
Annals of Emerging Technologies in Computing (AETiC)

Vol. 5, No. 1, 2021

Muhammad Sajjad, Mohd Zuki Yusoff and Muhammad Ahmed, "A Customized Floating-point Processor Design for FPGA

and ASIC based Thermal Compensation in High-precision Sensing”, Annals of Emerging Technologies in Computing (AETiC),

Print ISSN: 2516-0281, Online ISSN: 2516-029X, pp. 40-50, Vol. 5, No. 1, 1st January 2021, Published by International Association

of Educators and Researchers (IAER), DOI: 10.33166/AETiC.2021.01.004, Available: http://aetic.theiaer.org/archive/v5/v5n1/p4.html.

Research Article

A Customized Floating-point Processor

Design for FPGA and ASIC based

Thermal Compensation in High-

precision Sensing

 Muhammad Sajjad1*, Mohd Zuki Yusoff1 and Muhammad Ahmed2

1CISIR, Universiti Teknologi PETRONAS, Perak, Malaysia
muhammad_19001746@utp.edu.my; mzuki_yusoff@utp.edu.my

2National University of Computer and Emerging Sciences, Islamabad, Pakistan
m_ahmed_17@yahoo.com

*Correspondence: muhammad_19001746@utp.edu.my

Received: 18th November 2020; Accepted: 27th December 2020; Published: 1st January 2021

Abstract: There are many types of sensors which require large dynamic range as well as high accuracy at the

same time. Barometric altimeter is an example of such sensors. The signal processing techniques in the

sensors are normally implemented using Field Programmable Gate Arrays (FPGAs) or Application-Specific

Integrated Circuits (ASICs). The sensing variable in such type of the sensors is unwantedly environment

dependent. So, for ensuring accuracy of the sensors this environmental dependency is minimized using the

modeling and compensation techniques. In this work we have proposed a digital architecture for a

programmable high precision computational unit which can be implemented in the FPGA or ASIC running

the sensing algorithm of the sensors. This architecture can be used to implement polynomial compensation

and it also supports reading and writing of the corresponding calibration coefficients even after the

development of the sensors. Moreover, the architecture is platform independent. The architecture have been

simulated for different FPGAs and ASIC and it has fulfilled the speed, accuracy and programmability

requirements of the type of the sensors. The architecture has also been implemented and verified in a

prototype of the barometric pressure sensor on Spartan-6 FPGA.

Keywords: ASIC; digital signal processing; double-precision floating point unit; FPGA; high precision sensors;

thermal compensation; VerilogHDL

1. Introduction

Nowadays, for development of many high-precision sensors, FPGA is used to meet the

requirements of the digital signal processing. FPGA is an ideal choice for the sensors demanding

deterministic latency for synchronizing different events and flexibility in the use of input and output

pins [1-2]. Performance of many high-precision sensors is dependent upon environmental factors

such as temperature, pressure, and humidity. One way to eliminate the error introduced by the

dependency is to model or predict the error with the environmental factors and then compensate it

by further processing the output of the sensors [3-5]. In most of the cases, the suitable model is a

polynomial function in some environmental factors. As a result, the implementation of a polynomial

function in digital signal processing of the high-precision sensors is required [6]. Let’s discuss the

available suitable approaches that can be used to achieve this goal.

http://aetic.theiaer.org/
http://www.theiaer.org/index.htm
http://www.theiaer.org/index.htm
http://aetic.theiaer.org/archive/v5/v5n1/p4.html
mailto:muhammad_19001746@utp.edu.my
mailto:mzuki_yusoff@utp.edu.my
mailto:m_ahmed_17@yahoo.com
mailto:muhammad_19001746@utp.edu.my

AETiC 2021, Vol. 5, No. 1 41

www.aetic.theiaer.org

Firstly, electronics of the sensors contain a microcontroller unit (MCU) or a digital signal

processor (DSP) in addition to FPGA. Implementing a polynomial function in the MCU or DSP is a

straightforward process because high-level languages are used to program them [7-8]. But such

hardware adds complexity and cost to the sensors’ development. Secondly, a soft microprocessor

core such as MicroBlaze can be embedded in FPGA for implementing the polynomial function [9-11].

MicroBlaze core consumes a large number of resources in FPGA and does not meet the speed and

precision requirements in real-time for some sensors. Thirdly, a system on chip (SoC), containing

FPGA and processor cores on a single chip, can also be used for this purpose but it is again a costly

solution and overkills the problem [12-15]. Fourthly, customized computational units can be

designed in FPGA using hardware description language (HDL) [16-17]. Such units normally

incorporate different IP cores and their HDL source code cannot be exported directly to other FPGAs,

ASICs and integrated software environments (ISEs). So, reusability of the source codes for the high-

precision sensors is compromised which is an important feature in any industry.

In order to solve the above issues, a new approach is proposed in [18] to design a computational

unit for the high-precision sensors’ development. Some procedures are presented in the work to

design the hardware capable of performing mathematical and typecasting operations without using

an IP core, but the concept is not verified for practical systems in real-time. In this work we extend

and verify the platform independency of the design and evaluate the design in real-time using a

prototype system. The prototype system consists of a barometric pressure sensor interfaced with a

Xilinx Spartan-6 FPGA which is a low cast commercially available device. The functionality of the

calibration feature is verified in real-time. So, we can conclude that the design is suitable for

incorporating it in practical systems.

The paper is organized in IX sections. In section II environmental dependency of the high-

precision sensors is described mathematically. Double-precision floating point unit capable of

performing required floating-point operations in IEEE 754 format is described in section III. Section

IV and V of the paper comprises the datapath and the control unit of the processor respectively. In

section VI, instruction set architecture for the computational unit is described. While in section VII,

SPI flash interfacing is described to store required data in RAMs of computational unit. Results and

details of simulation and implementation of the design are described in section VIII. Finally, the

conclusion of the research activity is presented in section IX.

 2. Calibration of High Precision Sensors

High Precision Sensors’ output depends not only on sensing variable but also on different

parameters such as scaling factor and offset. The calibration of such sensors is required to get the

correct value from the sensor. Equation (1) and (2) describes the relation between the sensor’s output

and sensing variable with these parameters.

 Sout = KVa + B (1)

 Va = Ks(Sout − B) (2)

 Sout : Output of the Sensor

 Va : Sensing variable

 Ks : Scaling factor of the Sensor

 B : Offset of the Sensor

The sensor algorithm requires information about scaling factor and offset to get the correct value

of sensing variable. Offset is found by giving a small value at the sensor's input. When Va is small,

KsSout would be small and negligible and output only depends on the B. In this way, offset is found.

Similarly, the scaling factor is found by giving large input to the sensor. When Va is larger, the term

(Sout - B) would approximately equal to Sout and output depends only on Ks. Now we can find sensing

variable Va by using calculated scaling factor and offset in (2).

The problem with most of the high precision sensors is that scaling factor and offset depends

upon different environmental variables such as the temperature. In order to get the correct value

from sensors, the behavior of the scaling factor and the offset must be modeled according to the

required environmental variable. The relation between sensors’ parameters and environmental

AETiC 2021, Vol. 5, No. 1 42

www.aetic.theiaer.org

variables is found by acquiring and processing sensors’ data against the environmental variable in

MATLAB. Then the predicted model is implemented in the system to get compensated output of the

sensor against the environmental variable.

The general relation between scaling factor and temperature is described in (3) and offset and

temperature is described in (4).

Ksf(n) = {1 + a1 T(n) + a2 T2(𝑛) … + an T𝑛(𝑛)} (3)

B(n) = {1 + b1 T(n) + b2 T
2(𝑛) … + bn T𝑛(𝑛)} (4)

T(n) : Temperature that needs to be compensated

Ksf(n) : Scaling factor equation

B(n) : Offset Equation

ai, bi : Coefficients

The scaling factor and the offset equations must be computed in real time to compensate changes

occurred due to environmental variables in the sensors’ data. Also, the equations are implemented

using Double-Precision IEEE-754 format because it offers high precision and range as compared to

single-precision format and fixed-point format [19]. The temperature sensor used for thermal

modeling gives data in fixed point format so it must be converted into the double-precision format.

Then, after solving a required polynomial in double-precision format, the output must also be

converted into the fixed-point format. Therefore, the equations shown here required a minimum of

four operations for its computations that include Fixed to Float Conversion, Double-precision

Addition, Double-precision Multiplication, and Float to Fixed Conversion. The floating-point unit

described in the next section is designed to solve these floating-point operations.

 3. Floating-point Unit (FPU)

The floating-point unit of the computational unit is a double-precision IEEE-754 compliance

integrated unit. It can perform four different floating-point operations such as fixed to float

conversion, float to fixed conversion, floating-point addition (64-bit) and floating-point

multiplication (64-bit). A 2-bit operation code is given to FPU to select the operation to perform. The

enable signal is used to trigger the FPU to start the required operation.

IP cores are available to solve these required floating-point operations in Xilinx-ISE tool. But we

have targeted our computational unit for ASIC design so IP cores cannot be feasible. Therefore, all

the four floating-point operations are implemented using algorithmic state machine (ASM) using

VerilogHDL to get complete hardware description of these operations.

Each floating-point operation performed by the FPU takes multiple cycles to complete its

operation. Therefore, a handshaking system is developed between the control unit and the FPU so

that control unit can keep track of the FPU busy status using FPU ready signal. A fixed-point

multiplier is also used to perform the floating –point multiplication [20].

The floating-point addition involves a step by step procedure that is implemented using ASM.

The complete procedure for the addition of given two double-precision floating-point numbers such

as ADBL and BDBL is described in Fig. 1. The floating-point multiplication also involves different steps

that are described in Fig. 2. The required steps for converting the fixed-point number into its

equivalent floating-point number are shown in Fig. 3. The complete procedure required for

converting a floating-point number into a fixed-point number is described in Fig. 4. The floating-

point unit described in this section is used with datapath of the computational unit to perform the

required operations for polynomial solving. The architecture of the datapath with its peripherals is

described in the next section.

4. Datapath Design

The datapath of the computational unit is designed to control the data operations commanded

by the control unit. The datapath contains features of Harvard Architecture in which separate

memories for instructions and data are used. Also, all the instructions in datapath are executed in

multiple clock cycles. Therefore, a handshaking system is developed between the control unit and

AETiC 2021, Vol. 5, No. 1 43

www.aetic.theiaer.org

datapath to ensure successful execution of each instruction by the FPU. FPU ready signal in datapath

serves as a feedback signal between the FPU and the control unit.

The datapath consists of following peripherals such as program memory, instruction memory,

instruction register, program counter, an output register, and a multiplexer. The complete datapath

for the computational unit processing is shown in Fig. 5 and Fig. 6. Program Memory for Register

File is a 64-bit dual port RAM divided into two parts. The upper part of the RAM is used to store

coefficients required in the solving of the polynomial while the lower part is used to store the results

of the instructions to use it in further instructions. Instruction Memory is an n-bit single port RAM

used to store instructions required by the computational unit. The address of this RAM is controlled

by the control unit to execute given instructions sequentially.

Program Counter (PC) is an n-bit counter that controls the address bus of the instruction

memory. PC is incremented by the control unit when an instruction is successfully executed by the

processor. It is reset when all the instructions for the required polynomial are executed by the

computational unit. The fetched instruction is decoded into different control signals that are required

Start

Sample both the
inputs ADBL and BDBL

on Enable Signal

ExpA==ExpB

No

Shift right ManB
equal to ExpA-ExpB

Add appended
mantissas (MSB of
the result is SgnC)

SgnA, SgnB is
equal to 1?

No
Take 2's

complement

Yes

Append respective
sign bit, 0 or 1 on
MSB side of ManA

and ManB

Yes

MSB of the
result is 1?

Second MSB
 is 1?

No

Take its 2's
complement

Yes

Second MSB
 is 1?

Discard three MSBs
ManC is 52-bits left

ExpC = ExpA

No

Right shift the
result

ExpC = ExpA +1
Yes Yes

No

end

NOTE:
It is assumed that
ADBL is greater than
BDBL.

SgnX, ExpX and
ManX are sign,
exponent and
mantissa of double
precision number
X.
During left or right
shifting, shift
register is filled
with zeros.
The three bits
appended are sign,
overflow and
leading 1.

start

Sample both the
inputs ADBL and BDBL

on Enable Signal

Find sign of output
SgnC=SgnA ^ SgnB

Append 1 on left
sides of both ManA

and ManB

Multiply these 53
bits numbers to get

106bits output

MSB of the
output is 1?

ExpC=ExpA+ExpB-
1022

Yes

Left shift the
output

ManC=52 MSBs of
the output

excluding leading 1

No

ExpC=ExpA+ExpB-
1023

end

NOTE:
SgnX, ExpX and
ManX are sign,
exponent and
mantissa of double
precision number
X.
53-bit
multiplication is
done on unsigned
numbers.

Figure 1. Double-precision Floating-point

Addition

Figure 2. Double-precision Floating-point

Multiplication

AETiC 2021, Vol. 5, No. 1 44

www.aetic.theiaer.org

in the datapath. These control signals are stored in the instruction register for the use of the datapath.

Output Register is used in the datapath to store the output of the solved polynomial so that it can be

used by the sensing algorithm for further processing. Multiplexer shown in the datapath is used to

get data from the required sensor using its Select Lines. The selected sensor data is passed to the FPU

to perform the required operation for the given instruction. The datapath needs different control

signals to execute given instruction that are described in Table 1. These control signals are provided

by the control unit according to the given instructions.

Latch the input
number NFXD on

Enable Signal

NFXD is an
exception?

Start

Abort

NFXD is
positive?

Match NFXD in
Lookup table to
get the output

NDBL

No

Load |NFXD| in 52
bits shift register
(Zero Padding on

LSB side)

Yes
Take 2's

Compliment of
NFXD

No

Right shift to the
bit after the first

1 on MSB

ManD=shift
register

ExpD=Ni-NS-Nf
SgnD= MSB of

NFXD

End

Yes

NOTE:
NFXD is a fixed-point 2's
Complement number and NDBL
is a double precision number.
Ni is number of integer bits
and Nf is number of fraction
bits for NFXD

ManD, ExpD and SgnD are
mantissa, exponent and sign
parts of NDBL.

Normally NFXD has less bits
than 52 so 0's are inserted in
the shift register.
NS is number of right shifts
performed.
Conversion is performed
when Enable Signal is
asserted.

Latch the input
number NDBL on

Enable Signal

NDBL is an
exception ?

Start

Abort

Match NDBL in
Lookup table to
get the output

NFXD

Yes

Append 1 as MSB
with ManD, Load

it to a shift
register

No

Do Ni-ExpD-1022
left shifts to the

register

End

SgnD==1

Take 2's
complement of

the shift register

Yes

Load Ni+Nf LSBs
of the shift

register to NFXD

register

No

NOTE:
NFXD is fixed-point 2's
Complement number and NDBL
is double precision.
Ni is number of integer bits
and Nf is number of fraction
bits for NFXD.

ManD, ExpD and SgnD are
mantissa, exponent and sign
parts of NDBL.

Normally NFXD has less bits
than 52 so 0's are inserted in
the shift register.
Conversion is performed
when Enable Signal is
asserted.

Figure 3. Flow Chart for Fixed-to-Double

Conversion
Figure 4. Flow Chart for Double-to-Fixed

Conversion

Program

Counter

(PC)

PC_EN

PC_RST Instruction Memory
Instruction

Register

ADDR Instruction

DIN WE

Instr_exec_en

ADDR_A

ADDR_B

WE_A

PROC_OUT_EN

FPU_EN

SEL[2:0]

FPU_OPCODE
Figure 5. Datapath of the Processor (A)

AETiC 2021, Vol. 5, No. 1 45

www.aetic.theiaer.org

MEM_DATA_OUT_A

WE_BWE_A

DIN_A

DIN_B

FPU_BUS_D

FPU_READY

MUX

Temperature Sensors

[X1-X7]

FPU_BUS_A

REG FILE

(Program

Memory)

64*n

FPU

 00: ft. Add

 01: ft. Mult

10: fx2ft

11: ft2fx

FPU_BUS_B

SEL[2:0]

MEM_DATA_OUT_B

ADDRBADDRA

FPU_ENFPU_OPCODE

OUTPUT

REG

PROC_OUT_EN

COMP_UNIT_OUT

Figure 6. Datapath of the Processor (B)

5. Control Unit

The control unit of the processor controls the datapath, memory and I/O according to the

program instructions stored in the instruction memory. FSM is implemented in the control unit to

control required signals by datapath. FSM consists of 6 states such as memory configuration, idle,

fetch, decode, execute and instruction complete.
Table 1. Control Signals

No. Control Signals Description

I ADDR_A Address of Bus A of Register File

II ADDR_B Address of Bus B of Register File

III FPU_EN Enable Signal for FPU

IV FPU_OP Operation Code for FPU

V MUX_SEL Select Lines of MUX for selecting data from different

sensors

VI PROC_OUT_EN Enable Signal for output register

VII WEA, WEB Write enable signals for Register File Bus A & B

VII PC_EN Enable Signal for Program Counter

IX PC_RST Reset Signal for Program Counter

X INSTR_EXEC_EN Enable Signal for Instruction Register

1. CONFIG_MEM: Control unit waits for the loading of instructions and coefficients from the

SPI Flash in the instruction memory and the register file respectively.

2. IDLE: When memories configuration is completed, control unit waits in this state for the

external trigger to start solving polynomial according to given instructions.

3. FETCH: The control unit fetches the instruction from the instruction memory.

AETiC 2021, Vol. 5, No. 1 46

www.aetic.theiaer.org

4. DECODE: Fetched instruction is decoded into different control signals required by the

datapath. Here, the control unit also checks for the END PATTERN. If the end pattern is

found in the instruction, it goes to INSTR_COMP state to load result of the calculated

polynomial on the output bus. End pattern is a special pattern in the program instruction

that shows all the required instructions for polynomial solving are executed by the

processor.

5. EXECUTE: Here, data from the register files or temperature sensor is passed to the FPU to

perform the desired operation. On completing the required operation, instruction result is

written at the given destination address in the register file.

6. INSTR_COMP: Here, the polynomial result is loaded in output register to load on Data out

bus of the processor.

The control signals required by the datapath are generated according to fetched instruction. Each

instruction represents an FPU operation required in the target polynomial. The instruction used here

consists of a specific format that is explained in section 6.

6. Instruction Set Architecture

The instructions used in the processor consist of 5 different fields that are described in Table 2.

The size of each field can be selected according to the memories using in the processor and the

number of temperature sensors required in thermal modeling of the designed sensor. The coefficients

and instructions required for polynomial are stored in an attached SPI flash. The interfacing between

SPI flash and the computational unit is described in the next section.

7. SPI Flash Interfacing

The SPANSION SPI flash S25FL256S is interfaced with the computational unit to store

coefficients and instructions. The typical hardware architecture for interfacing SPI Flash with the

designed computational unit is shown in Fig. 7. The computational unit can be implemented on

FPGA/ASIC depending upon the requirement. SPI flash is attached with FPGA/ASIC to store data

required by the computational unit. Data stored in SPI flash can be modified from PC using UART

interface. RS-232/RS-422 IC is used here to translate voltage levels required by FPGA/ASIC.

Table 2. Instruction Fields

Instruction Field Description

MUX_SEL

Select lines for the multiplexer to select data

from the required sensor or Register File to

pass it to the FPU.

FPU_OPCODE
Operation code for FPU to select required

floating-point operation.

SRC-ADDR-1 Source Address for BUS-A of the Register File.

SRC-ADDR-2 Source Address for BUS-B of the Register File.

DEST-ADDR
Destination Address at which result of the

executed instruction is to store.

By default, SPI Flash will be in reading mode and the data will be transferred from flash to the

respective RAMs of the processor. When it is required to modify data, SPI Flash mode can be changed

using flash_op signal. Now user can write data in SPI flash using UART Interface. When flash_op =

0, the flash is in read state and when flash_op = 1, the flash is in write state.

1. SPI Flash Reading Module:

SPI interface is implemented to read data from flash and store it in their respective RAMs. First

of all, it read coefficients from flash one by one and stored it in REGFILE using its BUS B. Then,

it read instructions and stored it in Instruction Memory. The connectivity between the SPI Flash

reading module and processor RAMs is shown in Fig. 8.

AETiC 2021, Vol. 5, No. 1 47

www.aetic.theiaer.org

2. SPI Flash Writing Module:

For modifying coefficients and instructions stored in the SPI Flash, first of all, data will be read

from PC using UART Interface and then it will be write-in the SPI flash. So, two different types

of modules are designed here.

 UART Receiver: To receive data from PC using UART interface

 SPI Flash Writing: To write data received from PC on SPI Flash

Handshaking signals are developed between UART Receiver and SPI Flash Writing Modules to

maintain synchronization between the data. As soon as a byte is received from PC using UART

receiver module, it is written on the SPI flash using SPI flash writing module.

8. Software Simulation and Hardware Results

The typical thermal modeling equation for finding compensated output of the sensor is shown

in (5). The values of the scaling factor and the coefficients can be found using offline analysis of the

sensors’ data and the temperature sensors’ data with the help of MATLAB software. The nominal

coefficients for a sensor are shown in Table 3.

Figure 7. SPI Flash Interface with designed system

SPI FLASH

READING

MODULE

REG FILE

(64*n)

Instruction

Memory

Flash_OP

MISO_FR

Flash_Read_Comp

addrA_FR

addrA

addrA_CU

dinA

weA

weB

dinB

addrB_FR

Flash_Read_Comp

addrB_CUSCLK_FR

CS_FR MOSI_FR

Figure 8. Dataflow between Flash Reading Module, Register File and Instruction Memory

Bcmp = KsfBraw + a1T1 + a2T2 + a3G1 + a4G2 (5)

Braw : Uncompensated or raw offset of the sensor (uncompensated output)

T1,2 : Temperature Sensors (1, 2)

G1,2 : Gradients of Temperature Sensors (1, 2)

Ksf : Scaling Factor

ai : Coefficients of temperatures and Gradients (1, 2, 3, 4)

AETiC 2021, Vol. 5, No. 1 48

www.aetic.theiaer.org

Table 3. Coefficients Values

Coefficients Values

Ksf 1

a1 0.10

a2 2.00

a3 0.23

a4 2.40

The polynomial described in (5) is implemented with the help of described computational unit

using Xilinx Spartan 6 device. It is simulated and verified using Xilinx-ISE Post-Layout Simulation

Tool. The computational unit was also simulated on the SimVision tool for ASIC implementation.

The designed computational unit is flexible enough and can be implemented on any FPGA and ASIC

tool. The design is synthesized on Xilinx-ISE tool and Quartus-II tool for FPGA implementation. It is

also verified with Cadence Encounter tool for ASIC design implementation. The resources utilization

summary for the Spartan6 device in Xilinx ISE tool is described in Table 4. Similarly, the Quartus II

tool result for this design is shown in Fig. 9. Table 5 described the gate count results for ASIC

implementation of the design in Cadence Encounter tool.

Table 4. Resources Utilization Summary for Spartan-6 Device

Logic Components Utilization

Number of Slice Registers 10,106

Number of Slice LUTs 14,389

Number of occupied Slices 5,287

Number of MUXCYs used 3,796

Number of LUT Flip Flop pairs used 15,684

The results of the sensor with or without temperature compensation are discussed with

MATLAB in Fig. 10. The uppermost graph describes the behaviour of the temperature sensors. The

graph shown in the middle represents the gradients of temperature sensors. The output of barometric

pressure sensor or altimeter is described with and without thermal modelling in the last graph. From

these graphs, it can be verified that temperature sensors and the gradients of the temperature sensors

doesn’t have any effect on the compensated output of the sensor. It can be concluded from these

graphs that thermal modelling of temperature sensors in (5) has removed errors from the

compensated output of sensor. The thermal modelling or compensation has also been verified for the

pressure sensor by keeping it in a temperature varying setup.

Figure 9. Synthesis Report of the design in the Quartus II

AETiC 2021, Vol. 5, No. 1 49

www.aetic.theiaer.org

Figure 10. Thermal Compensation Results

Table 5. Resources Utilization Summary for ASIC Implementation

Gates 131805

Cells 36135

Area 6975155.9 (𝒖𝒎𝟐)

9. Conclusion

The paper has presented the design of a computational unit in FPGA or ASIC to enhance the

performance of the high-precision sensors by modelling environment induced errors. The design of

the unit features reusability and full programmability to facilitate the development and calibration

of the sensors. The design is implemented using VerilogHDL. The reusability of the design is verified

by simulating it in different ISEs for FPGA and ASIC development. Precision and programmability

of the design are verified by implementing it in Spartan-6 FPGA. Performance of the sensors is

equivalent in Real-time and offline compensation of the sensor output. So, the computational unit

meets the requirements of the high-precision sensors in the industry.

Acknowledgement

This work is supported by the Graduate Assistantship Scheme of Universiti Teknologi

PETRONAS, and in part by the YUTP Fund under Grant 015LC0-239.

References

[1] A. De La Piedra, A. Braeken and A. Touhafi, "Sensor systems based on FPGAs and their applications: A

survey”, Sensors, vol. 12, no. 9, pp. 12235-12264, 2012.

[2] G. J. García, C. A. Jara, J. Pomares, A. Alabdo, L. M. Poggi and F. Torres, "A survey on FPGA-based sensor

systems: towards intelligent and reconfigurable low-power sensors for computer vision, control and signal

processing”, Sensors, vol. 14, no. 4, pp. 6247-6278, 2014.

[3] M. V. Gheorghe, "Advanced calibration method for 3-axis MEMS accelerometers”, in 2016 International

Semiconductor Conference (CAS): IEEE, pp. 81-84, 2016.

[4] R. Mijarez, D. Pascacio, R. Guevara and J. Rodriguez, "Signal processing algorithm for thermal drift

compensation in high-temperature down-hole instrumentation systems”, Transactions of the Institute of

Measurement and Control, vol. 39, no. 8, pp. 1161-1168, 2017.

[5] A. R. Buzdar, A. Latif, L. Sun and A. Buzdar, "FPGA prototype implementation of digital hearing aid from

software to complete hardware design”, International Journal of Advanced Computer Science and Applications

(IJACSA), vol. 7, no. 1, 2016.

[6] D. Kumbhar and K. S. Bodani, "Designing hardware architecture for polynomial matrix multiplications”,

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol.

4, no. 3, pp. 1451-1454, 2015.

[7] C. Stehning and G. A. Holst, "DSP-based measuring system for temperature-compensated fiber optical

oxygen sensors”, in Fiber Optic Sensor Technology and Applications, vol. 4578: International Society for Optics

and Photonics, pp. 259-270, 2002.

[8] M. Tomasi, S. Pundlik and G. Luo, "FPGA–DSP co-processing for feature tracking in smart video sensors”,

Journal of Real-Time Image Processing, vol. 11, no. 4, pp. 751-767, 2016.

AETiC 2021, Vol. 5, No. 1 50

www.aetic.theiaer.org

[9] V. Kale, "Using the microblaze processor to accelerate cost-sensitive embedded system development”,

White Paper: MicroBlaze™ Embedded Processor, WP469 (v1. 0.1), 2016.

[10] J. Seely, S. Erusalagandi and J. Bethurem, "The MicroBlaze Soft Processor: Flexibility and Performance for

Cost-Sensitive Embedded Designs”, Technical Report, Xilinx, 2017. Accessed on: Dec. 15, 2020, Available:

https://china.xilinx.com/support/documentation/white_papers/wp501-microblaze.pdf.

[11] B. Wajszczyk, "Analysis of using a MicroBlaze processor for hardware implementation of algorithms for

data processing in electronic recognition devices and systems based on the example of a XILINX FPGA

system”, in XII Conference on Reconnaissance and Electronic Warfare Systems: International Society for

Optics and Photonics, 2019, doi: doi.org/10.1117/12.2525056.

[12] B. David,D. V. Julien, H. Cédric, B. François, D. François et al., "A 25MHz 7μW/MHz ultra-low-voltage

microcontroller SoC in 65nm LP/GP CMOS for low-carbon wireless sensor nodes”, in IEEE International

Solid-State Circuits Conference 2012, pp. 490-492, 2012.

[13] L. H. Crockett, R. A. Elliot, M. A. Enderwitz and R. W. Stewart, “Applications and Oppertunities” in The

Zynq Book: Embedded Processing with the Arm Cortex-A9 on the Xilinx Zynq-7000 All Programmable

SoC. Glasgow: University of Strathclyde Academic Media, 2015. ch. 5, pp. 101–130.

[14] H. Y. Jie, T. T. Hsuen, L. T. Wei, H. C. Wei, Y. P. Wen et al., "A self-powered CMOS reconfigurable multi-

sensor SoC for biomedical applications”, IEEE Journal of Solid-State Circuits, vol. 49, no. 4, pp. 851-866, 2014.

[15] V. Kathail, J. Hwang, W. Sun, Y. Chobe, T. Shui and J. Carrillo, "SDSoC: A higher-level programming

environment for Zynq SoC and Ultrascale+ MPSoC”, in Proceedings of the 2016 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, 2016, pp. 4-4.

[16] M. Amiri, F. M. Siddiqui, C. Kelly, R. Woods, K. Rafferty, and B. Bardak, "FPGA-based soft-core processors

for image processing applications”, Journal of Signal Processing Systems, vol. 87, no. 1, pp. 139-156, 2017.

[17] S. Athar, M. A. Siddiqi and S. Masud, "Teaching and research in FPGA based digital signal processing

using Xilinx system generator”, in 2012 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2012: IEEE, pp. 2765-2768.

[18] M. Sajjad, M. bin Zuki Yusoff and M. Ahmed, "Design of Double-Precision Fully-Programmable

Computational Unit for FPGA and ASIC”, in 2020 International Conference on Computing, Electronics &

Communications Engineering (iCCECE), 2020: IEEE, pp. 21-26.

[19] V. Rajaraman, "IEEE standard for floating point numbers”, Resonance, vol. 21, no. 1, pp. 11-30, 2016.

[20] T. BHAVANI and D. KPadmaja, "High Speed Signed Multiplier for Digital Signal Processing Application”,

International Journal of Scientific Engineering and Technology Research, vol. 02, no. 07, pp. 546-551, 2013.

© 2020 by the author(s). Published by Annals of Emerging Technologies in Computing

(AETiC), under the terms and conditions of the Creative Commons Attribution (CC BY)

license which can be accessed at http://creativecommons.org/licenses/by/4.0.

