to our provided data.  

5. Results and Discussion   

In the experimental evaluation, the test dataset was composed of 943 images (20%) that we fed to all 

seven models, and the results are discussed in this section. We have used the F1 score, the weighted average 

of Precision and Recall. As our dataset has fewer samples for the 'Normal' class, the F1 score of each class is 

taken into account to represent each model's results accurately.  It is shown mathematically in equation 2, 

where P and R denote Precision and Recall.  

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2 × (𝑃 × 𝑅)

𝑃 + 𝑅
                                                                                                                                     (3) 

The precision and recall scores are calculated for each class, and the micro average is taken. The 

formula for precision and recall to calculate our multiclass classification problem is given below:  

𝑃 =  
∑ 𝑇𝑃𝑖

𝑐
𝑖=1

∑ (𝑇𝑃𝑖 + 𝐹𝑃𝑖)
𝑐
𝑖=1

                                                                                                                                               (4) 

𝑅 =  
∑ 𝑇𝑃𝑖

𝑐
𝑖=1

∑ (𝑇𝑃𝑖 + 𝐹𝑁𝑖)
𝑐
𝑖=1

                                                                                                                                              (5) 

TP, FP, FN are true positives, false positives, and false negatives for each class, respectively, and c 

denotes the number of classes.  

5.1. Proposed hybrid technique's results 

At first, we present the performance of EMD and VMD processed signals. In the paper [20], the authors 

claimed the VMD method to be more robust than EMD in noise and sampling. We have investigated the 

performance of both ways in terms of fault classification and found the first extracted IMF using VMD stalls 

to represent the signals to be classified for all models accurately and drops more information than the first 

IMF of EMD. VMD (3 IMFs) exhibit a further drop in performance, whereas EMD (3 IMFs) is a more precise 

representation of the signal. The F1 score performance for each model is represented in figure (11-13): 

 
Figure 11.  EMD 1 and VMD 1 performance based on F1 score for deep learning models 

                                                             
5 “TORCHVISION.MODELS”, PyTorch, https://pytorch.org/vision/stable/models.html 
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Figure 12.  EMD 2 and VMD 2 performance based on F1 score for deep learning models 

 
Figure 13.  EMD 3 and VMD 3 performance based on F1 score for deep learning models 

To counter the disparity brought in by both methods, we now present a hybrid signal that removes the 

inconsistencies of the two methods. We trained all six models with hybrid 1, hybrid two, and hybrid three 

signals. ResNet18~50, Vgg16, DenseNet121 achieve outstanding results with 100% accuracy whereas they 

exhibit 98~99% 98%, 99% F1 score for EMD 1 and 86~85, 89 and 85% for VMD 1 respectively. As we include 

another intrinsic mode in all three techniques, we observed an increase in EMD 2 and VMD 2's performance 

resulting in 100% accuracy for ResNet18 and ResNet34 models. However, ResNet50 fails to improve its 

discriminative abilities like its counterparts and hits a threshold of 99%. After including three modes, we 

found applying VMD affects the performance of the models negatively, resulting in as much as a 14% 

performance drop. VGG16 achieves the highest F1 score with 90%, whereas all the models trained with 

hybrid three signals can accurately discriminate the faults with a 100% F1 score. It is seen in tables 3 and 4 

that the hybrid technique outperforms the standalone techniques. 

Table 3. Hybrid Signal 1 Comparison for Different Models based on F1 score 

Models Hybrid 1 EMD 1 VMD 1 

ResNet 18 1.00 0.98 0.86 

ResNet 34 1.00 0.98 0.86 

ResNet 50 1.00 0.99 0.85 

VGG 16 1.00 0.98 0.89 

Densenet121 1.00 0.99 0.85 

Mobilenetv2 0.99 0.99 0.83 

Table 4. Hybrid Signal 2 Comparison for Different Models based on F1 score 

Models Hybrid 2 EMD 2 VMD 2 

ResNet 18 1.00 1.00 1.00 

ResNet 34 1.00 1.00 1.00 

ResNet 50 1.00 0.99 0.99 
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VGG 16 1.00 0.97 0.98 

Densenet121 1.00 0.99 1.00 

Mobilenetv2 0.99 0.99 1.00 

Table 5. Hybrid Signal 3 Comparison for Different Models based on F1 score 

 Models Hybrid 3 EMD 3 VMD 3 

ResNet 18 1.00 1.00 0.86 

ResNet 34 1.00 1.00 0.84 

ResNet 50 1.00 1.00 0.85 

VGG 16 1.00 1.00 0.90 

Densenet121 1.00 1.00 0.87 

Mobilenetv2 1.00 1.00 0.89 

We propose this workflow using our hybrid signal technique to bring consistency and bring out the 

most use of deep learning architectures. Without correctly processing data, there is no additional advantage 

of increasing layers. As seen in table 5, VMD 3 results, ResNet50 can only detect 85% of samples, whereas 

ResNet18 detects 86%. In the case of EMD (3), it seems to perform as well as the hybrid version in terms of 

the F1 score. Figure 14 displays the error rates during training for DenseNet121 on EMD3 and Hybrid3 

signals:   

 
Figure 14. Error Rate for DenseNet121 

Figure 14 clearly shows that the error rates are much lower with our proposed hybrid signal technique 

which means the chances of signals getting classified accurately increases; for real time applications these 

creates a valuable impact. During the experiments, although we found the ResNet variants validated with 

100% accuracy, Densenet121 exhibits 99.98 and 99.87 validation accuracy for Hybrid and EMD versions, 

respectively. MobilenetV2 shows 99.76 for hybrid and 99.59 for EMD. The particular reason for these 

techniques performing poorer than hybrid versions is that both pre-assume either the bandwidth or number 

of ideal mode functions, thus limiting the information that can be learned. As fault signals will vary from 

machine to machine, these limitations and the modes extracted may not be useful features for the deep 

learning model's learning process. Thus, the hybrid technique will bridge the gap and improve classification 

performance in a varied field. 

5.2. Discussion and analysis 

As seen in table II-IV, we see the convolutional networks achieve a 100% F1 score for all hybrid signals, 

except the MobileNetv2. In the paper [8], the authors propose a transfer learning-based resnet50 for fault 

classification with 98.95% mean accuracy with a depth of 51 convolutional layers. Even with pre-trained 

models, ResNet can have high computational complexity as the layer numbers increase. Our proposed 
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approach demonstrates higher accuracy even with fewer layers and parameters.  We suggest using the 

DenseNet model that reduces the complexity by reusing feature maps and thus preserves learned 

information intact throughout feedforwarding. We used DenseNet-BC architecture using a compression 

factor Ө (where Ө varies from 0 to 1) that modifies the hidden transition layer outputs according to previous 

dense blocks making the whole model compact. Modified DFCNN [34] shows 99.96 mean accuracy on five 

sub dataset variants of the CWRU dataset and outperforms previous methods such as Deep belief networks. 

However, the model's performance significantly drops if the workload is changed. Even if the generalized 

model is well under predefined conditions, in real-life scenarios, where loads and conditions can vary. This 

issue is also recognized in [35], where the authors introduce a cross-domain-based approach to evaluate 

their proposed method under three different load conditions (1hp, 2hp, and 3hp). They achieve 95.47 (± 

1.32) and 98.29 (± 1.23) F1 scores in two different scenarios where samples are trained on 1~2hp loads and 

tested on 3hp load and so on. This attempt is taken as Deep Learning models often fail to generalize in 

varied conditions. However, our approach utilizes the full power of DL models and has high generalization 

abilities even under varied conditions, as described in section 3. Table 6 shows previous works done on 

CWRU bearing dataset and our results: 

Table 6. Comparison with previous works (*Accuracy, +F1 score) 
Models Performance   

TCNN [8] 98.95*  

Modified DFCNN [34] 99.96*  

RNN-WDCNN [35] 95.47+ (Case- I) 

RNN-WDCNN [35] 98.29+ (Case- II) 

ST-CNN [36] 99.97*  

HDN [37] 99.03* 

SS-GAN [38] 99.93* 

FFT-GAN [39] 97.96+ 

Our approach   1.00+  

Our DenseNet model having 121 layers has 7381 dense connections and thus can retain a more 

extensive set of feature maps making the model viable for a wider variety of information. As shown in Table 

I, this model is the second smallest in size with only 7M parameters compared to the high computational 

cost of VGG16 or ResNet models. Hence, it is also computationally cost-efficient and feasible to be deployed 

in the industries. 

6. Conclusion 

This study demonstrates our developed novel hybrid signal decomposition approach for commercial 

fault diagnosis and the proposed transfer learning approach based on DenseNet121. The accompanying 

main two remarks highlight the primary contributions of our research. First, the time-domain fault signals 

are converted into grayscale image format, which is the input data type of DenseNet121, followed by a 

hybrid signal decomposition procedure that employs both EMD and VMD for signal processing. Second, 

by coupling transfer learning with it, a new transfer learning framework (DenseNet121) with 121 layers of 

depth is constructed. The proposed scheme has deeper network layers and more effective feature extraction 

layers. As a result, the suggested model would increase the final fault diagnosis prediction performance 

when tested on the CWRU dataset. When compared to other deep learning models, it has produced 

significant results with a 100% F1 score accuracy. Furthermore, the framework of transfer learning is 

examined on ResNet18, ResNet34, ResNet50, VGG16, and MobileNetV2, with the findings revealing that 

transfer learning (DenseNet121) is the best among them, indicating that it has outstanding fault diagnostic 

capability. The future work includes optimizing the transfer learning process; without hampering the 

performance or increasing training time. As per the limitation, we employed the CWRU dataset as the 

validating dataset for the consistency of the model. Because of noise or variations in motor speed, the 

accuracy can suffer if another dataset from disparate aspects is used. Our study was conducted on a well-

balanced dataset. In comparison, a structured dataset is more straightforward to use than an inconsistent 

one. An unbalanced dataset characterizes real-world implementations. We intend to test our proposed 
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model on comprehensive real-world data to assess and enhance performance in the future. The hybrid 

signal technique should also be tested on other signals derived from various rotatory machines and sources. 

We intend to take our research work further to detect the conditions of the faulty signals on different 

industrial equipment.   
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