
Annals of Emerging Technologies in Computing (AETiC)

Vol. 5, No. 1, 2021

Minami Yoda, Shuji Sakuraba, Yuichi Sei, Yasuyuki Tahara and Akihiko Ohsuga, "Detection of the Hardcoded Login

Information from Socket and String Compare Symbols”, Annals of Emerging Technologies in Computing (AETiC), Print ISSN:

2516-0281, Online ISSN: 2516-029X, pp. 28-39, Vol. 5, No. 1, 1st January 2021, Published by International Association of Educators

and Researchers (IAER), DOI: 10.33166/AETiC.2021.01.003, Available: http://aetic.theiaer.org/archive/v5/v5n1/p3.html.

Research Article

Detection of the Hardcoded Login

Information from Socket and String

Compare Symbols

 Minami Yoda1,*, Shuji Sakuraba1, Yuichi Sei1,2, Yasuyuki Tahara1 and Akihiko Ohsuga1

1The University of Electro-Communications, Tokyo, Japan
yoda.minami@ohsuga.lab.uec.ac.jp; tahara@uec.ac.jp; ohsuga@uec.ac.jp; sakuraba.shuji@ohsuga.is.uec.ac.jp

2JST PRESTO, Saitama, Japan
seiuny@uec.ac.jp

*Correspondence: yoda.minami@ohsuga.lab.uec.ac.jp

 Received: 8th November 2020; Accepted: 23rd December 2020; Published: 1st January 2021

Abstract: Internet of Things (IoT) for smart homes enhances convenience; however, it also introduces the

risk of the leakage of private data. TOP10 IoT of OWASP 2018 shows that the first vulnerability is ”Weak,

easy to predict, or embedded passwords.” This problem poses a risk because a user can not fix, change, or

detect a password if it is embedded in firmware because only the developer of the firmware can control an

update. In this study, we propose a lightweight method to detect the hardcoded username and password in

IoT devices using a static analysis called Socket Search and String Search to protect from first vulnerability

from 2018 OWASP TOP 10 for the IoT device. The hardcoded login information can be obtained by

comparing the user input with strcmp or strncmp. Previous studies analyzed the symbols of strcmp or

strncmp to detect the hardcoded login information. However, those studies required a lot of time because of

the usage of complicated algorithms such as symbolic execution. To develop a lightweight algorithm, we

focus on a network function, such as the socket symbol in firmware, because the IoT device is compromised

when it is invaded by someone via the Internet. We propose two methods to detect the hardcoded login

information: string search and socket search. In string search, the algorithm finds a function that uses the

strcmp or strncmp symbol. In socket search, the algorithm finds a function that is referenced by the socket

symbol. In this experiment, we measured the ability of our proposed method by searching six firmware in

the real world that has a backdoor. We ran three methods: string search, socket search, and whole search to

compare the two methods. As a result, all methods found login information from five of six firmware and

one unexpected password. Our method reduces the analysis time. The whole search generally takes 38 mins

to complete, but our methods finish the search in 4-6 min.

Keywords: Backdoor; Internet of Things; Smart Home; Static Analysis

 1. Introduction

Smart speakers and smart home controllers have become popular. The Internet of Things (IoT)

device provides services that improve our daily lives and some of these services are provided

through the Internet. The average annual growth rate of IoT device market from 2018 to 2022 is

predicted to be 20% 1. However, attacks on IoT devices have also increased. According to F-Secure’s

report, the number of attacks on IoT devices in the first half of 2018 was 231 million, whereas that in

1 IDC. All categories of smart home devices forecast to deliver double- digit growth through 2022, 2018.

https://www.idc.com/tracker/showproductinfo.jsp?prod_id=1781

http://aetic.theiaer.org/
http://www.theiaer.org/index.htm
http://www.theiaer.org/index.htm
http://aetic.theiaer.org/archive/v5/v5n1/p3.html
mailto:ohsuga@uec.ac.jp
mailto:p.excell@glyndwr.ac.uk

AETiC 2021, Vol. 5, No. 1 29

www.aetic.theiaer.org

the first half of 2019 was 2.9 billion, denoting an increase by approximately 12 times 2. The reported

attacks included an attack to leak user privacy data. For example, a baby monitor was attacked in

2018, and a video of a baby was leaked. Furthermore, an attacker talked to the baby. If an outsider

can view the occurrences inside our house, we will feel uncomfortable. Therefore, knowledge about

IoT security is crucial to live safely with IoT devices [1], [2].

The OWASP TOP 10 classifies the most important categories of control and control that every

architect and developer should include in their project on the basis of real-world vulnerabilities.

Table 1 shows the ranking list of 20183.

In this study, we propose two methods to detect the hardcoded login information by analyzing

the firmware, i.e., string search and socket search. String search finds a function that references the

strcmp or strncmp symbol, whereas socket search finds a function that has contact with the socket

symbol within a certain range and references the strcmp or strncmp symbol. This method was also

able to detect the first vulnerability listed in the 2018 OWASP TOP 10 for IoT devices.

During the experiment, we measured the ability of the two methods and conducted the whole

search using real-world firmware. All searches found hardcoded login information as candidates;

both search methods reduced the time required when compared to the time required for the entire

search. Socket search could find hardcoded login information with minimum candidates.

The purpose of the study was to propose the following:

• Method to detect the first vulnerability according to the top 10 OWASP in 2018.

• Algorithm to shorten analysis time by characterizing the hardcoded login information.

 2. Background

The term backdoor is defined in many studies. Thomas et al. defined the backdoor as follows:

”The function of the device, which is not visible to the user, can be determined by using authorized

functions and information and inserted with the intention of weakening security features” [3].

In this paper, we consider that the hardcoded login information is also a backdoor. Also,

hardcoded login information is sometimes written in the user manual, so it is very hard to declare

”invisible.” However, because hardcoded login information cannot be deleted or changed by the

user, it will allow anyone to have access to the IoT devices. This could be a huge vulnerability.

As a backdoor example in the real world, Thomas et al. [4] found hardcoded login information

and trigger path to log in the firmware of the Q-See DVR. For example, Figure 1 shows a real-world

backdoor code in Q-See DVR. strcmp(username, "admin"), strcmp("603huanyuan", password) is

embedded as login information. After entering the login information, as a privileged user, it will be

redirected to the control panel.

Table 1. Top 10 OWASP IoT Vulnerabilities in 2018
No. Vulnerability

1st Weak, easy to predict, or embedded passwords

2nd Insecure communications services

3rd Insecure ecosystem interface

4th Lack of a secure mechanism for software updates

5th Use of insecure or compromised software components

6th Inadequate privacy protection

7th Insecure data transfer and storage

8th Lack of device management such as support

9th Insecure standard settings

10th Inadequate physical hardening

Figure 1. Real-World Backdoor Code in Q- See DVR

2 F-Secure. Attack landscape h1 2019, 2019. https://www.f-secure.com/content/dam/press/de/media-library/reports/F-Secure-

attack-landscape-h12020.pdf

3 OWASP. Owasp-iot-top-10-2018, 2018. https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project

AETiC 2021, Vol. 5, No. 1 30

www.aetic.theiaer.org

 3. Related Work

Zhang et al. [5] focused on the network packet pattern of backdoors and proposed a method to

detect backdoors by detecting network packet matching the pattern. They developed a general

algorithm for detecting interactive traffic based on packet size and timing features, and a set of

protocol-specific algorithms that look for signatures that distinguish particular protocols.

They evaluated the algorithms on large traces of Internet access and found they performed

well. Moreover some algorithms can be prefiltered using a stateless packet filter that increases

performance at little or no loss of accuracy. However, it is difficult to prevent from unauthorized

logins because it is necessary to capture the network packet before the login.

Shoshitaishvili et al. [6] proposed a method to detect backdoors by symbolic execution called

Firmalice. It is a binary analysis framework to support the analysis of firmware running on

embedded devices. It builds on top of a symbolic execution engine and techniques, such as program

slicing, to increase its scalability.

Their method defines a security policy that describes the trigger for the program’s privileged

operations and the characteristics of its privileged operations. The tool considers the path as a

backdoor if it finds the path flow that reaches a privilege operation during symbolic execution, but

not in the security policy. Symbolic execution is proposed by James C. King [7], which is a means of

analyzing a program to determine what inputs cause each part of a program to execute.

During their experiment, they analyzed the firmware in which the backdoor was embedded

and checked that the backdoor can be found. They evaluated Firmalice on the firmware of three

commercially available devices and were able to detect authentication bypass backdoors in two of

them. This method takes to analyze the entire firmware for 12 min of 1.9 MB data of the firmware

and approximately 11h of 7.2 MB data of the firmware by symbolic execution. Their method has a

limitation that it is not able to a flaw that deviates from its policy.

Thomas et al. [8] proposed a method for detecting backdoors by a classifier using semi-

supervised learning called HumIDIFy. Their method gathers symbol information and learns

information from binaries to semi-supervised vector support machine learning to create a backdoor

detection model, so that it is compared to the expected functionality profile that their method

defines by hand for a range of applications.

To specify these profiles, they developed a domain-specific language called Binary

Functionality Description Language (BFDL), which encodes the static analysis passes used to

identify specific functionality traits of a binary. HumIDIFy achieves a classification accuracy of

96.45% with virtually zero false positives for the most common services. They experimented with

the applicability of our techniques to a large-scale analysis by measuring performance on a large

data set of firmware. From sampling that data set, their method identifies a number of binaries

containing unexpected functionality, notably a backdoor in router firmware by Tenda. Their

method is effective in finding a backdoor; however, the method takes time and effort to generate a

model before backdoor detection.

Thomas et al. [4] proposed other methods called Stringer. strcmp() and strncmp() are often

used to compare a user input to embedded password string. Thus, these methods weight functions

that are popular to the backdoor and determine the functions with high weight as candidates for a

backdoor, then labels each function ’s basic blocks with the set of sequences of static data that must

be matched against to reach them. Then using these sets, it assigns a score to each function, which

measures the extent to which the function ’s branching is influenced by static data. They

demonstrated the effectiveness of the approach to lightweight analysis by running it on a data set of

2,451,532 binaries from 30 different COTS device vendors. Their result shows their techniques are

effective by discovering three backdoors and recovering a proprietary command set, two of which

previously undocumented.

Salwan et al. [9] proposed an open-source software allowing to evaluate the proposed

approach against several forms of virtualization. It is an effective method to find a clew of backdoor

function by analysing a value in memory and data. They present a generic approach based on

AETiC 2021, Vol. 5, No. 1 31

www.aetic.theiaer.org

exploration, tainting, and recompilation of the symbolic path, allowing the recovery from a

virtualized code of a devirtualized code that is semi- identical to and close in size.

Yoda et al. [10] proposed two methods to detect the hardcoded login information-string search

and socket search. They focused on the string and network function, which are often used by a

backdoor. In their experiment, a few backdoors were founded around a network function. On the

other hand, they found that a backdoor function which has a hardcoded information always use

strcmp() and strncmp() symbol. However, their accuracy of string search has room for

improvement.

Ming et al. [11] proposed StraightTaint, a novel technique for completely decoupling dynamic

taint analysis for offline symbolic taint analysis. It realizes lightweight logging and much lower

online execution slowdown; meanwhile, previous approaches rely on complete runtime values or

inputs. The results of tool performance show that StraightTaint can rival dynamic taint analysis at a

similar level of precision, but with a much lower online execution slowdown and more exible

functionalities. The experimental evidence indicates that StraightTaint can be applied to speed up

various expost facto security applications with full-featured offline taint analysis.

Yakdan et al. [12] proposed REcompile, an efficient and extensible decompilation framework.

REcompile to produce wellreadable decompiled code compare to previous work. The overall

evaluation, using real programs and malware samples, shows that REcompile achieves a

comparable and, in many cases, better performance than state-of-the-art decompilers. The method

uses the static single assignment (SSA) form as its intermediate representation and performs three

main classes of analysis. Data flow analysis removes machine-specific details from code and

transforms it into a concise high-level form. Type analysis finds variable types based on how those

variables are used in code. Control flow analysis identifies high-level control structures such as

conditionals, loops, and switch statements.

David et al. [13] proposed a reverse engineering framework, which recovers a program from a

few debug information. They presented a novel approach for predicting procedure names in

stripped executables. The approach combines static analysis with neural models.

The main idea is to use static analysis to obtain increased representations of call sites; to encode

the structure of these call sites using the control flow graph (CFG); and to generate a target name

while attending these call sites. They used LSTM-based and transformer-based architectures to

drive graph-based. Its evaluation shows that the models produce predictions that are difficult and

time consuming for humans, while improving on existing methods by 28% and by 100% over state-

of-the-art neural textual models that do not use any static analysis.

Garmany et al. [14] proposed a static analysis framework to find uninitialized variables in

binary executables. Their prototype implementation is capable of detecting uninitialized memory

errors in complex binaries such as web browsers and OS kernels, and we detected seven novel

bugs. The methods to lift the binaries into a knowledge representation which builds the base for

specifically crafted algorithms to detect uninitialized reads.

Stoenescu et al. [15] proposed a binary analysis framework based on symbolic execution with

the distinguishing capability to execute stepwise forward and also backward through the execution

tree. This helps to find a value in memory and dynamic flow analysis. It was developed internally

at Bitdefender and code-named RIVER. The framework provides components for constraint

solving, such as a taint engine, a dynamic symbolic execution engine, and integration with Z3.

Cesare et al. [16] proposed Bugwise, which is a system that performs bug detection on x86

binary-level programs. The system employs static analysis and the novel application of

decompilation to make that analysis tractable. The method is able to detect a number of bug classes,

including use-after- frees, double frees, and buffer overflows using environment variables. Its

results found tens of bugs and vulnerabilities in Debian Linux, scanning the entire repository of

that Linux distribution. Bugwise shows that traditional static analysis can be applied to binaries

through the use of decompilation techniques. However, source code is not always available, as in

the case of a black-box penetration test.

Alrabaee et al. [17] proposed a novel technique that extracts the semantics of binary code in

terms of both data and control flow. They implement the system in a tool called BinGold and

AETiC 2021, Vol. 5, No. 1 32

www.aetic.theiaer.org

evaluate it against thirty binary code applications. Its technique allows robust binary analysis

because the extracted semantics of the binary code is generally immune from light obfuscation,

refactoring, and varying the compilers or compilation settings. To realize robust analysis, they

applied data-flow analysis to extract the semantic flow of the registers, which are then synthesized

into a novel representation called the semantic flow graph (SFG). After the step, it extracts various

properties, such as reflexive, symmetric, antisymmetric, and transitive relations, applied to the

binary analysis. Its evaluation shows that BinGold successfully determines the similarity between

binaries, yielding highly robust results against light obfuscation and refactoring. In addition, they

found that BinGold has other abilities to find a binary code authorship attribution and the detection

of clone components across program executables.

Figure 2. Overview of Approach Figure 3. Socket Search

4. Approach

4.1. Overview

We propose a method that finds the line that uses strcmp or strncmp as a candidate of

hardcoded login information, such as login ID and password in a firmware. Our method realizes a

lightweight and short-time analysis by filtering a function that is related to a backdoor. We propose

two detection ways: string search and socket search. In string searching, it finds a function that uses

strcmp or strncmp symbol. In socket searching, it finds a function that is referenced by socket

symbol.

Algorithm 1. Main Program of String Search
1: SymbolTable ← getSymbolTable()
2: while SymbolTable.hasNext() do

3: Symbol ← SymbolTable.getSymbol()
4: if Symbol.isMatched(strn?cmp) then

5: SymAddress ← Symbol.getAddress()

6: SymFunction ←getF unctionF romAddr(SymAddress)

7: FunctionList ←getReferenceF unctions(SymFunction)
8: for ChildFunction ∈ FunctionList do
9: printHardCoded(ChildFunction)
10: end for
11: end if
12: end while

The difference between a string search and socket search is the filtering. String search extracts

all functions that references a strcmp or strncmp symbol. In general, either strcmp or strncmp is

used to compare the user input and hardcoded login information. Thus, it is effective to focus on

searching these two symbols to find a backdoor.

Socket search is more focused on the network function. At related work, all backdoors were

accessed via a TCP/IP connection, so there is a possibility that a backdoor function is located near a

AETiC 2021, Vol. 5, No. 1 33

www.aetic.theiaer.org

network function. Socket symbol is used at network function, so we filter the function that

references a socket symbol.

Algorithm 2. printHardCoded function

1: result ← getDecompiledF unction(Function)

2: lines ← result.eachLine.matches(”. ∗ strn?cmp. ∗”)).toList()
3: if lines.size() > 0 then
4: lines.forEach(line− > println(line))
5: end if

Next, after finding the symbol, the method decompiles all functions within the functions list to

extract strings. Finally, the tool extracts strings in a decompiled code and shows the line as

hardcoded login information candidate.

Algorithm 3. Main Program of Socket Search

1: Depth ← 5

2: SymbolTable ← getSymbolTable()
3: while SymbolTable.hasNext() do

4: Symbol ← SymbolTable.getSymbol()
5: if Symbol.isSocket then

6: SymAddress ← Symbol.getAddress()

7: SymFunction ← getF unctionF romAddr(SymAddress)

8: FunctionList ←getReferenceF unctions(SymFunction)
9: for ChildFunction ∈ FunctionList do

10: Incoming ← getIncomingCalls(ChildFunction)
11: printReference(Incoming,Depth)
12: end for
13: end if
14: end while

Algorithm 4. printReference Function (Function, Depth)

1: FunctionList ← getReferenceF uncsF rom(Function)
2: for Function ∈ FunctionList do
3: printHardCoded(Function)
4: printIncomingCalls(Function,Depth)
5: printOutgoingCalls(Function,Depth)
6: end for

Algorithm 5. printIncoming(Outgoing)Calls function (Child-
Function, Depth)

1: FunctionList ← getReferenceF uncsF rom(Function)
2: for Function ∈ FunctionList do
3: printHardCoded(Function)
4: printIncomingCalls(Function,Depth)
5: printOutgoingCalls(Function,Depth)
6: end for

4.2. String Search

String search finds a function and the line that uses a strcmp or strncmp symbol. These

symbols are used to compare the user input and hardcoded login information. Thus, we think that

the function that uses these symbols is a candidate for the backdoor function.

The main algorithm of string search is explained in Algorithm 1, and the related function is

written in Algorithm 2. In the main program (Algorithm 1), we load a symbol table of firmware and

check that a strcmp or strncmp symbol is in the symbol table (line 4). If the symbol is contained, we

get the address of the strcmp or strncmp symbol to get a function information (lines 5–6). By using

this function information, we make a list of function that the strcmp or strncmp function references

(line 7). These functions in the list are labeled as a candidate of backdoor.

In the printHardCoded function in Algorithm 2, it decompiles the function that is passed as

args. It decompiles each function in the list and picks the line that uses a strcmp or strncmp symbol

string in the function. If the hardcoded string line is found, it shows the line as a result.

AETiC 2021, Vol. 5, No. 1 34

www.aetic.theiaer.org

4.3. Socket Search

Socket search find the line that uses a strcmp or strncmp symbol around the socket function. In

the related work, a backdoor is always accessible by the TCP/UDP function [6], so the hardcoded

strings around the socket symbol could be a candidate of login information.

This method extracts the socket symbol and searches hardcoded strings around the symbol.

Figure 3 shows the movement of socket searching. This is a call graph of the socket symbol. Each

node means a function. An arrow means a reference relationship between the functions. For

example, function A references the socket symbol. Socket is the standard function, so it is

referenced by the other function. The search starts from the socket symbol. The cursor proceeds a

function next to the socket. Depth means how far from the start point. When the cursor moves next

to the function, a number of depths reduce one. The search continues until the depth is bigger than

zero.

In this example, depth is two, so the search seeks for two hops from the start point. When a

depth is two, orange and green nodes will be searched. In this case, function B has hardcoded

strings, so the method shows the line of B.

We explain in more detail of this search in Algorithm 3. Our tool starts running the Main

Program after reading the firmware by using the Ghidra software. Ghidra is a software reverse

engineering (SRE) tool which is produced by the National Security Agency (NSA)4 .

We set the Depth value to five (see line1) (depth means the number of step how far from the

socket symbol). Then, it loads a symbol table of firmware and checks the socket symbol is in the

symbol table (line 5). It gets the address of the socket symbol to get function information (lines 6–7).

It extracts the functions that are referenced by the socket function (line 8). In the referenced function

list, it gets an incoming function of each function (line 10). Then, it searches for a reference

relationship of an incoming function with a depth parameter (line 11).

In the printReference function in Algorithm 4, it searches a reference of function and finds

hardcoded strings in a function that is passed as args. In line 3, after decompiling, it tries finding

the embedded ID and password. If it found a line that contains the strings, it shows the line as a

result.

The printIncomingCalls function lists up all functions that are incoming from a parent

function, and it reaches a reference by the depth at Algorithm 5. After listing up, it passes the

function list to the printHardCoded function, and the tool shows the result. The printOutgoingCalls

function works the same way that the printIncomingCalls do but the reference direction is the

opposite. It searches for an outgoing function to a parent function.

Table 2. Real-World Hardcoded Login Information
Firmware Name Login Information

D-Link Router “xmlset_roodkcableoj28840ybtide"

Q-See DVR strcmp("6036huanyuan",password)

Trendnet Router "emptyuserrrrrrrrrrrr"

Tenda Router strcmp("w302r_mfg",packet->magic)

TCP32764 Router "ScMM"

Ray Sharp DVR strcmp("519070",password) == 0

Table 3. Evaluation Index
 True Candidate False Candidate

Method Found True Positive (TP) False Positive (FP)

Method Missed False Negative (FN) True Negative (TN)

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑭𝑷+𝑭𝑵+𝑻𝑵
 (1)

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷+𝑭𝑷
 (2)

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
 (3)

𝑭 − 𝑺𝒄𝒐𝒓𝒆 =
𝟐 × 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏×𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍
 (4)

4 National Security Agency. Ghidra, 2019. https://www.ghidra-sre.org/.

AETiC 2021, Vol. 5, No. 1 35

www.aetic.theiaer.org

Figure 4. Reported Login Password in Q-See DVR

Figure 5. String Search Found Other Embedded Login Password in Q-See DVR

5. Experiment

5.1. Overview

We measured the ability of our method by searching the firmware in the real world. We

collected six firmware that has a backdoor. Table 2 shows the firmware names and the hardcoded

strings. In each firmware, it contains the hardcoded login information.

In this experiment, we ran three methods: whole search, string search, and socket search. In

whole search, it searches all functions and finds the function that uses the strcmp or strncmp

symbol. String search sets a start point at the strcmp or strncmp symbol and directly searches a

function that references the strcmp or strncmp symbol. In socket search, it sets a start point at the

socket, searches the function that references the socket symbol, and uses the strcmp or strncmp

symbol.

During the experiment, we measured the following values.

• Analyzation time

• Number of functions the search encountered

• Number of functions the search picked as a backdoor candidate

• Number of hardcoded login information the search collected

5.2. Implementation

We developed our tools using the Ghidra plugin (version 9.1). Also, we wrote the plugin with

Java SE Development Kit 11 (JDK 11). In our implementation, we used a Windows PC running

Windows 10 64-bit, Intel Core i7-7700 3.60-GHz, and 8GB of RAM.

5.3. Measure of Accuracy

To measure our method, we used accuracy, recall, precision, and F-score. Table 3 lists the

factors used to calculate the goodness of fit and recurrence rates.

True positive (TP) indicates the number of a backdoor candidate detected by this method, that

is, a backdoor.

False positive (FP) is the number of a backdoor candidate detected by this method that is not a

backdoor. False negative (FN) is the number of a backdoor candidate that this method does not

detect when it is, in fact, a backdoor. True negative (TN) is a type-matched configuration that can be

used to indicate the number of pieces not detected by the method.

Accuracy is a percentage of data classified correctly(1).

AETiC 2021, Vol. 5, No. 1 36

www.aetic.theiaer.org

The relevance of the method is expressed by the precision, which indicates the percentage of

type discrepancies detected by the method that is really a backdoor candidate (2).

Recall indicates the comprehensiveness of the method. These values are the percentages of a

candidate number under the accuracy-test that we were able to detect with our method (3).

The F-value represents an overall assessment of accuracy and completeness, and the harmonic

mean of the fit and reproduction rates (4).

5.4. Whole Search

This method searches all functions in firmware and picks the function and the line that uses

the strcmp or strncmp symbol. Table 4 shows the result of the whole search. The Firmware Size

column shows the firmware size by KB. The Number of Functions column shows the number that

the search encountered. The Retrieval Time column shows how long the search takes time by

minute. The Backdoor Detected column shows whether the search found a hardcoded login

information. This method found four of the six hardcoded login information. Analysis of time

increases if the firmware is more than 4 MB. The largest firmware, which is the Q-see DVR, takes 38

min to complete - this is very time-consuming. A function number is also a huge number, and if we

do not know the answer to the login information, it will be very difficult to find.

However, this method did not detect the two firmware, and this firmware did not show the

hardcoded login information. We manually checked the hardcoded login information of this

firmware, but there were no strings found in the decompiled code.

5.5. String Search

This method starts by searching from the strcmp and strncmp symbols and then picking the

function that references the strcmp and strncmp symbols. Two symbols were used to compare the

user input and the hardcoded login information. Thus, by targeting the strcmp and strncmp

symbols, we reduce the analysis time and maintain accuracy.

Table 5 shows the result. This method found four hardcoded login information, which is the

same in the whole searching. The candidate column shows the number of functions that the method

thinks as a candidate of backdoor. On the other hand, the analysis time is lesser than that of the

whole search. The analysis time of all firmware takes 3–5 s, depending on the size of the firmware.

In this search, five backdoor function from six firmware was founded. The reason why this

method was not able to find TCP32764 Router’s backdoor is this firmware is a child of backdoor

firmware. There is another main firmware that has a trigger to call TCP32764 Router program.

Thus, String Search did not find hardcoded login information from the program.

The other result at Ray Sharp DVR, 519070 was reported as an embedded login password

according to Table 2. However, the method did not find these strings. We checked manually by

using Ghidra to find out the password. Figure 4 shows that the line of 519070 password a string of

this line was hidden by value name, so the string method did not find it. We also used IDAPro to

compare this problem. IDAPro shows 519070 string in the same line.

In this experiment, we found that String Search is unstable depend on Software Reverse

Engineering platform. This search method has room for improvement to convert a string value into

a string.

On the other hand, we found other embedded passwords within the same function. Figure 5

shows that 664225 password and ID root was embedded. This result shows that the firmware has

several login routes.

Table 4. Result of Whole Search
Firmware Name Firmware Size (kb) Number of Function Retrieval Time (min) Backdoor Detected

D-Link Router 619 967 2.43 yes

Q-See DVR 7200 7030 38.83 yes

Trendnet Router 318 348 1.45 yes

Tenda Router 566 738 1.83 yes

TCP32764 18 61 0.11 no

Ray Sharp DVR 4900 5535 16.31 yes

AETiC 2021, Vol. 5, No. 1 37

www.aetic.theiaer.org

Table 5. Result of String Search
Firmware

Name
Func Candidate

Time

(sec)
Detected TP FP FN TN Accuracy Precision Recall

F-

score

D-Link

Router
205 45 38 yes 1 44 0 762 0.945 0.022 1 0.043

Q-See

DVR
833 103 278 yes 1 102 0 134 0.57 0.01 1 0.019

Trendnet

Router
168 84 79 yes 1 83 0 799 0.906 0.012 1 0.024

Tenda

Router
242 64 37 yes 1 63 0 725 0.92 0.016 1 0.031

TCP32764

Router
11 2 3 no 0 2 1 956 0.997 0 0 N/A

Ray Sharp

DVR
866 262 113 yes 0 262 1 101 0.277 0 0 N/A

Table 6. Result of Socket Search
Firmware

Name
Func Candidate

Time

(sec)
Detected TP FP FN TN Accuracy Precision Recall

F-

score
Depth

D-Link

Router
784 45 79 yes 1 44 0 183 0.807 0.022 1 0.043 4

Q-See

DVR
3353 98 402 yes 1 97 0 3677 0.974 0.01 1 0.02 4

Trendnet

Router
254 84 50 yes 1 83 0 94 0.534 0.012 1 0.024 4

Tenda

Router
31 5 14 yes 1 4 0 707 0.994 0.2 1 0.333 1

TCP32764

Router
29 2 1 no 0 2 1 32 0.914 0 0 N/A 5

RaySharp

DVR
3042 262 303 yes 0

26

2
1 2493 0.905 0 0 N/A 5

5.6. Socket Search

This method starts by searching from the socket symbol and then picking the function that is

connected to the socket symbol and using the strcmp or strncmp symbol. It can be noted that

backdoors that are reported in previous works have always been accessed via the network. Thus,

this method searches the functions that are located around the socket symbol and extract the line

that compares hardcoded strings from the user input as the backdoor candidate. In this experiment,

we set the depth to five.

Table 6 shows the result. The depth column indicates the depth when the method found

hardcoded login information. The candidate number of this method is smaller than that of the

string search. This method is effective for Tenda Router, because hardcoded login information was

found when the depth is one, which is the minimum candidate. On the other hand, when the depth

is four, the number of candidates is high. If there are too many candidates, it will be very difficult to

find the login information. Thus, it is necessary to add a parameter to reduce the number of

candidates.

At related work, making a model takes hours. In contrast, our model was able to list a

candidate of backdoor with a lightweight algorithm, reducing the analysis time. It is necessary to

maintenance model to keep an accuracy, but the maintenance is also costly. Also, if learning data

are outdated, the model misclassifies it as a backdoor.

Our simple algorithm, on the other hand, helps to analyze the updated firmware of IoT devices

without time loss. This system would help the user to quickly analyze the latest firmware.

6. Conclusion

In this paper, we suggested two methods to detect the hardcoded login information-string

search and socket search. We focused on the string and network function, which are often used by a

backdoor. In string searching, it searches the function of the line that uses the strcmp or strcnmp

symbol. As a result, it shows these lines as a candidate of backdoor. In socket searching, it searches

AETiC 2021, Vol. 5, No. 1 38

www.aetic.theiaer.org

the function that references the socket symbol. Because the backdoors have always been accessed

via the network and the network functions use the socket symbol, this method starts from the

socket symbol and searches the function of the line that uses the strcmp or strcnmp symbol as a

candidate of backdoor.

In the experiment, we used real-world firmware that has hardcoded login information to

detect how many backdoors the tool will find. As a result, both the search string and the search

socket found hardcoded login information within the search candidate resulting from the five

firmware.

In future work, we are going to improve a more precise socket search, and we are going to

fine-tune the scope of the search. For example, our method did not find an embedded string when a

string is hidden in value. So we are going to improve our engine to convert a string value into a

string. There is a big difference between depth one to four, and we need to shorten this difference.

 7. Acknowledgments

The authors are grateful to Professor. Sam L. Thomas for suggesting the topic treated in this

paper. This work was supported by JSPS KAKENHI Grant Numbers JP17H04705, JP18H03229,

JP18H03340, JP18K19835, JP19K12107, JP19H04113, and JST, PRESTO Grant Number JPMJPR1934. 8.

References

[1] Y. Mezquita, R. Casado, A. Gonzalez-Briones, J. Prieto and J. Manuel Corchado. (2019). Blockchain

technology in iot systems: Review of the challenges. In Annals of Emerging Technologies in Computing

(AETiC), vol. 3, pp. 17-24.

[2] M. Onik, N. Al-Zaben, H. Hoo and C. Kim. (2018). A novel approach for network attack classification

based on sequential questions. In Annals of Emerging Technologies in Computing (AETiC), vol. 2, pp. 1-

14.

[3] S. L Thomas and A. Francillon. (2018). Backdoors: Definition, deniability and detection. 21st International

Symposium on Research in Attacks, Intrusions and Defenses (RAID), pp.92-113, Greece.

[4] S. L. Thomas, T. Chothia and F. D. Garcia. (2017). Stringer: Measuring the importance of static data

comparisons to detect backdoors and undocumented functionality. European Symposium on Research in

Computer Security (ESORICS), pp. 513–531, Oslo, Norway.

[5] Y. Zhang and V. Paxson. (2000). Detecting backdoors. 9th USENIX Security Symposium (USENIX), vol. 9,

pp.12, Denver, Colorado, USA.

[6] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel and G. Vigna. (2015). Firmalice - automatic detection of

authentication bypass vulnerabilities in binary firmware. Network and Distributed System Security

Symposium (NDSS), San Diego, California.

[7] J. C. King.(1976). Symbolic execution and program testing. Communications of the ACM, vol. 19, no. 7, pp.

385–394, 1976.

[8] S. Thomas, F. Garcia and T. Chothia. (2017). Humidify: A tool for hidden functionality detection in

firmware. Network and Distributed System Security Symposium (NDSS), pp. 279–300, San Diego,

California.

[9] J. Salwan, S. Bardin and M. Potet. (2018). Symbolic deobfuscation: From virtualized code back to the

original. Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA), pp. 372–392,

Saclay, France.

[10] M. Yoda, S. Sakuraba, Y. Sei, Y. Tahara and A. Ohsuga. (2020). Detection of the hardcoded login

information from socket symbols. International Conference on Computing, Electronics Communications

Engineering (iCCECE), pp. 33–38, UK.

[11] J. Ming, D. Wu, J. Wang, G. Xiao and P. Liu. (2016). Straighttaint: Decoupled offline symbolic taint

analysis. IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 308–319,

Singapore, Singapore.

[12] K. Yakdan, S. Eschweiler and E. Gerhards-Padilla. (2013). Recompile: A decompilation framework for

static analysis of binaries. International Conference on Malicious and Unwanted Software: “The

Americas” (MALWARE), pp. 95–102, Fajardo, Puerto Rico, USA.

[13] Y. David, U. Alon and E. Yahav. (2020). Neural reverse engineering of stripped binaries using augmented

control flow graphs. In Proceedings of the ACM on Programming Languages, vol. 4, pp. 1 – 28.

[14] B. Garmany, M. Stoffel, R. Gawlik and T. Holz. (2019). Static detection of uninitialized stack variables in

binary code (ESORICS), pp. 68–87, Luxembourg.

AETiC 2021, Vol. 5, No. 1 39

www.aetic.theiaer.org

[15] T.Stoenescu, A. Stefanescu, S. Predut and F. Ipate. (2016). River: A binary analysis framework using

symbolic execution and reversible x86 instructions. Formal Methods (FM), pp. 779–785, imassol, Cyprus.

[16] Silvio and Cesare. (2013). Bugalyze.com-detecting bugs using decompilation and  data flow analysis.

Black Hat USA, 2013.

[17] S. Alrabaee, L. Wang and M. Debbabi. (2016). Bingold: Towards robust binary analysis by extracting the

semantics of binary code as semantic flow graphs (sfgs). DFRWS USA 2016 Annual Conference, vol. 18,

pp. S11-S22, Seattle, WA.

© 2021 by the author(s). Published by Annals of Emerging Technologies in Computing

(AETiC), under the terms and conditions of the Creative Commons Attribution (CC BY)

license which can be accessed at http://creativecommons.org/licenses/by/4.0.

