Annals of Emerging Technologies in Computing (AETiC)

 
Paper #7                                                                             

Detection of Lung Nodules on CT Images based on the Convolutional Neural Network with Attention Mechanism

Khai Dinh Lai, Thuy Thanh Nguyen and Thai Hoang Le


Abstract: The development of Computer-aided diagnosis (CAD) systems for automatic lung nodule detection through thoracic computed tomography (CT) scans has been an active area of research in recent years. Lung Nodule Analysis 2016 (LUNA16 challenge) encourages researchers to suggest a variety of successful nodule detection algorithms based on two key stages (1) candidates detection, (2) false-positive reduction. In the scope of this paper, a new convolutional neural network (CNN) architecture is proposed to efficiently solve the second challenge of LUNA16. Specifically, we find that typical CNN models pay little attention to the characteristics of input data, in order to address this constraint, we apply the attention-mechanism: propose a technique to attach Squeeze and Excitation-Block (SE-Block) after each convolution layer of CNN to emphasize important feature maps related to the characteristics of the input image - forming Attention sub-Convnet. The new CNN architecture is suggested by connecting the Attention sub-Convnets. In addition, we also analyze the selection of triplet loss or softmax loss functions to boost the rating performance of the proposed CNN. From the study, this is agreed to select softmax loss during the CNN training phase and triplet loss for the testing phase. Our suggested CNN is used to minimize the number of redundant candidates in order to improve the efficiency of false-positive reduction with the LUNA database. The results obtained in comparison to the previous models indicate the feasibility of the proposed model.


Keywords: Attention convolutional network; triplet loss; nodules detection; false-positive reduction.


 
Full Text

This work is licensed under a Creative Commons Attribution 4.0 International License. Creative Commons License


This browser does not support PDFs. Please download the PDF to view it: Download PDF.

 
 International Association for Educators and Researchers (IAER), registered in England and Wales - Reg #OC418009                         Copyright © IAER 2021