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Abstract: Usually, railway accidents are caused by train derailment, the mechanical failure of tracks, such 

as broken rails often caused by lack of railway condition monitoring. Such monitoring could identify track 

surface faults, such as squats, that act as a catalyst for the track to crack and ultimately break. The research 

presented in this paper enables real-time identification of railway track faults using image processing 

techniques such as Canny edge detection and 2D discrete wavelet transformation. The Canny edge detection 

outperforms traditional track damage detection techniques including Axle Based Acceleration using Inertial 

Measurement Units and is as reliable as Fiber Bragg Grating. The Canny edge detection employed can 

identify squats in real-time owing to its specific threshold amplitude using a camera module mounted on a 

specially designed handheld Track Recording Vehicle (TRV). The 2D discrete wavelet transformation 

validates the insinuation of the Canny edge detector regarding track damage and furthermore determines 

damage severity, by applying high sub band frequency filter. The entire algorithm works on a Raspberry Pi 

3 B+ utilizing an OpenCV API. When tested using an actual rail track, the algorithm proved reliable at 

determining track surface damage in real-time. Although wavelet transformation performs better than Canny 

edge detection in terms of determining the severity of track surface damage, it has processing overheads that 

become a bottleneck in real-time. To overcome this deficiency a very effective two-stage process has been 

developed. 
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1. Introduction 

Most train accidents are caused by derailments [1][2][3]. In 2019, Pakistan alone recorded over a 

hundred train accidents the majority of which were caused by derailment [4]. While there are many 

causes of these derailments, most are due to negligence in track condition monitoring [5][6]. There is, 

therefore, a need for techniques that can effectively facilitate condition monitoring and hence enable 

the mitigation of the causes of derailment [6][7][8]. One common technique involves determining 

track damage using Inertial Measurement Units (IMUs) [2][9], mounted on the surface of Track 

Recording Vehicles [10][11]. However, the problem with these types of sensors is their unpredictable 

nature in sensing the noise component as the track gets damaged.  

While devices such as accelerometers, ultrasonic, and temperature sensors, can be used for 

determining track damage they are often slow in processing and can provide inaccurate data [9][12]. 

Because of this, several other techniques are being developed such as Fiber Bragg Grating (FBG) and 

different types of image processing algorithms [13]. As the FBG technique are expensive and require 

the entire railway system to be renovated [14], its implementation is often not practical, particularly 

in developing countries, due to budget limitations. Therefore, in this research cost effective image 

processing algorithms are implemented (mainly for use in developing countries) using the Python 

programming language. 

Various image processing techniques can be implemented for the diagnosis of rail damage, 

including wavelet transformation. Although such techniques allow for the severity of damage to be 

determined, they often cannot do so in real-time [15][16]. Thus, a faster image processing algorithm 

is required. Various image processing algorithms were tested and it was noted that the most reliable 

amongst them is the Canny edge detector [17][18], as it enables the edges of the railway track to be 

analyzed with almost zero delays [19]. Therefore, in this research a very effective two-stage process 

has been developed for overcoming this deficiency. Firstly, Canny edge detection was used for 

identifying track damage. Secondly, images of track where damage was identified were subsequently 

processed using 2D wavelet transformation. Implementation of this cost effective technique enabled 

the damage severity of the track to be determined in an accurate and timely fashion.  Almost 10,000 

different track images were tested, and the effectiveness of the two-stage process was demonstrated. 

Images were collected in real-time using a motorized track recording vehicle over a one week time 

period. 

2. Recent Developments in Railway Condition Monitoring 

Railway track condition monitoring using track recording vehicles (TRV) is an important 

technical challenge. Worldwide, various track recording vehicles are still in development using IMUs 

and image processing [11]. The information gathered is recorded and the necessary steps are taken 

as per maintenance precautions [10]. Several parameters are detected and reported in the literature 

using the acquired acceleration data. Weston et al. used bogie mounted sensors for elaborating the 

track irregularity [20]. Alfi et al. similarly used onboard measurements for the estimation of the 

wavelength track irregularities [21]. Track faults are mostly analyzed using car body mounted 

sensors but most of those track faults are introduced due to track surface flaws such as squats and 

turn out frogs [22]. These track surface faults such as squat and turn out frog occur mostly due to the 

sudden brakes and lack of track ballast (the ballast filling under the track) that leads to a dip angle. 

The dip angle is a major reason for train derailments.  
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One effective methodology for obtaining optimal results when analyzing dip angle caused by 

track surface faults is Fiber Bragg Grating (FBG) [14]. The problem with FBG is its cost and fact that 

it is very hard to install because optical fiber needs to be passed underneath the track [13]. For a 

developing country, the cost can be unaffordable and hence other techniques need to be explored. 

One such technique, involves recent advancements in image processing enabled by APIs such as 

TensorFlow and OpenCV. 

3. Implementation of Image Processing For Track Fault Detection 

3.1. Available Technologies 

As most of the information in an image is retained in its grayscale format, which is also quicker 

to process, the RGB (Red, Green, Blue) image is first converted to grayscale, using Equation 1 [17]: 

                𝐺𝑟𝑎𝑦 = 0.299(𝑅) + 0.587(𝐺) + 0.114(𝐵)   1 

Images, particularly if captured using a webcam, can be affected by various noises that might 

cause error propagation in the color space conversion. Thus, to reduce this noise the image edge is 

distributed using a two-dimensional Gaussian filter that calculates the pixel transformation using the 

normal distribution. The Gaussian function filter equation is used for the pixel transformation of the 

image into the normal distribution h(x,y):         

                   ℎ(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−

𝑥2+𝑦2

2𝜎2           2 

The standard deviation that is used in the normal distribution is represented using rho. The 

Sobel filter mask is implemented after the completion of the image smoothing for determining the 

gradient value of each pixel in the captured image using a 3D horizontal mask hx and vertical mask 

hy as shown in equations 3 and 4, respectively:      

                  ℎ𝑥 =
−1 −2 −1
 0  0  0
 1  2  1

        3 

              ℎ𝑦 =
−1  0   1
−2  0  0
−1  0  1

              4 

The gradient value and angle are computed by obtaining the gradient values of horizontal and 

vertical directions, respectively: 

                  𝑔𝑟𝑎𝑑 𝑓 = 𝑚𝑎𝑔(∇𝐺) = [𝐺𝑥
2 + 𝐺𝑦

2]
1

2             5 

      𝜃 = tan−1 𝐺𝑦

𝐺𝑥
                                                                              6 

The alteration between the pixels can be observed when using the gradient amplitude obtained 

using equation 5. Nonzero gradient amplitude is considered as an effective block texture feature. 

Therefore, with the variation of gradient amplitude, the noise can be eradicated considering the 

smaller gradient amplitude as the noise by adjusting the Canny edge detector with a fixed threshold 

value. As per the research requirement, the threshold value of the gradient amplitude is kept between 

0- and 200-pixel values so that valid texture features of the railway track can be retained. 
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3.2. Discrete 2D Wavelet Transformation of an Image 

To analyze the severity of the surface damage of the railway track, the image of damage is 

processed with multilevel two-dimensional discrete wavelet transformation which decomposes the 

image into two sub bands namely: low frequency and high frequency. Almost all of the edge 

background details are classified into the high frequency sub band by the wavelet transformation 

whereas noises and approximated signal are classified into the low frequency sub band. The wavelet 

expansion [23] is denoted in equation 7.          

                𝑓(𝑡) = ∑ 𝑐𝑗,𝑘∅𝑗,𝑘(𝑡) + ∑ ∑ 𝑑𝑗,𝑘𝜑𝑗,𝑘(𝑡)𝑘𝑗𝑘           7 

Projection of the f(t) on the scale space is achieved using equation 7, whereas the decomposition 

form of the f(t) is achieved using equations 8 and 9.           

               𝑐𝑗,𝑘 == (𝑓(𝑥), ∅𝑗,𝑘(𝑥)) = ∫ 𝑓(𝑥)∅𝑗,𝑘(𝑥)𝑑𝑥    8      

               𝑑𝑗,𝑘 == (𝑓(𝑥), 𝜑𝑗,𝑘(𝑥)) = ∫ 𝑓(𝑥)𝜑𝑗,𝑘(𝑥)𝑑𝑥    9 

This algorithm can be implemented in the camera module using a specially designed camera 

frame based on already defined research that includes the application of CAD, neural networks and 

IOT [24-26]. 

3.3. Discrete 2D Wavelet Transformation of an Image 

In order to facilitate the real-time aspect of this research, a handheld Track Recording Vehicle 

was developed to which a camera module (see figure 1) was mounted in such a way that it captured 

the entire surface width of the track. The camera module was connected using the camera pins of the 

Raspberry Pi 3 B+ (see figure 2).  

 

Figure 1. Camera Mounted on Track Recording Vehicle 
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Figure 2. Track Recording Vehicle 

4. Results 

The purpose of this real-time monitoring of the rail track using a handheld track recording 

vehicle is to avoid railway accidents such as derailment. Using an intact railway track, no damage 

was detected in the Canny edge detection processed image (see figure 3 (a) and (b)). 

 
Figure 3. (a) Healthy Track (b) Image Processed from Canny filter 

However, when damage started to appear on the track, a visible difference was observed on the 

Canny edge detection processed image as can be seen in the Fig. 4(a) and (b). 

 

Figure 4. (a) Faulty Track (b) Image Processed from Canny filter 

This entire processing was performed using a video feed obtained using the camera module 

mounted on the track recording vehicle. Thus, the damage (squat as shown in fig.4(a)) that was 
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determined using the Canny edge detection algorithm was processed using discrete wavelet 

transformation. The wavelet transformation further enhances the images as shown in Fig.5 and 6.   

 

Figure 5. Wavelet Transformation of Healthy Track 

 

Figure 6. Wavelet Transformation of Faulty Track 

A wavelet transformation (images shown in figures 5 and 6) is used to demonstrate the severity 

of the damage observed on the track and to determine the surface area that is most affected by track 

damage. As in figure 6, the squat detection demonstrates the area that is most affected by the damage 

(using the red color, while the white portion represents the unaffected part of the track). 

6. Conclusion 

While wavelet transformation performs better than Canny edge detection in terms of 

determining the severity of track surface damage, it has processing overheads that become a 

bottleneck in real-time. The results achieved by the use of the Canny edge detector were found to be 

encouraging in the determination of the track damage having almost zero processing delay. Around 

10,000 various track images were tested and the implementation of this algorithm for the damage 

detection was validated. This algorithm was tested using a live camera feed that was processed using 

the attached workstation. The damaged tracks after being analyzed by the Canny edge detection 

algorithm were captured in the form of images which were later processed using the 2D wavelet 

transformation. The implementation of this technique has resulted in identifying the damage severity 

of the track. 

Further work is being carried out to develop a real-time neural network algorithm for identifying 

multiple railway track faults. 
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