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Abstract: This paper presents FPGA implementations of image filtering and image averaging – two widely 

applied image preprocessing algorithms. The implementations are targeted for real-time processing of 

high-frame-rate and high-resolution image streams. The developed implementations are evaluated in terms 

of resource usage, power consumption, and achievable frame rates. For the evaluation, Microsemi’s 

Smartfusion2 Advanced Development Kit is used. It includes a SmartFusion2 M2S150 SoC FPGA. The 

performance of the developed implementation of image filtering algorithm is compared to a solution 

provided by MATLAB’s Vision HDL Toolbox, which is evaluated on the same platform. The performance of 

the developed implementations are also compared with FPGA implementations found in existing 

publications, although those are evaluated on different FPGA platforms. Difficulties with performance 

comparison between implementations on different platforms are addressed and limitations of processing 

image streams with FPGA platforms discussed. 

Keywords: image processing; real-time image processing; FPGA; Camera Link; resource usage; power 
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1. Introduction 

Cameras are nowadays indispensable gadgets used in a plethora of applications, ranging from 

uses in automotive industry for autonomous driving [1,2], for security and surveillance [3,4], in 

medicine [5], for product quality assurance in manufacturing [6], as well as observations of both space 

[7] and earth1 [8]. Most of these applications require images received by the camera to be processed 

in real-time for them to be relevant, useful and to prevent loss of image frames [9]. The real-time 

processing means that the processing of data has to be completed in the time available between the 

two successive input sample [10]. In case of image stream this means that an image has to be 

processed before the next frame arrives. If this processing criterion is not met, frames could be 

dropped, thus causing the loss of information. For most of the mentioned applications a missed frame 

could mean catastrophic consequences. A real-time processing system with such strict processing 

criteria is referred to as a hard real-time system [8,11]. 

In order to extract the needed information from a captured image, different processing 

algorithms have to be applied. These vary from primitive operations like noise reduction to more 

                                                             
1 NASA's ECOSTRESS Detects Amazon Fires from Space. 2019. https://www.jpl.nasa.gov/news/news.php?feature=7490  
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advanced techniques like feature extraction, pattern recognition and object recognition. Task-specific 

algorithms are constructed for a certain application. However, algorithms for image preprocessing 

are widely used in various applications. The preprocessing algorithms enhance the features of 

interest in the image, simplifying higher-level processing [12]. Nevertheless, processing of images in 

real-time is getting more and more difficult because we are constantly striving to improve our 

applications by developing more complex algorithms [13] as well as capturing larger images [14] and 

at increasing frame rates [15], which altogether results in increased processing requirements. 

Therefore, the most important requirement for a real-time imaging system is the achievable 

processing data rate. Unfortunately, traditional methods for processing images from a camera, i.e. 

with a single or multiple processors, are insufficient to provide high enough processing data rates. 

Therefore, other options have to be considered especially for embedded applications where 

processing resources like power consumption, weight, space, cooling, etc. are limited, as for example 

in smartphones [16]. The solution for achieving image processing in real-time while also satisfying 

other design constraints, is to design systems with dedicated functionality of image processing. Field 

Programmable Gate Arrays (FPGAs) present a platform which satisfies the mentioned design 

requirements. Moreover, FPGAs are modifiable, thus can easily be adapted to a specific image 

processing application [10]. If an FPGA is not included in the system which receives the images, a 

simple solution is to insert the FPGA between the camera and the receiver. In this case the FPGA 

must acquire the image sent by the camera via an interface (I/F), process it and then send it to the 

intended receiver via the same or even a different I/F. 

This paper presents FPGA implementations of two standard image preprocessing algorithms, 

namely image filtering and image averaging. The former is used to emphasize certain features of an 

image or remove others. The latter reduces the noise levels by averaging multiple images from a 

sequence.  

The developed implementations allow real-time processing of high-frame-rate and 

high-resolution image streams. They are developed in Simulink2 using HDL library, which provides 

automatic generation of HDL code with HDL coder3. This is a popular method of designing imaging 

applications due to its simplicity and straightforward verification of the implemented algorithms as 

their functionality can be compared with MATLAB’s functions from the Image Processing Toolbox4. 

MATLAB already provides a solution for implementing the image filtering in an FPGA with its 

Vision HDL Toolbox5. Nevertheless, the developed implementation presents an alternative design 

using fewer hardware resources while also allowing shorter intervals of blanking signals of the image 

stream. Moreover, MATLAB does not provide solutions for algorithms which need information 

about multiple frames, like the image averaging algorithm. 

The implementations are evaluated in terms of resource usage, power consumption, and 

achievable frame rates. The performance of the developed implementation of the image filtering 

algorithm is compared with the solution provided by MATLAB’s Vision HDL Toolbox, which is 

implemented and evaluated on the same platform. For the performance evaluation, an existing 

imaging system is used. It consists of an industrial graded camera GO-2400M PMCL [17] by Jai and 

a personal computer (PC) with a PCIe frame grabber board [18] from Silicon Software as the image 

receiver. Since the system does not include an FPGA, a Smartfusion2 Advanced Development Kit 

from Microsemi [19] is inserted between the camera and the receiver. The development board 

includes a SmartFusion2 M2S150 SoC FPGA. The camera uses the Camera Link I/F. Therefore, a 

Camera Link receiver and transmitter are implemented in the FPGA as described in [20]. To verify 

the correctness of the implementations at the fastest achievable data rates of the camera, it is 

configured to use the full Camera Link I/F [21]. The complete setup for the verification is illustrated 

in Fig. 1. 

                                                             
2 MathWorks. Simulink - Simulation and Model-Based Design. 2019. https://www.mathworks.com/products/simulink.html 
3 MathWorks. HDL Coder - MATLAB & Simulink. 2019. https://www.mathworks.com/products/hdl-coder.html 
4 MathWorks. Image Processing Toolbox. 2019. https://www.mathworks.com/products/image.html 
5 MathWorks. Vision HDL Toolbox. 2019. https://www.mathworks.com/products/vision-hdl.html 
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Figure 1. Setup for verification of algorithm implementations. 

The paper extends the work presented in [22] by comparing the performance of the developed 

algorithm implementations in terms of processing data rates and power consumptions not only with 

the MATLAB’s solution for image filtering but also with the performance of other published FPGA 

implementations of the same algorithms. It also elaborates on the difficulties with conducting such a 

comparison. 

2. Implementations of Preprocessing Algorithms 

The following subsections describe the implementations for image filtering and image 

averaging. The implementations presented take into consideration the properties of the camera and 

the FPGA. 

The camera in the full Camera Link I/F configuration transmits 8 pixels with a bit depth of 8 bits 

each clock cycle in parallel together with synchronization signals. The pixels are transmitted row by 

row. To achieve real-time processing of the image stream, the implementations process 8 pixels in 

parallel at the same frequency as they are transmitted. The clock frequency of the pixels is limited to 

37.125 MHz due to the camera [21], the FPGA [23] and the custom Camera Link receiver/transmitter 

IP properties [20]. The maximum resolution of the camera is 1216 by 1936 pixels. At the frequency of 

37.125 MHz, such image size is transmitted at a data rate of 2.2 Gbps [21]. 

2.1. Image Filtering 

Image filtering is implemented as a two-dimensional convolution in the spatial domain of the 

image f(x,y) with the filter mask h(x,y) of size 2a+1 by 2b+1 according to (1). 

𝑟(𝑥, 𝑦) =  
1

𝑀∙𝑁
∑ ∑ 𝑓(𝑥 + 𝑚, 𝑦 + 𝑛) ℎ(𝑚, 𝑛)𝑏

𝑛=−𝑏
𝑎
𝑚=−𝑎                                                                             () 

To process 8 pixels in parallel, 8 convolutions have to be calculated in parallel, which is shown 

in the circuit in Fig. 2. For simplicity, implementation with a filter of size 3x3 is presented. 

 
Figure 2. Top view of image filtering circuit. 

In the circuit from Fig. 2, the component “get_neighbourhood” stores the arriving 8 pixels in 

memory as well as reads out 8 neighbourhoods of 3x3 pixels that are needed for the convolution for 

8 pixels. The component also detects if any of the pixels of the neighbourhood are outside the image 

boundaries in which case it pads them with zeros. The boundaries are detected by the component 

“detect_boundaries” based on the frame synchronization signals. The component 

“detect_boundaries” delays the synchronization signals so that the processed data also has the right 

synchronization. 
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 The convolution of a pixel is realized as shown in Fig. 3. First, a row of the pixel neighbourhood 

and the corresponding row of the filter coefficients are extracted. The extracted values are multiplied 

element-wise in parallel and summed together (implemented as an adder tree). This is repeated for 

the remaining rows. The results of the summed multiplications of rows are summed together (again 

implemented as another adder tree) to get the processed pixel value. These operations are done at a 

clock frequency three times higher than the rest of the circuit in order to process the incoming data 

at the same rate as the new data is arriving. Processing at a higher frequency allows lowering the 

number of resources needed, i.e. only 3 multipliers and 4 adders are needed for each of the 8 pixels 

processed in parallel. The same result could be achieved by direct multiplication and later addition 

of all neighbouring pixels at the same clock frequency as the rest of the circuit. However, such an 

implementation requires 9 multipliers and 8 adders for each pixel processed in parallel. 

 
Figure 3. Circuit for calculation of 2D convolution. 

 The FPGA does not include hardware multipliers and adders for floating point operations. 

Therefore, the filter coefficients are stored with 16 bit fixed floating point precision. The intermediate 

calculations are done with fixed floating point precision with a minimum number of bits which do 

not influence the 8 bit output precision. 

2.2. Image Averaging 

Image averaging is implemented as a running average filter. It is applied to each pixel of the 

image. As mentioned, 8 pixels are processed in parallel each clock cycle, i.e. filter is applied to 8 pixels 

in parallel. 

𝑦(𝑛) = 𝑦(𝑛 − 1) +
1

𝐿
[𝑥(𝑛) − 𝑥(𝑛 − 𝐿)]                                                                                                  () 

If image averaging is implemented according to (2), four memory accesses are needed each clock 

cycle for each pixel, i.e. to store the current averaged output pixel y(n), to read the previous output 

pixel y(n-1), to store the incoming pixel x(n) and to read its L-th previous value x(n-L). The internal 

memory of the FPGA in the form of SRAM can store at most 4.5 Mbits [19], meaning it is too small to 

store even one image at maximum resolution, which takes up 18.8 Mbits. Therefore, external memory 

in form of DDR needs to be used. Memory access time limits the maximum achievable processing 

data rate. To maximize the throughput of the DDR memory, a circuit for accessing it with multiple 

overlapping bursts in a sequence is designed according to [20]. A throughput of 5.32 Gbps is 

achieved, which is the maximum possible throughput of the DDR memory of the development board 

used [24]. At a pixel data rate of 2.23 Gbps, a throughput of 8.92 Gbps of the DDR memory is needed, 

which is more than available. A solution is to simplify the filter by assuming x(n-L) ≈ y(n-1), resulting 

in (3). The assumption is valid if the pixels are not changing much through time. 

𝑦(𝑛) = (1 −
1

𝐿
)𝑦(𝑛 − 1) +

1

𝐿
𝑥(𝑛)                                                                                                            () 

For efficient hardware implementation, the simplified filter form is implemented as shown in 

Fig. 4. It is assumed that the number of images to average L is a power of 2. With this assumption, 

the division is replaced with a simple bit shift. 



AETiC 2021, Vol. 5, No. 2 54 

www.aetic.theiaer.org 

 
Figure 4. Circuit for implementing simplified version of running average filter. 

3. Evaluation of Implemented Algorithms 

In the following subsections are presented evaluations of resource usage, power consumption, 

and achievable frame rates for the developed implementations of image filtering and image 

averaging as well as the MATLAB’s image filtering implementation from the Vision HDL Toolbox 

using the presented imaging system (Fig. 1). Before their evaluation, the correctness of the 

functionality of the implementations is first verified by simulating the generated circuits and 

comparing the output images with images processed with MATLAB’s functions from the Image 

Processing Toolbox. The standard 8 bit, black-and-white Lenna image from [25] is used for the 

verification process. The image is resized and cropped to a resolution of 1936 by 1216 pixels to 

correspond to the maximum image resolution of the camera used. 

The resource usage is evaluated based on the report of the synthesis tool from Microsemi’s 

development environment Libero [26]. Some of the allocated resources do not differ for different 

implementations and algorithms, like the number of input/output connections, the number of clock 

conditioning circuits, oscillators, etc. Therefore, only the allocation of logic and memory resources 

are considered in detail. The former consist of look-up tables (LUTs) and multiply-accumulate blocks 

(MACCs); the latter of D flip-flops (DFFs) and RAM blocks. 

The power consumption is estimated based on the resource usage using Microsemi’s power 

estimator tool [27]. To get the full power consumption, the power consumption of DDR memory 

needs to be added when it is used. The power consumption of the DDR memory is estimated based 

on Micron’s power estimator tool6 [28] for the DDR memory used [29]. 

The achievable frame rates are evaluated for the maximum frequency at which the 

implementations can operate and image size of 1216 by 1936 pixels, which is the largest image size 

that the used camera can capture. For the evaluation, the duration of the blanking signals between 

individual lines of an image and between frames of the image stream are kept to their minimum at 

which the implementations still work correctly. 

3.1. Image Filtering 

Results of verification of image filtering is presented in Fig. 5 for a Gaussian low-pass filter with 

standard deviation of 1 and size of 7x7. The figure includes the result of the simulated circuit (top 

left) and the referenced filtered image (top right). The reference image is acquired with MATLAB’s 

functions ‘fspecial’ and ‘imfilter’. The figure also includes the histogram of the absolute difference 

between the two results (bottom). 

The histogram in Fig. 5 shows that not all the pixels have the same value. The source of the 

difference lies in the rounding of the coefficients. For the hardware implementation they are rounded 

to a 16 bit fixed floating-point representation. If they were implemented with double-precision 

floating-point format, there would be no difference. However, such an implementation would 

require a lot more hardware resources, e.g. floating-point multipliers and larger memories. Moreover, 

the histogram of the absolute difference between the simulated and the reference image shows that 

the maximum difference between using the double-precision and 16 bit fixed floating-point is 3 and 

altogether below 10% of all pixels differ. This is sufficiently small error for all practical applications. 

                                                             
6 Micron Technology Inc. System Power Calculators. 2019. https://www.micron.com/support/tools-and-utilities/power-calc 



AETiC 2021, Vol. 5, No. 2 55 

www.aetic.theiaer.org 

 
Figure 5. Verification of developed image filtering. Left image – simulated result of implemented image 

filtering; middle image – reference output; right – histogram of their absolute difference. 

Evaluation of image filtering is conducted for filters of sizes from 3x3 up to 15x15. Fig. 6 and Fig. 

7. show the relative resource usage for the developed implementation (denoted with “_d”) and 

MATLAB’s version (denoted with “_m”) for logic and memory resources, respectively. 

 
Figure 6. Logic resource usage for different filter sizes 

for developed (“_d”) and MATLAB’s (“_m”) 

implementation of image filtering. 

 
Figure 7. Memory usage for different filter sizes 

for developed (“_d”) and MATLAB’s (“_m”) 

implementation of image filtering. 

From Fig. 6 it can be seen that with MATLAB’s implementation all the available MACC blocks 

get used up already for filter size 7x7. This is because their implementation does multiplications on 

all filter coefficients in parallel, meaning the number of multipliers needed increases with the square 

of the filter size. Once there are no more MACC blocks available, the multipliers are implemented in 

fabric, increasing fabric logic allocation with a square as well. On the other hand, the developed 

implementation uses a number of multipliers proportionate to the filter size by doing the 

multiplications at an increased frequency. As it can be seen in the figure, this way less logic resources 

are used. 

A similar increase as with the logic resources can be seen in the usage of DFF for both 

implementations in Fig. 7. This is because they are used to store the intermediate results of the 

calculations. On the other hand, RAM blocks increase linearly in both implementations as they are 

only used for storing the number of rows corresponding to the filter size. One can note that 

MATLAB’s implementation is more efficient in respect of allocated RAM as it uses relatively 25% less 

RAM blocks than the developed implementation. This is because of a difference in the 

implementations of zero padding, which results in different allowed minimal blanking intervals 

between image lines. 

Based on the resource usages, power consumptions for both implementations are calculated. 

They are shown in Fig. 8. The power consumptions are calculated for pixel clock frequency of 37.125 
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MHz. The developed implementation cannot be implemented in the used system for filter sizes larger 

than 9x9 due to the frequency limitations of the FPGA, which is 400 MHz. Nevertheless, the power 

consumptions of filters larger than 9x9 are still included in the figure (marked with a light pattern) 

for complete analysis. 

 
Figure 8. Power consumption for different filter sizes for developed (“_d”) and MATLAB’s (“_m”) 

implementation of image filtering operating at 37.125 MHz. 

The power consumption is proportionate to the number of resources and the frequency at which 

they operate [30]. As the number of resources increases with a square for the MATLAB’s 

implementation, the power consumption follows the trend as it can be seen in Fig. 8. Moreover, also 

the developed implementation follows a square trend because the resources increase linearly but also 

the frequency of operation of multipliers. The important thing to note here is that power consumption 

of the developed implementation is larger than MATLAB’s implementation. The reason is that the 

developed implementation does not use for a factor of the filter size less resources than MATLAB’s 

as one might first think. In order to operate the multipliers at an increased frequency, a control circuit 

is needed. The control circuit increases the resource usage. Moreover, it operates at the increased 

frequency, resulting in a larger overall power consumption of the implementation. 

The achievable frame rates for the used FPGA are shown in Fig. 9. The figure shows that frame 

rate of MATLAB’s implementation is slightly decreasing. This is because it needs to have the blanking 

interval between the lines of an image at least as long as the filter size. This issue is more noticeable 

in cases where the ratio of the filter and image sizes is larger. However, the developed 

implementation does not have this limitation. It operates at the minimum blanking interval needed 

for detecting transitions of the synchronization signals, namely one clock cycle. Although its 

achievable frame rate is still decreasing. It decreases proportionally with the filter size. That is because 

the clock frequency of pixels is limited to the ratio of the maximum frequency of the FPGA and the 

filter size. 

 
Figure 9. Achievable frame rates for different filter sizes for developed (“_d”) and MATLAB’s (“_m”) 

implementation of image filtering for image size of 1216 by 1936 pixels. 
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3.2. Image Averaging 

For verification of image averaging, the parameter L of the filter is set to 8. Moreover, a set of 

nosy images is generated with MATLAB using function ‘imnoise’. The noise is set to have a Gaussian 

distribution with zero mean value and variance of 0.02. An example of a nosy image is shown at the 

left of Fig. 10, followed by the result of the simulated circuit (middle image) and the reference image 

(right image). The reference image is represented by the not-simplified version of the running average 

filter. By comparing the three images, it can be seen that the noise level is decreased due to the use of 

the running average filter. Fig. 10 also includes the histogram of the absolute difference between the 

simulated and the reference image. From the histogram, a discrepancy between the two filters is 

noticeable. Nevertheless, the difference is small enough to be neglected for most practical purposes. 

Therefore, these results validate the simplification and implementation of the averaging algorithm. 

 
Figure 10. Verification of developed image averaging. Left image – generated nosy image; middle image – 

simulated result of implemented image averaging; right image – reference output; and histogram of absolute 

difference between the simulated and the reference image. 

Evaluation of the resource usage for the implementation of the image averaging algorithm can 

be seen in Table 1. Based on it, the power consumption when operating at 37.125 MHz is calculated 

to be 971 mW. As already indicated, the achievable frame rate is limited by the access data rate to the 

external DDR memory, resulting in a maximum frame rate of 135.93 fps. 

Table 1. Evaluation of image averaging algorithm 

Resource LUT DFF MACC RAM 

Percentage of Resource Used 2% 1% 23% 2% 

4. Performance Comparison with other Published Works 

To further evaluate the performance of each of the developed algorithm implementations, they 

are compared with different FPGA implementations of the same algorithms from other published 

works. The performance is evaluated in terms of processing data rates and power consumptions. 

Moreover, since the two metrics also depend on the available resources of the platform used in the 

tests, the ratio of processing data rate versus power consumption is also considered because it better 

reflects the efficiency of individual implementations. 

While there are multiple works investigating the topic of implementation of the two presented 

algorithms in a FPGA, only a few provide an evaluation of the achievable processing data rates and/or 

power consumptions. Therefore, only the latter can be considered here for comparison. The works 

[31–34] have been found to include an investigation of the implementation of image filtering 

algorithm, while performance of the implementation of image averaging has only been found to be 

investigated in [33]. 

4.1. Approaches to Performance Comparison 

The main issue faced when conducting a performance comparison of image processing 

algorithm implementations, is inconsistent format of the reported evaluation between different 
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published works. For example, it is common that as a performance metric, frame rate is reported 

rather than processing data rate. The two metrics are related as: 

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 = 𝑓𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒 ∗ 𝑖𝑚𝑎𝑔𝑒 𝑠𝑖𝑧𝑒 ∗ 𝑏𝑖𝑡 𝑑𝑒𝑝𝑡ℎ                                                         () 

While it is simpler to understand what frame rate represents, it is more informative to express 

the processing data rate when comparing algorithm implementations. The image size and/or bit 

depth are application specific and not algorithm dependent. Although there are some typical values 

for them, they can be freely chosen for a specific application. 

A similar issue with inconsistent metrics is present with power consumption. It is defined as the 

average power consumption during processing of a frame, or in other words, the average energy 

invested for processing of a single frame. But different publications include different contributions to 

the considered power consumption. One contribution comes from the so-called static power 

consumption when the platform running the algorithm is idle. The other contribution is referred to 

as dynamic and stems from running the implemented algorithm itself. In the evaluation in this paper, 

we consider their sum as the power consumption of the algorithm because of two main reasons. 

Firstly, it is difficult to completely separate evaluation of the different power contributions. And 

secondly, the algorithm implementation can be adapted to use the advantages of the targeted 

platform, thus it inherently also includes its characteristics like the static power consumption. 

Moreover, to have a meaningful comparison it is important to consider implementations with 

the same parameters, e.g. same filter sizes and precision of the calculated results. However, due to 

specific platform limitations and characteristics (e.g. available hardware multipliers), this might not 

necessarily be feasible to achieve. All this has a consequence that the comparison of the 

implementations is at least to some degree dependent on the platform used for evaluation. 

4.2. Results of Performance Comparison 

When applying the conversion of the different approaches to the performance comparison 

discussed in the previous section to the data available from [31–34], the Tables 2 and 3 are produced. 

It should be noted that for [31,32] the power consumption has been estimated based on the reported 

resource usage and power estimator tools for the used platforms, i.e. 7 and 8 respectively. Moreover, 

the comparison of different implementation of image filtering is conducted for filter size of 9 by 9. 

Table 2. Implementation performance comparison for image filtering 

Implementation FPGA platform used 
Processing data rate 

[Gbps] 

Power consumption 

[W] 

Efficiency 

[Gbps/W] 

Developed 
Microsemi Smartfusion2 

Advanced Development Kit 
2.8 4.1 0.7 

[31] 
GiDEL ProcStar III 

with Altera Stratix III E260 FPGA 
1.0 2.3 0.4 

[32] 
GiDEL ProcStar IV with Altera 

Stratix IV E530 FPGA 
1.2 3.2 0.4 

[33] 
Xilinx Zynq 

UltraScale+ MPSoC ZCU102 
2.4 3.0 0.8 

[34] Xilinx XC4VLX160 0.85 Not available Not available 

Table 3. Implementation performance comparison for image averaging 

Implementation FPGA platform used 
Processing data rate 

[Gbps] 

Power consumption 

[W] 

Efficiency 

[Gbps/W] 

Developed 
Microsemi Smartfusion2 

Advanced Development Kit 
5.1 0.97 5.3 

[33] 
Xilinx Zynq 

UltraScale+ MPSoC ZCU102 
2.4 3.1 0.77 

                                                             
7 Intel. PowerPlay Early Power Estimator Download Stratix III Devices. 2020. 

https://www.intel.com/content/www/us/en/programmable/support/support-resources/operation-and-testing/power/st3-

power_estimator_download.html 
8 Intel. Stratix IV and Stratix V Early Power Estimator Download. 2020. 

https://www.intel.com/content/www/us/en/programmable/support/support-resources/operation-and-testing/power/st4-5-

estimator-download.html 
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From the unified performance evaluation metrics shown in the two tables, it can be concluded 

that the developed algorithm implementations presented in this paper are amongst the most efficient 

in terms of achievable processing data rates per consumed power compared to implementations from 

other publications. Moreover, the developed implementations also achieve the highest processing 

data rates. Nevertheless, it would be presumptuous to attribute these performance metrics only to 

the algorithm implementations. The platforms used need to be taken into account as well, as already 

noted. 

5. Conclusion 

This paper presented FPGA implementations of two standard image preprocessing algorithms, 

namely image filtering and image averaging. The implementations allow real-time processing of 

high-frame-rate and high-resolution image streams. The implementations were developed in 

Simulink and verified by simulating the generated circuits and comparing the output images with 

images processed with MATLAB’s functions from the Image Processing Toolbox. Moreover, the 

implementations were also verified by testing them in an imaging system consisting of Microsemi’s 

Smartfusion2 Advanced Development Kit to which an industrial camera was connected via the 

Camera Link interface. The developed implementations were evaluated in terms of resource usage, 

power consumption, and achievable frame rates. The performance of the developed implementation 

of the image filtering algorithm was also compared with a solution provided by MATLAB’s Vision 

HDL Toolbox, which was also implemented and evaluated on the same imaging system. 

The evaluation of the two implementations of image filtering showed that the developed one 

uses fewer resources than MATLAB’s version. However, its power consumption is larger due to the 

processing at higher frequency. Reason being that the additional control logic needed for processing 

at the increased frequency is also operating at that increased frequency, resulting in an overall larger 

power consumption even though fewer resources are used. The processing at higher frequency is 

also the reason for decreasing the achievable frame rate with increasing filter size, in contrast to 

MATLAB’s implementation. Nevertheless, the developed implementation has the advantage of 

operating at the minimum blanking interval between the lines of an image, i.e. one clock cycle, in 

comparison with MATLAB’s version where the interval needs to be at least as long as the filter size. 

Despite the lower performance of the developed implementation of image filtering compared to 

MATLAB’s version, the advantage of the smaller resource usage can prove to be crucial in complex 

applications, e.g. in state-of-the-art object recognition with convolutional neural networks (CNNs). 

For real-time object detection with CNNs, multiple image filters need to operate in parallel, which 

can only be achieved with small designs of filtering. 

Furthermore, the implementation of image averaging showed that the complexity of the 

algorithms, which can be implemented in a system, is also greatly limited by the available access data 

rate to the external DDR memory. Nevertheless, it was demonstrated how this limitation can be 

overcome by simplifying the algorithm by making reasonable assumptions, e.g. that pixels do not 

change much through time which can be achieved by capturing images with a high enough frame 

rate. 

The performance of the developed implementations was also compared to performance of the 

algorithm implementations from other published works. The comparison showed that the developed 

implementations perform well in comparison with others. Nevertheless, it should be noted that the 

performance is not only dependent on the algorithm but also on the platforms used for the evaluation. 

Therefore, for a more informative comparison of the different algorithm implementations, the same 

platform should be used as it was done with the MATLAB’s solution. However, in some cases even 

this would not result in a completely clear comparison because some implementations can better take 

advantage of and be adapted to the specific platform characteristics. This just further shows how 

large and divers the design space for real-time imaging applications is, and that when designing a 

real-time imaging applications, the algorithm implementations and the platform used should be 

considered together to find the optimal solution. 
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