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Abstract: The delivery of a framework in place for secure application development is of real value for 

application development teams to integrate security into their development life cycle, especially when a 

mobile or web application moves past the scanning stage and focuses increasingly on the remediation or 

mitigation phase based on static application security testing (SAST). For the first time, to the author’s 

knowledge, the industry-standard Open Web Application Security Project (OWASP) top 10 vulnerabilities 

and CWE/SANS top 25 most dangerous software errors are synced up in a matrix with Checkmarx 

vulnerability queries, producing an application security framework that helps development teams review 

and address code vulnerabilities, minimise false positives discovered in static scans and penetration tests, 

targeting an increased accuracy of the findings. A case study is conducted for vulnerabilities scanning of a 

proof-of-concept mobile malware detection app. Mapping the OWASP/SANS with Checkmarx 

vulnerabilities queries, flaws and vulnerabilities are demonstrated to be mitigated with improved efficiency.   
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1. Introduction 

With the prevalence of Internet of Things devices [1] and unprecedented flows of data [2] in the 

4G to 5G revolution [3–5] at an exponential pace, the security of web and mobile applications is being 

increasingly challenged and has gained considerable research interest underpinning a wide variety 

of industries beyond banking, financial services and insurance (BFSI), such as e-commerce [6], 

healthcare, telecommunications [7], media, entertainment, retail, education, as well as government 

and national defense. In this respect, there is arguably an ongoing need for investing massively in the 

application security sector which enables technological advances for a smarter world. Valued USD 4 

billion in 2019, the sharply growing global market in application security is projected to reach USD 9 

billion by 2022, and USD 15.25 billion by 2025 at a compound annual growth rate of 25% [8–10].  

The amount of easily downloaded mobile applications is constantly on the increase meaning 

that mobile phones are increasingly vulnerable to malware and other malicious code [10]. Currently, 

the use of mobile anti-malware systems is not widespread with customers complaining that 
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advertisements and irritating notifications discourage them from using scanners. A customisable 

anti-malware application is developed in this work which scans APK code files from all other 

downloaded applications and uses machine learning algorithms to identify potentially malicious 

code, providing an advert-free experience with only necessary notifications. 

Note that embedding security into an application development lifecycle (DLC) encompasses a 

set of different techniques [11] and assessments at different stages, e.g. Static Application Security 

Testing (SAST) [12] at an early stage of DLC, and Dynamic Application Security Testing (DAST) [13] 

at testing and operation stages. SAST scans source code like a white box testing from the inside out, 

while DAST implements black box testing of the runtime behavior while executing it from the outside 

in. Comprehensive application security solutions are highly desirable to maximise the coverage of 

ever-evolving cyberattacks. Among the industry standards of the most critical application security 

risks, Open Web Application Security Project (OWASP) Top 10 [14] and SANS Common Weakness 

Enumeration (CWE) top 25 most dangerous software errors [15, 16] are well acknowledged. 

However, few studies to our knowledge have synced up and mapped the OWASP top 10 with the 

SANS top 25. This work bridges the gap by performing SAST using Checkmarx, a state-of-the-art 

source code static scanning tool to identify flaws and vulnerabilities, with the advantages and 

limitations reviewed in Section 2. A survey on OWASP risk rating methodology is presented in 

Section 3, followed by the code vulnerabilities mapping into a novel matrix of OWASP Top 10 and 

SANS top 25 in Section 4 for optimising the checkmark based SAST. A case study incorporating the 

proposed vulnerabilities mapping is demonstrated for the anti-malware application in Section 5.  

2. Current Status of SAST based on Checkmarx 

In contrast with other application security testing methods (such as DAST which struggles to 

adequately identify crucial problems within the application layer nor indicate how or where to fix 

them), SAST based on un-compiled source code analysis offers comprehensive solution into 

vulnerable patterns and coding flaws from the root up [12]. Specifically, the advantages of 

Checkmarx-based SAST are summarised below:  

 Integrated into delivery pipelines. The SAST service aims at not only providing 

assurance to security solution consultants, but also enabling developers to write and 

deliver secure code - this is primarily achieved by integrating the SAST tools into the 

established development and/or delivery pipeline processes which helps developers 

discover and fix vulnerabilities long before a project reaches the testing phase. 

 Fast and automated. Checkmarx-based SAST technology identifies critical 

vulnerabilities (e.g. SQL injection and cross-site scripting), allowing instant and 

relatively accurate feedback on the code with automation, e.g. precisely locating the line 

number with flaws.  

 Low cost. The ability to remediate issues as they arise makes it ideal for integration 

within the software development lifecycle (SDLC), which saves precious time, 

remediation efforts and expenses. 

However, the current status of SAST tools is susceptible to the following drawbacks [17, 18].   

 A large number of false positives and negatives reported, which struggles to confirm 

that an identified security issue is an actual vulnerability. As a consequence, 

considerable effort is required for developers to manually identify and remediate the 

issues. 

 A limited percentage of application security flaws can be found automatically. It is still 

challenging to automatically locate a few types of security vulnerabilities (e.g. 

authentication problems, access control issues, insecure use of cryptography, etc).   

 Limited code coverage, i.e. SAST struggles to locate issues in libraries, configurations, 

and frameworks, since they are not represented in the code. 

 The incapability of reviewing compiled source code and identifying business logic 

vulnerabilities. 
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3. Methodology in OWASP Risk Rating  

Driven by an opensource application security community, the OWASP Top 10 is an industry-

standard of the most critical application security risks. The metrics of OWASP is based on a couple 

of likelihood factors, e.g. weakness prevalence, detectability, exploitability, and technical impact 

factor [19]. As illustrated in Figure 1 below, the risk rating of the flaws proposed by OWASP is 

calculated based on two steps. First, average three likelihood factors (i.e. prevalence, detectability, 

and exploitability), obtaining a likelihood rating. The scale of each risk likelihood factor ranges from 

1 (low) to 3 (high). Second, multiply the obtained likelihood rating with a technical impact factor 

ranging from 1 (low) to 3 (high).  

 
Figure 1. Methodology of Calculating the OWASP Top10 Risk Rating. 

Based on the above risk rate calculating mechanism, the top 10 vulnerabilities in 2017 [14] are 

summarised with the corresponding likelihood factors detailed in Figure 2. 

 
Figure 2. Decomposition Analysis of the OWASP Top 10 (Horizontal Axis: 1. Injection Attack, 2. Broken 

Authentication, 3: Sensitive Data Exposure, 4. XML External Entities (XXE), 5. Broken Access Control, 6. 

Security Misconfiguration, 7. Cross-Site Scripting (XSS), 8. Insecure Deserialization, 9. Using Components with 

Known Vulnerabilities, 10. Insufficient Logging and Monitoring). 

Over the last few years, attack methods [8–13] have grown with the evolution of fundamental 

technology and architecture of applications (e.g. JavaScript attacks [20], and attacks on cloud-

computing services [21]), and hence the update [14] of OWASP Top 10 as illustrated in Table 1 below. 
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Table 1. Evolution of OWASP Top 10 from 2013 to 2017 [14]. 

 

4. Novel OWASP-SANS Vulnerabilities Mapping 

One of the novelty in this work is mapping the co-occurrence of high-profile vulnerability types 

from both OWASP Top 10 and CWE/SANS Top 25. The obtained matrix is presented in Table 2 

according to up-to-date documentation, i.e. 2017 for OWASP [14] and 2019 for CWE/SANS [16].  

Table 2. A Novel Vulnerabilities Mapping based on OWASP-SANS/CWE. 

OWASP Rank OWASP Vulnerability SANS CWE ID 

 

 

 

 

1 

 

 

 

 

Injection 

CWE-78: OS Command Injection (Improper Neutralization of Special 

Elements used in an OS Command) 

CWE-89: SQL Injection 

CWE-94: Code Injection 

CWE-434: Unrestricted Upload of File with Dangerous Type 

CWE-494: Download of Code Without Integrity Check 

CWE-829: Inclusion of Functionality from Untrusted Control Sphere 

 

 

 

2 

 

 

 

Broken Authentication 

CWE-306: Missing Authentication for Critical Function 

CWE-307: Improper Restriction of Excessive Authentication Attempts 

CWE-798: Use of Hard-coded Credentials 

CWE-807: Reliance on Untrusted Inputs in a Security Decision 

CWE-862: Missing Authorization 

CWE-863: Incorrect Authorization 

 

3 

 

Sensitive Data Exposure 

CWE-311: Missing Encryption of Sensitive Data 

CWE-319: Cleartext Transmission of Sensitive Information 

5 Broken Access Control CWE-73: External Control of File Name or Path 

CWE-285: Improper Authorization 

 

6 

 

Security Misconfiguration 

CWE-250: Execution with Unnecessary Privileges 

CWE-676: Use of Potentially Dangerous Function 

CWE-732: Incorrect Permission Assignment for Critical Resource 

7 Cross-Site Scripting (XSS) CWE-79: Improper Neutralization of Input During Web Page Generation 

(Cross-Site Scripting) 

8 Insecure Deserialization CWE-134: Use of Externally Controlled Format String 

 

 

9 

 

Using Components with 

Known Vulnerabilities 

CWE-190: Integer Overflow or Wraparound 

CWE-327: Use of a Broken or Risky Cryptographic Algorithm 

CWE-759: Use of a One-way Hash Without a Salt 
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5. SAST Demonstration on a Proof-of-concept Malware Detection Prototype   

A mobile antivirus software prototype for an Android phone is developed, targeting the 

functionality of scanning a phone for known flaws and detecting unknown vulnerabilities. The main 

functional requirements are summarised as follows:   

 Customise scan schedule or force immediate scans.  

 Monitor potential incoming threats before they are downloaded onto the device.  

 Quarantine or block applications that are high-risk and vulnerable. 

 View past trends in found vulnerabilities.  

 Learn about the dangers of leaving a mobile phone insecure and other cyber-threats. 

 Advert-free experience with only necessary notifications. 

Checkmarx is employed to perform SAST on the Bitbucket source repository, examining the 

blueprint of the application without executing the code. By carefully investigating file locations that 

reported by the Checkmarx vulnerability queries, we observe that 90% of the issues originate from 

the externally developed libraries used in the python framework (Flask and TensorFlow), which are 

considered out of scope (marked yellow in Table 3 below) and filtered for a rescan. Only the file 

internally developed (marked in red below) needs more remediation attention at this stage. The 

statistics of the initial scanning covering the whole Bitbucket source repository and the rescanning 

excluding the aforementioned external libraries are reported in Table 4.  

Table 3. Checkmarx Initial Scan of the Whole Repository including all Libraries.  

 

Table 4. Scanning Statistics of the Bitbucket Source Repository. 

 Lines of Code Scanned Scan Time Files Scanned Coding Language 

Initial Scan 137747 1h:56m:42s 605 Python and JS 

Rescan  3116 0h:01m:01s 198 Python and JS 

Rescan results are analysed in Figures 3 and 4, with 17 vulnerabilities reported in total, exhibiting 

varying degrees of severity (categorised in high, medium and low). Checkmarx vulnerability queries 

are mapped with the proposed matrix of OWASP Top 10 and SANS CWE in Table 5, producing a 

state-of-the-art vulnerabilities matrix guiding application development teams and application 

security consultants for code remediation.    
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Figure 3. Checkmarx Rescanning Results Summary and Locations of the Most Vulnerable Files. 

 
Figure 4. Checkmarx Rescanning Results of the Top 5 Vulnerabilities. 

Table 5. OWASP-SANS Vulnerabilities Mapping with Checkmarx Vulnerability Queries.  

 

The above flaws (7 highs and 6 mediums as mentioned in Figure 4) are remediated accordingly 

incorporating the matrix of Checkmarx queries, OWASP, and SANS, as demonstrated by the final-

round of Checkmarx scanning result shown in Figure 5. Only 1 low vulnerability remains, indicating 

that the application development team can prove closure of the main vulnerabilities.  
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Figure 5. Checkmarx Third-round Scanning Results (Compared with the Second-round Scanning). 

6. Conclusion 

This work reviews the recent advances in static application security testing (SAST) and proposes 

a novel matrix of vulnerabilities mapping based on synchronising the industry-standard OWASP top 

10 vulnerabilities, SANS/CWE top 25 most dangerous software errors, and Checkmarx vulnerability 

queries. With the produced application security framework, enhanced code integrity is demonstrated 

for a proof-of-concept malware detection application in Android devices through 3 rounds of 

Checkmarx-based SAST which assists decision making in flaws remediation and vulnerabilities 

mitigation. The OWASP-SANS matrix-based security framework pioneered in this work can 

potentially be integrated with other state-of-the-art SAST scanners to expand the security testing 

scenarios for mobile and web applications.  
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