
Annals of Emerging Technologies in Computing (AETiC)

Vol. 4, No. 3, 2020

Jinfeng Li, “Vulnerabilities Mapping based on OWASP-SANS: A Survey for Static Application Security Testing (SAST)”,

Annals of Emerging Technologies in Computing (AETiC), Print ISSN: 2516-0281, Online ISSN: 2516-029X, pp. 1-8, Vol. 4, No. 3, 1st

July 2020, Published by International Association of Educators and Researchers (IAER), DOI: 10.33166/AETiC.2020.03.001,

Available: http://aetic.theiaer.org/archive/v4/v4n3/p1.html.

Research Article

Vulnerabilities Mapping based on

OWASP-SANS: A Survey for Static

Application Security Testing (SAST)

 Jinfeng Li

1Department of Electrical and Electronic Engineering, Imperial College London, London, UK

jinfeng.li@imperial.ac.uk

Correspondence: jinfeng.li@imperial.ac.uk

Received: 17th March 2020; Accepted: 7th April 2020; Published: 1st July 2020

Abstract: The delivery of a framework in place for secure application development is of real value for

application development teams to integrate security into their development life cycle, especially when a

mobile or web application moves past the scanning stage and focuses increasingly on the remediation or

mitigation phase based on static application security testing (SAST). For the first time, to the author’s

knowledge, the industry-standard Open Web Application Security Project (OWASP) top 10 vulnerabilities

and CWE/SANS top 25 most dangerous software errors are synced up in a matrix with Checkmarx

vulnerability queries, producing an application security framework that helps development teams review

and address code vulnerabilities, minimise false positives discovered in static scans and penetration tests,

targeting an increased accuracy of the findings. A case study is conducted for vulnerabilities scanning of a

proof-of-concept mobile malware detection app. Mapping the OWASP/SANS with Checkmarx

vulnerabilities queries, flaws and vulnerabilities are demonstrated to be mitigated with improved efficiency.

Keywords: Application Security; Checkmarx; Malware Detection; OWASP Top 10; SANS Top 25; Static

Application Security Testing; Vulnerability Mapping

1. Introduction

With the prevalence of Internet of Things devices [1] and unprecedented flows of data [2] in the

4G to 5G revolution [3–5] at an exponential pace, the security of web and mobile applications is being

increasingly challenged and has gained considerable research interest underpinning a wide variety

of industries beyond banking, financial services and insurance (BFSI), such as e-commerce [6],

healthcare, telecommunications [7], media, entertainment, retail, education, as well as government

and national defense. In this respect, there is arguably an ongoing need for investing massively in the

application security sector which enables technological advances for a smarter world. Valued USD 4

billion in 2019, the sharply growing global market in application security is projected to reach USD 9

billion by 2022, and USD 15.25 billion by 2025 at a compound annual growth rate of 25% [8–10].

The amount of easily downloaded mobile applications is constantly on the increase meaning

that mobile phones are increasingly vulnerable to malware and other malicious code [10]. Currently,

the use of mobile anti-malware systems is not widespread with customers complaining that

http://aetic.theiaer.org/
http://www.theiaer.org/index.htm
mailto:jinfeng.li@imperial.ac.uk

AETiC 2020, Vol. 4, No. 3 2

 www.aetic.theiaer.org

advertisements and irritating notifications discourage them from using scanners. A customisable

anti-malware application is developed in this work which scans APK code files from all other

downloaded applications and uses machine learning algorithms to identify potentially malicious

code, providing an advert-free experience with only necessary notifications.

Note that embedding security into an application development lifecycle (DLC) encompasses a

set of different techniques [11] and assessments at different stages, e.g. Static Application Security

Testing (SAST) [12] at an early stage of DLC, and Dynamic Application Security Testing (DAST) [13]

at testing and operation stages. SAST scans source code like a white box testing from the inside out,

while DAST implements black box testing of the runtime behavior while executing it from the outside

in. Comprehensive application security solutions are highly desirable to maximise the coverage of

ever-evolving cyberattacks. Among the industry standards of the most critical application security

risks, Open Web Application Security Project (OWASP) Top 10 [14] and SANS Common Weakness

Enumeration (CWE) top 25 most dangerous software errors [15, 16] are well acknowledged.

However, few studies to our knowledge have synced up and mapped the OWASP top 10 with the

SANS top 25. This work bridges the gap by performing SAST using Checkmarx, a state-of-the-art

source code static scanning tool to identify flaws and vulnerabilities, with the advantages and

limitations reviewed in Section 2. A survey on OWASP risk rating methodology is presented in

Section 3, followed by the code vulnerabilities mapping into a novel matrix of OWASP Top 10 and

SANS top 25 in Section 4 for optimising the checkmark based SAST. A case study incorporating the

proposed vulnerabilities mapping is demonstrated for the anti-malware application in Section 5.

2. Current Status of SAST based on Checkmarx

In contrast with other application security testing methods (such as DAST which struggles to

adequately identify crucial problems within the application layer nor indicate how or where to fix

them), SAST based on un-compiled source code analysis offers comprehensive solution into

vulnerable patterns and coding flaws from the root up [12]. Specifically, the advantages of

Checkmarx-based SAST are summarised below:

 Integrated into delivery pipelines. The SAST service aims at not only providing

assurance to security solution consultants, but also enabling developers to write and

deliver secure code - this is primarily achieved by integrating the SAST tools into the

established development and/or delivery pipeline processes which helps developers

discover and fix vulnerabilities long before a project reaches the testing phase.

 Fast and automated. Checkmarx-based SAST technology identifies critical

vulnerabilities (e.g. SQL injection and cross-site scripting), allowing instant and

relatively accurate feedback on the code with automation, e.g. precisely locating the line

number with flaws.

 Low cost. The ability to remediate issues as they arise makes it ideal for integration

within the software development lifecycle (SDLC), which saves precious time,

remediation efforts and expenses.

However, the current status of SAST tools is susceptible to the following drawbacks [17, 18].

 A large number of false positives and negatives reported, which struggles to confirm

that an identified security issue is an actual vulnerability. As a consequence,

considerable effort is required for developers to manually identify and remediate the

issues.

 A limited percentage of application security flaws can be found automatically. It is still

challenging to automatically locate a few types of security vulnerabilities (e.g.

authentication problems, access control issues, insecure use of cryptography, etc).

 Limited code coverage, i.e. SAST struggles to locate issues in libraries, configurations,

and frameworks, since they are not represented in the code.

 The incapability of reviewing compiled source code and identifying business logic

vulnerabilities.

AETiC 2020, Vol. 4, No. 3 3

 www.aetic.theiaer.org

3. Methodology in OWASP Risk Rating

Driven by an opensource application security community, the OWASP Top 10 is an industry-

standard of the most critical application security risks. The metrics of OWASP is based on a couple

of likelihood factors, e.g. weakness prevalence, detectability, exploitability, and technical impact

factor [19]. As illustrated in Figure 1 below, the risk rating of the flaws proposed by OWASP is

calculated based on two steps. First, average three likelihood factors (i.e. prevalence, detectability,

and exploitability), obtaining a likelihood rating. The scale of each risk likelihood factor ranges from

1 (low) to 3 (high). Second, multiply the obtained likelihood rating with a technical impact factor

ranging from 1 (low) to 3 (high).

Figure 1. Methodology of Calculating the OWASP Top10 Risk Rating.

Based on the above risk rate calculating mechanism, the top 10 vulnerabilities in 2017 [14] are

summarised with the corresponding likelihood factors detailed in Figure 2.

Figure 2. Decomposition Analysis of the OWASP Top 10 (Horizontal Axis: 1. Injection Attack, 2. Broken

Authentication, 3: Sensitive Data Exposure, 4. XML External Entities (XXE), 5. Broken Access Control, 6.

Security Misconfiguration, 7. Cross-Site Scripting (XSS), 8. Insecure Deserialization, 9. Using Components with

Known Vulnerabilities, 10. Insufficient Logging and Monitoring).

Over the last few years, attack methods [8–13] have grown with the evolution of fundamental

technology and architecture of applications (e.g. JavaScript attacks [20], and attacks on cloud-

computing services [21]), and hence the update [14] of OWASP Top 10 as illustrated in Table 1 below.

AETiC 2020, Vol. 4, No. 3 4

 www.aetic.theiaer.org

Table 1. Evolution of OWASP Top 10 from 2013 to 2017 [14].

4. Novel OWASP-SANS Vulnerabilities Mapping

One of the novelty in this work is mapping the co-occurrence of high-profile vulnerability types

from both OWASP Top 10 and CWE/SANS Top 25. The obtained matrix is presented in Table 2

according to up-to-date documentation, i.e. 2017 for OWASP [14] and 2019 for CWE/SANS [16].

Table 2. A Novel Vulnerabilities Mapping based on OWASP-SANS/CWE.

OWASP Rank OWASP Vulnerability SANS CWE ID

1

Injection

CWE-78: OS Command Injection (Improper Neutralization of Special

Elements used in an OS Command)

CWE-89: SQL Injection

CWE-94: Code Injection

CWE-434: Unrestricted Upload of File with Dangerous Type

CWE-494: Download of Code Without Integrity Check

CWE-829: Inclusion of Functionality from Untrusted Control Sphere

2

Broken Authentication

CWE-306: Missing Authentication for Critical Function

CWE-307: Improper Restriction of Excessive Authentication Attempts

CWE-798: Use of Hard-coded Credentials

CWE-807: Reliance on Untrusted Inputs in a Security Decision

CWE-862: Missing Authorization

CWE-863: Incorrect Authorization

3

Sensitive Data Exposure

CWE-311: Missing Encryption of Sensitive Data

CWE-319: Cleartext Transmission of Sensitive Information

5 Broken Access Control CWE-73: External Control of File Name or Path

CWE-285: Improper Authorization

6

Security Misconfiguration

CWE-250: Execution with Unnecessary Privileges

CWE-676: Use of Potentially Dangerous Function

CWE-732: Incorrect Permission Assignment for Critical Resource

7 Cross-Site Scripting (XSS) CWE-79: Improper Neutralization of Input During Web Page Generation

(Cross-Site Scripting)

8 Insecure Deserialization CWE-134: Use of Externally Controlled Format String

9

Using Components with

Known Vulnerabilities

CWE-190: Integer Overflow or Wraparound

CWE-327: Use of a Broken or Risky Cryptographic Algorithm

CWE-759: Use of a One-way Hash Without a Salt

AETiC 2020, Vol. 4, No. 3 5

 www.aetic.theiaer.org

5. SAST Demonstration on a Proof-of-concept Malware Detection Prototype

A mobile antivirus software prototype for an Android phone is developed, targeting the

functionality of scanning a phone for known flaws and detecting unknown vulnerabilities. The main

functional requirements are summarised as follows:

 Customise scan schedule or force immediate scans.

 Monitor potential incoming threats before they are downloaded onto the device.

 Quarantine or block applications that are high-risk and vulnerable.

 View past trends in found vulnerabilities.

 Learn about the dangers of leaving a mobile phone insecure and other cyber-threats.

 Advert-free experience with only necessary notifications.

Checkmarx is employed to perform SAST on the Bitbucket source repository, examining the

blueprint of the application without executing the code. By carefully investigating file locations that

reported by the Checkmarx vulnerability queries, we observe that 90% of the issues originate from

the externally developed libraries used in the python framework (Flask and TensorFlow), which are

considered out of scope (marked yellow in Table 3 below) and filtered for a rescan. Only the file

internally developed (marked in red below) needs more remediation attention at this stage. The

statistics of the initial scanning covering the whole Bitbucket source repository and the rescanning

excluding the aforementioned external libraries are reported in Table 4.

Table 3. Checkmarx Initial Scan of the Whole Repository including all Libraries.

Table 4. Scanning Statistics of the Bitbucket Source Repository.

 Lines of Code Scanned Scan Time Files Scanned Coding Language

Initial Scan 137747 1h:56m:42s 605 Python and JS

Rescan 3116 0h:01m:01s 198 Python and JS

Rescan results are analysed in Figures 3 and 4, with 17 vulnerabilities reported in total, exhibiting

varying degrees of severity (categorised in high, medium and low). Checkmarx vulnerability queries

are mapped with the proposed matrix of OWASP Top 10 and SANS CWE in Table 5, producing a

state-of-the-art vulnerabilities matrix guiding application development teams and application

security consultants for code remediation.

AETiC 2020, Vol. 4, No. 3 6

 www.aetic.theiaer.org

Figure 3. Checkmarx Rescanning Results Summary and Locations of the Most Vulnerable Files.

Figure 4. Checkmarx Rescanning Results of the Top 5 Vulnerabilities.

Table 5. OWASP-SANS Vulnerabilities Mapping with Checkmarx Vulnerability Queries.

The above flaws (7 highs and 6 mediums as mentioned in Figure 4) are remediated accordingly

incorporating the matrix of Checkmarx queries, OWASP, and SANS, as demonstrated by the final-

round of Checkmarx scanning result shown in Figure 5. Only 1 low vulnerability remains, indicating

that the application development team can prove closure of the main vulnerabilities.

AETiC 2020, Vol. 4, No. 3 7

 www.aetic.theiaer.org

Figure 5. Checkmarx Third-round Scanning Results (Compared with the Second-round Scanning).

6. Conclusion

This work reviews the recent advances in static application security testing (SAST) and proposes

a novel matrix of vulnerabilities mapping based on synchronising the industry-standard OWASP top

10 vulnerabilities, SANS/CWE top 25 most dangerous software errors, and Checkmarx vulnerability

queries. With the produced application security framework, enhanced code integrity is demonstrated

for a proof-of-concept malware detection application in Android devices through 3 rounds of

Checkmarx-based SAST which assists decision making in flaws remediation and vulnerabilities

mitigation. The OWASP-SANS matrix-based security framework pioneered in this work can

potentially be integrated with other state-of-the-art SAST scanners to expand the security testing

scenarios for mobile and web applications.

References

[1] Ahmad U., Chaudhary J., Ahmad M. and Naz A.A., "Survey on Internet of Things (IoT) for Different

Industry Environments", Annals of Emerging Technologies in Computing (AETiC), vol. 3, no. 3, July 2019, pp.

28–43. Available: http://aetic.theiaer.org/archive/v3/v3n3/p4.html

[2] Guo X. Y. and Li J. F., "A Novel Twitter Sentiment Analysis Model with Baseline Correlation for Financial

Market Prediction with Improved Efficiency", in Proceedings of the Sixth International Conference on Social

Networks Analysis, Management and Security (SNAMS), Granada, Spain, Oct. 2019, pp. 472–477.

Available: https://ieeexplore.ieee.org/document/8931720

[3] Li J. F., Xu H. and Chu D.P., "Design of liquid crystal based coplanar waveguide tunable phase shifter with

no floating electrodes for 60–90 GHz applications", in Proceedings of the 2016 46th European Microwave

Conference (EuMC), London, 2016, pp. 1047–1050. Available: https://ieeexplore.ieee.org/document/7824526

[4] Li J. F. and Chu D.P., "Liquid crystal-based enclosed coplanar waveguide phase shifter for 54–66 GHz

applications", Crystals, vol. 9, 12, 650, December 2019. Available: https://doi.org/10.3390/cryst9120650

[5] Li J. F., "Structure and Optimisation of Liquid Crystal based Phase Shifter for Millimetre-wave

Applications", Doctoral thesis, University of Cambridge, UK, January 2019. Available:

https://doi.org/10.17863/CAM.35704

[6] Miraz M. H. and Ali M., "Applications of Blockchain Technology beyond Cryptocurrency", Annals of

Emerging Technologies in Computing (AETiC), vol. 2, no. 1, January 2018, pp. 1–6. Available:

http://aetic.theiaer.org/archive/v2/v2n1/p1.html

[7] Peter S. Excell, "The British Electronics and Computing Industries: Past, Present and Future", Annals of

Emerging Technologies in Computing (AETiC), vol. 2, no. 3, July 2018, pp. 45–52. Available:

http://aetic.theiaer.org/archive/v2/v2n3/p5.html

[8] Medeiros I., Neves N. and Correia M., "Detecting and Removing Web Application Vulnerabilities with

Static Analysis and Data Mining", IEEE Transactions on Reliability, vol. 65, no. 1, pp. 54–69, March 2016.

Available: https://ieeexplore.ieee.org/document/7206620

http://aetic.theiaer.org/archive/v3/v3n3/p4.html
https://ieeexplore.ieee.org/document/8931720
https://ieeexplore.ieee.org/document/7824526
https://doi.org/10.3390/cryst9120650
https://doi.org/10.17863/CAM.35704
http://aetic.theiaer.org/archive/v2/v2n1/p1.html
http://aetic.theiaer.org/archive/v2/v2n3/p5.html
https://ieeexplore.ieee.org/document/7206620

AETiC 2020, Vol. 4, No. 3 8

 www.aetic.theiaer.org

[9] Shakdher A., Agrawal S. and Yang B., "Security Vulnerabilities in Consumer IoT Applications", 2019 IEEE

5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High

Performance and Smart Computing (HPSC) and IEEE Intl Conference on Intelligent Data and Security

(IDS), Washington, DC, USA, 2019, pp. 1–6. Available: https://ieeexplore.ieee.org/document/8819463

[10] Lin Y., Huang C., Wright M. and Kambourakis G., "Mobile Application Security", Computer, vol. 47, no. 6,

pp. 21–23, June 2014. Available: https://ieeexplore.ieee.org/document/6838873

[11] Rafique S., Humayun M., Gul Z., Abbas A. and Javed H, "Systematic Review of Web Application Security

Vulnerabilities Detection Methods", Journal of Computer and Communications, 2015. Available:

http://dx.doi.org/10.4236/jcc.2015.39004

[12] Yang J., Tan L., Peyton J. and Duer K.A., "Towards Better Utilizing Static Application Security Testing",

2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice

(ICSE-SEIP), Montreal, QC, Canada, 2019, pp. 51–60. Available:

https://ieeexplore.ieee.org/abstract/document/8804441

[13] Petukhov A. and Kozlov D., "Detecting Security Vulnerabilities in Web Applications Using Dynamic

Analysis with Penetration Testing", Proceedings of the Application Security Conference, 2008. Available:

https://www.owasp.org/images/3/3e/OWASP-AppSecEU08-Petukhov.pdf

[14] OWASP, "OWASP Top 10 - 2017 The Ten Most Critical Web Application Security Risks", Open Web

Application Security Project, Available: https://owasp.org/www-pdf-archive/OWASP_Top_10-

2017_%28en%29.pdf.pdf

[15] Howard M., "Improving Software Security by Eliminating the CWE Top 25 Vulnerabilities", IEEE Security

& Privacy, vol. 7, no. 3, pp. 68–71, May-June 2009. Available: https://ieeexplore.ieee.org/document/5054914

[16] SANS, "CWE/SANS TOP 25 Most Dangerous Software Errors", SANS Institute, 2019, Available:

https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html

[17] Wang Y. and Alshboul Y., "Mobile security testing approaches and challenges", 2015 First Conference on

Mobile and Secure Services (MOBISECSERV), Gainesville, FL, 2015, pp. 1–5. Available:

https://ieeexplore.ieee.org/document/7072880

[18] Rafique S., Humayun M., Hamid B., Abbas A., Akhtar M. and Iqbal K., "Web application security

vulnerabilities detection approaches: A systematic mapping study", 2015 IEEE/ACIS 16th International

Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed

Computing (SNPD), Takamatsu, 2015, pp. 1–6. Available: https://ieeexplore.ieee.org/document/7176244

[19] Ramadlan M.F., "Introduction and implementation OWASP Risk Rating Management", Open Web

Application Security Project, 2019. Available: https://owasp.org/www-pdf-archive/Riskratingmanagement-

170615172835.pdf

[20] Ndichu S., Ozawa S., Misu T. and Okada K., "A Machine Learning Approach to Malicious JavaScript

Detection using Fixed Length Vector Representation", 2018 International Joint Conference on Neural

Networks (IJCNN), Rio de Janeiro, 2018, pp. 1–8. Available: https://ieeexplore.ieee.org/document/8489414

[21] Duncan A., Creese S. and Goldsmith M., "A Combined Attack-Tree and Kill-Chain Approach to Designing

Attack-Detection Strategies for Malicious Insiders in Cloud Computing", 2019 International Conference on

Cyber Security and Protection of Digital Services (Cyber Security), Oxford, United Kingdom, 2019, pp. 1–9.

Available: https://ieeexplore.ieee.org/document/8885401

© 2020 by the author. Published by Annals of Emerging Technologies in Computing

(AETiC), under the terms and conditions of the Creative Commons Attribution (CC BY)

license which can be accessed at http://creativecommons.org/licenses/by/4.0.

https://ieeexplore.ieee.org/document/8819463
https://ieeexplore.ieee.org/document/6838873
http://dx.doi.org/10.4236/jcc.2015.39004
https://ieeexplore.ieee.org/abstract/document/8804441
https://www.owasp.org/images/3/3e/OWASP-AppSecEU08-Petukhov.pdf
https://owasp.org/www-pdf-archive/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://owasp.org/www-pdf-archive/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://ieeexplore.ieee.org/document/5054914
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://ieeexplore.ieee.org/document/7072880
https://ieeexplore.ieee.org/document/7176244
https://owasp.org/www-pdf-archive/Riskratingmanagement-170615172835.pdf
https://owasp.org/www-pdf-archive/Riskratingmanagement-170615172835.pdf
https://ieeexplore.ieee.org/document/8489414
https://ieeexplore.ieee.org/document/8885401

