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Abstract: In the last decade, there has been paradigm shift on causal reasoning, the discovery of causal 

relationships between variables and its potential to help understand and solve different complex real-life 

problems. The aim of this paper is to present a systematic review of relevant studies related to causal 

reasoning, with emphasis on smart agriculture and ethics. The paper considers the literature review as an 

answer to several research questions that intend to broadly recapitulate and scrutinise the causal reasoning 

problem in smart agriculture as well as research ethics, viewed from diverse lookouts. 
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 1. Introduction 

In a world described by random variables, some of which may have causal inference on others, 

[1] discusses the underlying mathematical framework of causal inference through three 

fundamental concepts: causation, intervention, mechanisms. Apart from being a fundamental 

philosophical topic, causal reasoning can be studied and analyzed in almost all disciplines, out of 

which artificial intelligence in general and machine learning in particular become important in 

modelling and solving causal reasoning in data. 

To authors’ knowledge, this study represents the first systematic literature review of causal 

reasoning in general with a special focus on causal reasoning applied to smart farming and ethics. 

The main contribution of this study is the translation of the review into research questions which 

are answered in general then are supported by appropriate literature. The research question leads 

to mainly remembering that the human life and being ethical towards it is more important than the 

results of the research. The answer to the last question provides a deep understanding of causal 

reasoning application in Smart Farming domain, especially in crop management, livestock 

management, soil management and water management. 

From this perspective the authors see the potential research paths of causal reasoning applied 

specifically in smart farming where a more targeted decision making can be done if a more 

methodical causal analysis would be conducted. 

 2. Literature Review Methodology 

Recently, several approaches for literature review are presented. The study accessible in this 

research follows the methodology employed by Creswell’s 5 steps method [2] as illustrated in 

figure 1. Each phase has its own outcomes, represented by figures, tables or charts. 
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Figure 1. Creswell’s five steps to Literature Review 

Step 1: In order to retrieve relevant literature, the first step of the review starts with the 

definition of main issues related to research ethics and causal reasoning in smart farming. It aims 

the ethical issues related to different researches and experiments, and focuses on causal reasoning 

in smart agriculture. Therefore, to define the search statements related to each issue, main concepts 

and keywords are extracted based on table 1, where double quotes are used to force exact match by 

performing Boolean search. 

Table 1. Keyword Search Statement 

Main Concepts Search Statement 

Ethics in Research and 

Experiments 

“Ethics” AND (“IT” OR “Data Mining” OR “Causality” OR “Association Rules” OR 

“Research” OR “Experiment”) 

Causal Reasoning for 

Smart Farming 

“Data mining in Agriculture” OR “Cause–effect Relationships in Smart Farming” OR 

“Causal Rules in Agriculture” OR “Causal Reasoning for Smart Farming” 

Step 2: Once the key terms have been identified, the next phase consists of the search for 

relevant literature. According to [2] this step includes location of literature about a topic by 

consulting several types of materials and databases, including those available at an academic 

library and on the Internet. Based on this, articles from journals, conference proceedings, books or 

book chapters, reports and articles posted in electronic sources are included in searching process. 

Major computer sciences digital libraries were utilized, such as: IEEE Xplore, Google Scholar, 

ResearchGate, ACM Digital Library, Springer Open, DBLP and Elsevier. The percentage of used 

databases is presented on the following chart. 

 
Figure 2. Digital Libraries Used 

Step 3: Critically evaluate and select the literature for the review presents one of the most 

important phases in literature review when it is needed to determine whether it is relevant to the 

conducted research. Advanced search, using defined search statements, over the digital libraries 

listed above, resulted in 2574 publications. Based on the titles and abstract, duplicated papers, short 

papers, updated version papers were removed. Furthermore, based on introduction, main headings 

and conclusion, papers not supporting the main objective of the research where excluded as well. 

0.00
0.10
0.20
0.30
0.40
0.50

Digital Libraries

•Identify Key Terms 

Step 1Step 1

•Locate Literature 

Step 2Step 2

•Critically Evaluate and Select the Literature 

Step 3Step 3

•Organize the Literature

Step 4Step 4

•Write a Literature Review

Step 5Step 5



AETiC 2020, Vol. 4, No. 4 12 

www.aetic.theiaer.org 

Only 61 of these publications were selected for further examination. The entire process of the 

selection and evaluation of manuscripts is presented in figure 3.   

 
Figure 3. Literature Evaluation and Selection Process 

Step 4: Organizing the literature is the phase of storing and categorizing the relevant 

publications to perform further evaluation. It’s preferred to be in a table format, so different types 

of sort criteria can be applied. For each publication, reference type, article type, domain, title, main 

contribution, future work etc. can be found online on https://www.seeu.edu.mk/en/~f.ismaili. 

Figure 4 presents the Literature Map of the most relevant publications to the study topic. The 

publications are grouped in those that elaborate on research ethics in general to proceed with causal 

reasoning in smart farming. 

 
Figure 4. The Literature Map 
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Step 5: The final step consists of writing a literature review that summarizes reports and 

conclusions derived from the literature evaluation. The selected articles are reviewed and 

categorized based on a classification framework presented above. 

The related work is conducted around two research questions raised:  

1. What is the main challenge of conducting experiments because of ethical concerns? 

2. What are causal reasoning methods and techniques for Smart Agriculture? 

3. Research classification and evaluation process 

The results of the systematic literature review are presented as answer to research questions. 

RQ1: What is the main challenge of conducting experiments because of ethical concerns? 

The data source plays an important role in the process of data mining. Ethical dilemmas are 

constantly faced as data mining evolves, and continues to evolve. Until recently, privacy protection 

and ethical warnings have received relatively little interest in mainstream KDD research. However, 

in the KDD the (ab)use of sensitive information is growing concern [3][4][5]. 

Since causal discovery is primary based on studies that are conducted under experiments [6], 

ethics is an issue especially significant in this area. [3] assert that the method of producing unique 

mining rules turns out to be an ethical issue, mostly when the results are used in decision-making 

processes that affect people, or in any case when mining customer data in an innocent manner 

jeopardizes those customers' privacy. In the survey, they describe a process for evaluating a rule in 

terms of its perceived privacy and ethical sensitivity. 

Ethical principles must be adhered in all research fields, especially in health care [7][8][9], 

however several ethical concerns are also risen in web mining area. It refers to the data mining and 

related techniques in order to automatically discover and extract information and discover useful 

patterns from web documents and services. It poses a threat to some important ethical values like 

privacy and individuality [10] which must be considered. Web mining makes it difficult for an 

individual to autonomously control the unveiling and dissemination of data about his/her private 

life. To study these threats, the paper distinguishes among two contexts, “web content and 

structure mining” and “usage mining”. Web content and structure mining is a cause for concern 

when data published on the web is mined and combined with other data for use in a totally 

different context. Furthermore, there are a considerable number of databases that could be 

considered ethically sensitive [3], it is apparent particularly in areas such as medical and health 

research. Web usage mining raises privacy concerns when the web users without their knowledge 

are traced, and their actions are analyzed. 

Cook, in his book chapter [11] acknowledges that data miners and decision-makers are clearly 

obligated to comply with the law, but ethical issues are often more stringent than what is legally 

required. According to him, it is a sad fact that a number of IS professionals either lack sufficient 

understanding about what their company is actually doing with results from data and data mining, 

or come to the realisation that it may not be their concern. 

Since causal disclosure is essential dependent on considered that are directed under 

experiments, ethics is an issue particularly critical in this area. Two investigations including human 

beings that have disregarded any code of morals and ethics are the Tuskegee Experiment and the 

Willowbrook Study [7]. 

 Tuskegee Experiment (1932-1972): For study the long-term consequences of the disease, 

American researchers deliberately delayed treatment to 399 African-American citizens 

with syphilis. Even after a cure for penicillin was available (Tuskegee, Alabama), they 

were deliberately left for suffer with syphilis. 

 Willowbrook Study (1963-1966): Hepatitis was deliberately induced in children with 

developmental disabilities. The purpose of the study was to investigate the course of the 

disease and to test a potential immunization. 
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RQ2: What are Causal Reasoning Methods and Techniques for Smart Agriculture? 

The review of related work of application of causal reasoning concerning smart agriculture is 

done around four major aspects of smart farming as classified in [12]. These generic categories 

involve crop management, livestock management, water management, and soil management. 

3.1. Causal Reasoning in crop management 

Crop management is one of the most important tasks in precision agriculture. It represents an 

important niche in agricultural food production for delivering top quality, demand requested and 

disease-free crops.  Crop management considers very important aspects such as yield prediction 

which tackles the process of estimating the right amount of crops expected for a particular season 

(yield estimation), mapping a right crop cultures for proper climatic regions (yield mapping), 

matching the crop demand with supply (yield matching) and crop management for increasing the 

yield production.  

The fact worth noting is that there exists a myriad of Machine learning algorithms related to 

crop management in comparison to causal reasoning approaches [13]. Functionalities such as 

counting coffee fruits on coffee branches using feature extraction of coffee images using Support 

Vector Machines (SVM) [14] identification of the number of immature fruits under natural outdoor 

climate conditions such as in [15] or in rice development stage and yield prediction [16] detecting 

cherry branches with full foliage using Bayesian model with Gaussian Naïve Bayes (GNB) 

algorithm [17]; using ANNs for estimation of grassland biomasses for managed grassland farms by 

featuring vegetation indices, spectral band of red and near infrared (NIR) [18]; wheat yield 

prediction within a specified field variation by featuring normalized values of on-line predicted soil 

parameters and the satellite Normalized Difference Vegetation Index (NDVI) [19]. ANNs is also 

seen on [20] where a method for accurate analysis for agricultural yield prediction is introduced 

using agricultural datasets that comprise historical data from meteorological, environmental, 

economic, and harvest records. It is worth mentioning that within crop management there are 

substantial number of articles that concentrate on the aspects that involve subcategories of such as 

disease detection and yield prediction. Within disease detection we identified papers that deal with 

detection and discrimination between healthy infected crops with fungus in case of Silybum 

marianum [21], nitrogen detection of stressed, yellow rust infections in wheat [22][23][24] using and 

ANNs and Kohonen Self Organizing Maps (SOMs); parasite classification and detection [25][26] in 

specific crops like strawberries and rice, disease detection water stressed parasite detection in wheat 

[27] using SVM and some approaches even involve deep learning in detection and diagnosis of 

generic plants [28][29]. In yield prediction we have identified papers using SVM and ANNs for 

estimating yield revenue [30][31]. In Chingarayan [31] we witness the use of remote sensing 

techniques in estimating the yield using nitrogen status estimation in soil whilst in Shao [30], a 

method is introduced for estimating the nitrogen status in soil for rice using the Least Squares 

Support Vector Machine (LS-SVM) model compared with partial least square (PLS) and back 

propagation neural network methods. 

Some approaches that tends to complement a little bit with causal reasoning focus on design 

reasoning in agronomy as seen in [32] which aims to holistically improve the overall design 

reasoning in agriculture. The paper sheds light in crop development and attempts to provide a 

better insight of how new agronomic approaches emerge. They also analyze the impact and 

contribution of design reasoning to better understand the various reasoning patterns in agronomy 

and bring to attention some research paths for future with a view in enriching agronomists' “design 

toolbox” and co-design in agriculture in the sense how this design reasoning can fit on the overall 

process. There exist also semantic approaches towards causal reasoning in agriculture as seen in 

[33] with AgriNET, a semantic knowledge base framework for decision support in smart 

agriculture. The framework a rule-based inference engine based on SWRL language. All the above 

approaches fail to address the causal inference in their approaches. 
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3.2. Causal inference in livestock management 

Livestock management is an important aspect of animal welfare in smart agriculture. 

Predicting the livestock yield, diseases and proper decision making is important for ensuring 

maximum food production.  

Even though there are substantial work conducted in livestock management in relation to 

machine learning, causal models in this category are still lacking. In this direction we can mention 

classification of cattle behaviour using bagging with tree learners [34], identification and 

classification of chewing patterns in calves using decision trees [35], animal tracking and behaviour 

annotation of the pigs to measure behavioural changes in pigs for welfare and health monitoring 

using Gaussian mixture models (GMMs) [36], prediction of rumen fermentation pattern from milk 

fatty acids in cattle using ANNs [37], early detection and warning of commercial hen eggs 

production as well as weight trajectories in cattle using SVM [38][39][40]. 

One paper where causal inference is treated is seen in [41] where an attempt on inferring 

causal relationships from observational data in livestock is presented. The paper stresses the 

complexity of confounding in such environments where for some specific cases, data mining 

techniques where used. Other papers related to causal reasoning that treat the decision-making 

aspects in livestock management are [42][43][44] to name a few.  

3.3. Causal inference in water management 

Water management in smart agriculture requires meaningful exertion and plays a significant 

role in hydrological, climatological, and agronomical balance. 

Papers that treat data mining an machine learning approaches focus mainly on 

evapotranspiration through estimation of monthly mean reference of evapotranspiration arid and 

semi-arid regions using regression techniques [45][46], estimation of weekly evapotranspiration on 

data from collected from two meteorological weather stations and prediction of daily dew point 

temperature using ANNs [47][48]. 

Causal reasoning in water management is seen in [49] where an attempt for analyzing river 

runoff temporal behaviour. The analysis of causal reason is done through Bayesian Networks (BN) 

which treats only the statistical attribute dependency alone without giving a serious thought to 

causation with confounding and counterfactuals. A similar approach is seen also in [50][51] which 

focuses on planning the information needs for water management systems using conditional 

probability networks (CPNs), which in its nature are Bayesian Based Belief Networks. 

3.4. Causal Inference in soil management 

The final category of smart agriculture review of papers as categorized in [12] concerns causal 

inference in soil management. There are contributions toward this category concerning machine 

learning approaches specifically applications on prediction-identification of agricultural soil 

properties, such as the estimation of soil drying, condition, temperature, and moisture content. In 

this context we can separate approaches like: Evaluation of soil drying for agricultural planning 

using k-nearest neighbour (KNN) and Artificial neural Networks (ANNs) [52], prediction of soil 

organic carbon (OC), moisture content (MC) and total nitrogen (TN) in around 140 soil samples 

using SVM and regression techniques [53], estimation of soil temperatures taken from various 

depths using ANNs [54] and soil moisture estimation [55] to name a few. 

In soil management we witness contributions towards causal reasoning in winnowed soils for 

microbiome identification of plant invasiveness in microbial networks [56] using structural 

equation modelling (SEM). In [57] a quantification of risk factors in soils using Bayesian Networks 

is attempted. The inference is solely on dependence of factors that quantify soil rehabilitation in 

coal regions and their inter-dependence with Bayesian belief Nets. In [58] a causation method is 

provided for risk assessment of heavy metals in soil. The latter utilizes the correlation from data 

that can be used for causation. The paper does not indicate how causal reasoning is done from data 

alone and having in mind that correlation as seen from causal reasoning does not explicitly mean 

causation [59][60][61]. 
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4. Literature Review Summary – Challenges and Limitations 

The review process is conducted following the five steps identified by [2]. The summarized 

results of collected and analyzed related work are grouped according to: 

 Computer sciences digital library where the study is published - IEEE Xplore, Elsevier, 

Google Scholar, ResearchGate, ACM Digital Library, Springer Open, DBLP. 

 Reference Type that categorizes the publication as journal article, conference proceeding, 

book chapter etc. 

 The year of publication and the country where the research was conducted in order to 

identify the actuality of the problem definitions  

 Data repositories used in case studies of causal reasoning application - public, synthetic, 

public-synthetic and theoretical. The intention is to prove the concept that further research 

in this direction can be done using data sets available online such as Data.gov, Kaggle, 

Amazon, Google, UCI etc. 

 Problem definition in order to identify the domain of causal reasoning application: health, 

smart farming etc. 

 Categorization of the publication in accordance with its relevance to research questions 

which are evaluated and answered in the section above. 

 The methodology that is employed in the literature review has some limitations: 

 The study analyzes articles extracted based on specific keywords such as “agriculture”, 

“smart farming”, “ethics”, etc. Articles without these keywords may have been omitted 

during the retrieval process.  

 Findings are based on data collected only from well-known digital libraries, so other 

materials which may contain more case studies on causal reasoning and causal reasoning 

in smart farming, might have been excluded. 

5. Conclusion 

Machine learning methods, techniques and algorithms have stimulated serious research efforts 

in discovering causal relationships in different datasets and domains. We survey the most recent 

and significant studies from relevant journals and conference proceedings on this topic from 

multidimensional perspectives. Four approaches of causal inference were presented, including 

water, soil, livestock and crop management. The results indicate that causal reasoning is gaining 

momentum in research for different domains, including the smart agriculture. Moreover, in all the 

review done we can conclude that causal reasoning is partially analyzed in this realm of 

agriculture. However, still a number of challenges need to be addressed. First important issue is the 

generation, availability and ownership of appropriate datasets for agriculture. Policies and 

standards for quality data that fosters trust remains to be established. In addition, the efficiency, 

reliability, cost-effectiveness and usefulness of causal reasoning approaches in smart agriculture 

still has a long road ahead to its full maturity. Finally, the potential misuse of data and causal 

reasoning findings creates additional ethical and legal challenge that requires the definition and 

regulation by normative framework. 
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