Annals of Emerging Technologies in Computing (AETiC)

 
Paper #2                                                                             

Comparative Analysis of Ranking Algorithms Used On Web

Sandeep Suri, Arushi Gupta and Kapil Sharma


Abstract: With the evolution in technology huge amount of data is being generated, and extracts the necessary data from large volumes of data. This process is significantly complex. Generally the web contains bulk of raw data and the process of converting this data to information mining process can be performed. At whatever point the user places some inquiry on particular web search tool, outcomes are produced with respect to the requests which are dependent on the magnitude of the document created via web information retrieval tools. The results are obtained using calculations and implementation of well written algorithms. Well known web search tools like Google and other varied engines contain their specific manner to compute the page rank, various outcomes are obtained on various web crawlers for a same inquiry because the method for deciding the importance of the sites contrasts among number of algorithm. In this research, an attempt to analyze well-known page ranking calculation on the basis of their quality and shortcomings. This paper places the light on a portion of the extremely mainstream ranking algorithm and attempts to discover a better arrangement that can optimize the time spent on looking through the list of sites.


Keywords: Time Rank; Hybrid Rank; Web Mining; TF-IDF; EigenRumor; TagRank; Weighted Page Rank.


 
Full Text

This work is licensed under a Creative Commons Attribution 4.0 International License. Creative Commons License


This browser does not support PDFs. Please download the PDF to view it: Download PDF.

 
 International Association for Educators and Researchers (IAER), registered in England and Wales - Reg #OC418009                         Copyright © IAER 2020