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Abstract: In this paper, we introduce a scheme, called Polynomial Exchange Rate Scheme (PERS), to generate 

exchange rate functions for token swap systems, and show that the functions generated are consistent, stable, 

and resilient. We show that payments are guaranteed in PERS if the Single Circulation Source principle is 

adopted (i.e., PG-PERS). Compared to the existing deposit-based exchange rate schemes, PG-PERS is a 

scheme that requires no initial key token deposit and its price changes have relatively stable rates especially 

in extreme cases. As an application of PG-PERS, we present a token swap service, called Fanco Swap, for 

swapping the ERC20 token used on aFan, an incentivized social media platform, and Ether coin. We also 

cover several practical issues such as precision and computation cost problems and the solutions to them, 

which adopted in the implementation of Fanco Swap. The paper contains a comprehensive survey on existing 

cryptocurrency exchange services and their pricing mechanism, followed by a formal development of the 

proposed exchange rate scheme and its comparison with one of the most representative existing exchange 

rate schemes.   
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1. Introduction 

Since the advent of Ethereum blockchain and smart contracts[1], more than 230,000 tokens1 have 
been created on Ethereum Network and are being used in numerous areas; however, only a very 
small fraction of those tokens are listed on the small set of popular cryptocurrency exchanges.2 Many 
exchanges are highly selective in approving which tokens to be listed on their systems, and it often 
takes a lot of time, effort and money to meet the exchanges’ requirements. Furthermore, even when 
a project succeeds in listing its token on an exchange, without a substantial amount of users or trading 
volume, it tends to suffer from price volatility. This is backed by Hamrick et al.’s recent research on 
the profitability of pumping, artificial inflating of the price[2]. Their analysis shows that pumping 

1 https://etherscan.io/tokens. 
2 See tokens with "Ethereum" Platform at https://coinmarketcap.com/tokens/views/all/. 
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obscure coins with low trading volume is much more profitable, i.e., small projects are more vulner-
able to pump and dump schemes. Due to these reasons, listing on an exchange can be a double-edged 
sword for a certain type of cryptocurrency or token; this generates a need for a system where devel-
oper communities and project owners can distribute tokens for their projects in a relatively predicta-
ble and stable manner and where investors can take part in early-stage projects.  

With the increasing demand, there has been active research on such exchange systems that ena-
ble direct swap of cryptocurrencies without order books. Two issues need to be addressed in order 
to develop a cryptocurrency or token swap service that doesn't rely on an order book. First, the ser-
vice has to guarantee atomic transfers of assets. That is, the state of a transaction can be either entirely 
completed or entirely undone. Secondly, the service should offer reasonable exchange rates for the 
participants. Various solutions to these issues have been proposed which can be categorized into two 
types of approaches, with both focusing on the atomicity of transactions. One of the approaches is to 
design an Atomic Swap protocol that enables wallet-to-wallet transfers. The protocol's complete form 
was first presented by Tier Nolan in 2013[3], and many projects have adopted it since then[4]. An-
other approach utilizes smart contracts to guarantee atomicity and incorporates well-designed ex-
change rate functions to generate exchange rates programmatically. Uniswap3 and Bancor[5] are 
well-known examples of these efforts. On Uniswap, anyone can list an ERC20 token and create an 
exchange for swapping the token with Ether coin (symbol: ETH). Bancor has its own token (symbol: 
BNT) that acts as an intermediary of any two cryptocurrencies that a user wishes to swap. Many of 
the new exchange systems determine the exchange rates using functions of the reserve fund or the 
total supply of tokens. In this paper, we propose an exchange rate scheme that determines exchange 
rates with polynomial functions of the total balance of tokens, and discuss and present solutions to 
some of the problems that arise when implementing the scheme in practice. 

2. Related Works 

Numerous trading platforms have existed long before cryptocurrencies, and when cryptocur-
rencies became popular, people started developing exchanges that worked in a similar way to the 
traditional trading platforms. These platforms are often called “centralized exchanges” because they 
have centralized servers that control user accounts, order books, and matching of orders. Generally, 
these centralized exchanges have high liquidities and trading volumes, and are able to process orders 
quickly. Coinbase4, Binance5, and Bittrex6 are some of the widely known centralized cryptocurrency 
exchanges. Unfortunately, the centralized nature of these exchanges poses a single point of failure, 
and as of December 2019, it is reported that more than $1.74 billion USD has been stolen over a dozen 
different exchanges7. Just like blockchains were developed to mitigate the vulnerabilities of central-
ized systems, decentralized exchanges (DEXs) have been gaining popularity. DEXs operate peer-to-
peer using smart contracts in such a way that no central entity holds the account secrets or funds of 
the users. Examples of DEXs include Oasis Trade8 (formerly Eth2Dai), ShapeShift9, and Bisq10. 

Many DEXs essentially migrate the order books and matching algorithms to smart contracts, 
resulting in slower processing of orders and lower trading volumes. Exchanges have since adopted 
hybrid methods where a portion of the system runs off-chain for performance and the rest remains 
on-chain for security. IDEX11, EtherDelta12 and 0x Protocol13 are a few of the hybrid DEXs. One of the 

3 https://uniswap.io  
4 https://www.coinbase.com/  
5 https://www.binance.com/en  
6 https://global.bittrex.com/  
7 https://www.ledger.com/academy/crypto/hacks-timeline/. 
8 https://oasis.app/trade/  
9 https://shapeshift.io/#/coins  
10 https://bisq.network/  
11 https://idex.market/eth/idex  
12 https://etherdelta.com/  
13 https://0x.org/  
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characteristics that the platforms mentioned until now have in common is that they keep order books, 
and the buying and selling orders affect the exchange rates.  

Instead of relying on traditional order books, a few decentralized projects such as Bancor[5] and 
Uniswap take a different approach by adopting price making algorithms.  Such price making algo-
rithms are referred to as automated market makers (AMMs), even though they behave slightly dif-
ferently than traditional AMMs in prediction markets. DEXs like Uniswap and Bancor aim to always 
provide liquidity through smart contracts that calculate buy and sell prices.  

In Bancor’s system, token price is a function of the balance of the connector token, outstanding 
supply of the token, and the connector weight. Their price equation is price = 𝑅𝑅

𝑆𝑆×𝐹𝐹
, where 𝑅𝑅 = con-

nector balance (reserve), 𝑆𝑆 = token’s outstanding supply, and 𝐹𝐹 = connector weight (constant frac-
tional reserve ratio)[6]. Driven from the equation, the amount T of token a buyer would get by paying 
𝐸𝐸 amount of connector token is 𝑇𝑇 = 𝑆𝑆0((1 + 𝐸𝐸

𝑅𝑅0
)𝐹𝐹 − 1). If the buyer specifies the buy amount 𝑇𝑇 and 

wants to calculate how much connector token s/he needs to pay, the formula they propose is: 𝐸𝐸 =

𝑅𝑅0(�1 + 𝑇𝑇
𝑆𝑆0

𝐹𝐹 − 1). Although Bancor has its own advantages, their connector token system, the formu-

lae, and their implementation can be over-complicated for freshly starting projects. Furthermore, the 
project has been criticized for its error-prone arithmetic functions[7]. 

On the other hand, Uniswap employs a simpler function for its system, namely the Constant 
Product Market Maker model[8]. Given two cryptocurrencies 𝑋𝑋 and 𝑌𝑌 with balances 𝑥𝑥 and 𝑦𝑦, respec-
tively, the Constant Product Market Maker model has an invariant value k that should equal the 
product of x and y at any time, i.e., 𝑥𝑥 ⋅ 𝑦𝑦 = 𝑘𝑘. The price of 𝑋𝑋 with respect to 𝑌𝑌, which is 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
, depends 

on the amount of cryptocurrency reserved in the exchange. In fact, when a user wants to buy 𝑑𝑑𝑥𝑥 
amount of 𝑋𝑋 when the exchange’s balances of 𝑋𝑋 and 𝑌𝑌 are 𝑥𝑥𝑡𝑡 and 𝑦𝑦𝑡𝑡, respectively, the amount 𝑑𝑑𝑦𝑦 of 𝑌𝑌 
that user needs to pay can be expressed with just 𝑑𝑑𝑥𝑥, 𝑥𝑥𝑡𝑡 and 𝑘𝑘. To satisfy the invariance after the 
swap, (𝑥𝑥𝑡𝑡 − 𝑑𝑑𝑥𝑥)(𝑦𝑦𝑡𝑡 + 𝑑𝑑𝑦𝑦) = 𝑘𝑘. Therefore, 𝑑𝑑𝑦𝑦 = 𝑘𝑘

𝑑𝑑𝑡𝑡−𝑑𝑑𝑑𝑑
− 𝑦𝑦𝑡𝑡 = 𝑘𝑘

𝑑𝑑𝑡𝑡−𝑑𝑑𝑑𝑑
− 𝑘𝑘

𝑑𝑑𝑡𝑡
. Although Uniswap’s system is 

easy to understand and simple enough to be implemented as a smart contract, it has a couple of 
caveats. It requires the initial values of 𝑥𝑥 and 𝑦𝑦 to be greater than zero, and in order to satisfy the 
target initial price of a token, obtain a reasonable rate of change of the price, as well as have enough 
liquidity, a very large amount of Ether coin is needed in the beginning. Also, the deposit-based ex-
change rate schemes show dramatic price changes when the balance of the deposited tokens in the 
exchange system approaches its limits (see Section 3.6 for more details). Thus the price making model 
proposed in this paper was conceived with the aforementioned restrictions in mind. 

3. Polynomial Exchange Rate Scheme (PERS) 

In this section, we provide a formal definition of the conditions the new exchange scheme should 
meet and introduce an exchange rate scheme that satisfies those conditions. We also introduce the 
Single Circulation Source principle and how it can be applied to a token swap system to guarantee 
payments for the circulated derived token units. Finally, we compare the proposed scheme with one 
of the most representative deposit-based exchange rate schemes. 

3.1 Terminology 

• Exchange system: A system where two tokens (a key token and a derived token) can be 
swapped with each other. 

• Key token 𝑇𝑇𝑘𝑘: A widely used token e.g. Ether coin 
• Derived token 𝑇𝑇𝑑𝑑: A newly issued token e.g. ERC20 token 
• Exchange rate function: A function, denoted by 𝑅𝑅, that defines the exchange rate of 𝑇𝑇𝑑𝑑 

with respect to 𝑇𝑇𝑘𝑘, parameterized by the current states of the exchange system. The ex-
change rate function for 𝑇𝑇𝑘𝑘 in 𝑇𝑇𝑑𝑑 is denoted by 𝑟𝑟 which equals 1

𝑅𝑅
. For example, if 1 unit 

of 𝑇𝑇𝑘𝑘 is exchanged for 10,000 units of 𝑇𝑇𝑑𝑑, 𝑅𝑅 = 0.0001 and 𝑟𝑟 = 10,000. 
• Initial exchange rate: 𝑅𝑅0 and 𝑟𝑟0 are the initial values of 𝑅𝑅 and 𝑟𝑟, respectively. 
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• Exchange rate scheme: A set of exchange rate functions with different parameters. 
• Resilience pressure: The pressure pushing the exchange rate to the initial value, which is 

given by the gradient of the exchange rate function. 
• Token circulation: The amount of a token circulated through the market, which is differ-

ent from the total supply of the token. 

3.2 Problem Definition 

At a certain timestamp, let 𝑆𝑆 be the total supply of the derived token from all the swaps so far in 
𝑇𝑇𝑑𝑑 → 𝑇𝑇𝑘𝑘 direction and let 𝐷𝐷 be the total demand for the derived token from all the swaps so far in 
𝑇𝑇𝑘𝑘 → 𝑇𝑇𝑑𝑑 direction. Then the total balance 𝐵𝐵 of the derived token is defined as 𝐵𝐵 = 𝑆𝑆 − 𝐷𝐷. Similarly, 
the total balance 𝑏𝑏 of the key token is defined as 𝑏𝑏 = 𝑠𝑠 − 𝑑𝑑 where 𝑠𝑠 and 𝑑𝑑 are the total supply of and 
the total demand for the key token. 

Total balances 𝐵𝐵 and 𝑏𝑏 are key parameters of the exchange rate (an extreme case here is when 
the total balance goes to either −∞ or ∞, which means a collapse of the exchange system) so the 
exchange rate functions 𝑅𝑅 and 𝑟𝑟 can be defined as functions of 𝐵𝐵 and 𝑏𝑏, respectively. The next pa-
rameter is the resilience pressure 𝑝𝑝. Larger 𝑝𝑝 values mean higher resilience pressure on the exchange 
rate to return to the initial values 𝑅𝑅0 and 𝑟𝑟0. The final parameters are the initial exchange rates 𝑅𝑅0 and 
𝑟𝑟0. 

The problem we are addressing in this paper is to find an exchange rate scheme parameterized 
by 𝐵𝐵, 𝑝𝑝, and 𝑅𝑅0 (or 𝑏𝑏, 𝑝𝑝, and 𝑟𝑟0) that meets the following conditions: 

• Consistent: When tokens are swapped in a round trip without any external interference 
(for example, a derived token unit is swapped to the key token and then back to the 
derived token), the swaps are consistent if and only if the amounts of the tokens after 
the swaps are equal to their amounts before the swaps. 

• Stable: If the total balance 𝐵𝐵 (or 𝑏𝑏) returns to its initial value 0, the exchange system re-
turns to its initial state. 

• Resilient: An exchange in one direction should increase the pressure for the exchange in 
the opposite direction, meaning an increase or decrease of the exchange rate to return to 
the initial state. For example, an exchange in 𝑇𝑇𝑘𝑘 → 𝑇𝑇𝑑𝑑 direction should increase the ex-
change rate 𝑅𝑅 (or decrease 𝑟𝑟), i.e., makes the price of 𝑇𝑇𝑑𝑑 in 𝑇𝑇𝑘𝑘 higher. On the contrary, 
an exchange in 𝑇𝑇𝑑𝑑 → 𝑇𝑇𝑘𝑘 direction should decrease the exchange rate 𝑅𝑅 (or increase 𝑟𝑟), 
i.e., lowers the price of 𝑇𝑇𝑑𝑑 in 𝑇𝑇𝑘𝑘. 

We refer to these conditions as the CSR requirements for convenience in this paper. 

3.3 Proposed Scheme 

Our strategy is to define exchange rates as a polynomial function of total balances. 

3.3.1 When 𝑩𝑩 ≤ 𝟎𝟎 (i.e., 𝒃𝒃 ≥ 𝟎𝟎) 
Let us first consider the exchange rate function for negative 𝐵𝐵 values, which is the case when the 

derived token has been sold more than it’s been bought from the exchange’s point of view. Let 𝑋𝑋 be 
the absolute value of 𝐵𝐵, i.e., 𝑋𝑋 = −𝐵𝐵, and 𝑌𝑌 be the absolute value of 𝑏𝑏, i.e., 𝑌𝑌 = 𝑏𝑏. The exchange rate 
function 𝑅𝑅(𝑋𝑋) is defined as 

𝑅𝑅(𝑋𝑋) = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑋𝑋𝑝𝑝 + 𝑅𝑅0 for 𝑋𝑋 ≥ 0                                                               (1) 

where 𝑝𝑝 > 0 is the resilience pressure and 𝛼𝛼 > 0 is a constant, and 𝑅𝑅0 is the initial exchange rate of 
𝑇𝑇𝑑𝑑 in 𝑇𝑇𝑘𝑘. Figure 1 shows examples of polynomial exchange rate functions 𝑅𝑅(𝑋𝑋) generated from (1). 
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Figure 1. Polynomial exchange rate functions 𝑅𝑅(𝑋𝑋) for 𝑋𝑋 = −𝐵𝐵 ≥ 0 with different resili-

ence pressure values 𝑝𝑝 = 0.5, 1, and 1.5, and 𝑅𝑅0 = 1. 

Theorem 1: 𝑅𝑅(𝑋𝑋) satisfies the CSR Requirements for 𝑋𝑋 ≥ 0 if exchanges are made in a sequence.  
Proof. For an exchange in 𝑇𝑇𝑘𝑘 → 𝑇𝑇𝑑𝑑 direction, 𝑅𝑅(𝑋𝑋) satisfies the resilient condition of the CSR Re-

quirements as 𝑅𝑅(𝑋𝑋𝑡𝑡 + 𝛥𝛥𝑋𝑋) > 𝑅𝑅(𝑋𝑋𝑡𝑡) for 𝑋𝑋𝑡𝑡 ,𝛥𝛥𝑋𝑋 > 0 where 𝑋𝑋𝑡𝑡  and 𝑋𝑋𝑡𝑡 + 𝛥𝛥𝑋𝑋 are the absolute values of 
the total balance 𝐵𝐵 of 𝑇𝑇𝑑𝑑 before and after the exchange, respectively. It is trivial that the condition is 
satisfied for an exchange in the opposite direction 𝑇𝑇𝑑𝑑 → 𝑇𝑇𝑘𝑘. 

The consistent condition of the CSR Requirements is satisfied by using the integral of 𝑅𝑅(𝑋𝑋) over 
[𝑋𝑋𝑡𝑡,𝑋𝑋𝑡𝑡 + 𝛥𝛥𝑋𝑋]  as the exchange rate where 𝑋𝑋𝑡𝑡  is the value of 𝑋𝑋  before an exchange and 𝛥𝛥𝑋𝑋  is the 
amount of the derived token to be exchanged. Now the integral of 𝑅𝑅(𝑋𝑋) is  

   ∫ 𝑅𝑅(𝑋𝑋) = 𝛼𝛼
𝑝𝑝+1

𝑋𝑋𝑝𝑝+1 + 𝑅𝑅0𝑋𝑋 + 𝐶𝐶       

where 𝐶𝐶 is an integral constant. So the amount of the key token 𝛥𝛥𝑌𝑌 exchanged for 𝛥𝛥𝑋𝑋 amount of the 
derived token  is 

𝛥𝛥𝑌𝑌 = ∫𝑑𝑑=𝑑𝑑𝑡𝑡
𝑑𝑑𝑡𝑡+𝛥𝛥𝑑𝑑𝑅𝑅(𝑋𝑋) = 𝛼𝛼

𝑝𝑝+1
((𝑋𝑋𝑡𝑡 + 𝛥𝛥𝑋𝑋)𝑝𝑝+1 − 𝑋𝑋𝑡𝑡

𝑝𝑝+1) + 𝑅𝑅0𝛥𝛥𝑋𝑋.                             (2) 

Finally, it can be shown that the exchange system satisfies the stable condition of the CSR Re-
quirements as follows. The exchange system consists of three variables, 𝑋𝑋, 𝑌𝑌, and 𝑅𝑅:  
1. By 𝑅𝑅(0) = 𝑅𝑅0, 𝑅𝑅 returns to the initial value if the total balance 𝐵𝐵 returns to its initial value 0. 
2. Consider two cases where one consists of two sequential exchanges with amounts 𝛥𝛥𝑋𝑋1 and 𝛥𝛥𝑋𝑋2, 

and another consists of an exchange with amount 𝛥𝛥𝑋𝑋3 = 𝛥𝛥𝑋𝑋1 + 𝛥𝛥𝑋𝑋2. By (2), 

𝛥𝛥𝑌𝑌3 = ∫𝑑𝑑=𝑑𝑑𝑡𝑡
𝑑𝑑𝑡𝑡+𝛥𝛥𝑑𝑑3𝑅𝑅(𝑋𝑋) = ∫𝑑𝑑=𝑑𝑑𝑡𝑡

𝑑𝑑𝑡𝑡+𝛥𝛥𝑑𝑑1𝑅𝑅(𝑋𝑋) + ∫𝑑𝑑=𝑑𝑑𝑡𝑡+𝛥𝛥𝑑𝑑1
𝑑𝑑𝑡𝑡+𝛥𝛥𝑑𝑑1+𝛥𝛥𝑑𝑑2𝑅𝑅(𝑋𝑋) = 𝛥𝛥𝑌𝑌1 + 𝛥𝛥𝑌𝑌2    

where 𝛥𝛥𝑌𝑌1 and 𝛥𝛥𝑌𝑌2 are the amounts of the key token exchanged for the derived token amounts 𝛥𝛥𝑋𝑋1 
and 𝛥𝛥𝑋𝑋2 in the two sequential exchanges, respectively. So, the two cases are equivalent, which means 
the exchange operation is transient. Thus, a series of exchanges resulting in the final total balance 𝐵𝐵 
of value 0 can be collapsed into one exchange with 𝛥𝛥𝑋𝑋 = 0 and in this case 𝛥𝛥𝑌𝑌 = 0 as well. So, if 
variable 𝑋𝑋 returns to its initial value, variable 𝑌𝑌 also returns to its initial value. 
Q.E.D. 

3.3.2 When 𝑩𝑩 ≥ 𝟎𝟎 (i.e., 𝒃𝒃 ≤ 𝟎𝟎) 
For positive 𝐵𝐵, we apply the same functions to 𝑏𝑏 as we did for 𝐵𝐵. Let 𝑥𝑥 be the absolute value of 

𝑏𝑏, i.e.  𝑥𝑥 = −𝑏𝑏 and 𝑦𝑦 be the absolute value of 𝐵𝐵, i.e., 𝑦𝑦 = 𝐵𝐵, then the exchange rate function 𝑟𝑟(𝑥𝑥) is 
defined as 

𝑟𝑟(𝑥𝑥) = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝑥𝑥𝑝𝑝 + 𝑟𝑟0 for 𝑥𝑥 ≥ 0                                                               (3) 

where 𝑝𝑝 > 0 is the resilience pressure, 𝛽𝛽 > 0 is a constant, and 𝑟𝑟0 is the initial exchange rate of 𝑇𝑇𝑘𝑘 in 
𝑇𝑇𝑑𝑑, i.e., 𝑟𝑟0 = 1

𝑅𝑅0
. 
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Theorem 2: 𝑟𝑟(𝑥𝑥) satisfies the CSR Requirements for 𝑥𝑥 ≥ 0. 
Theorem 2 can be proven in the same way as Theorem 1. 

3.4 Case Study: Linear Function (i.e., 𝒑𝒑 = 𝟏𝟏)  

In this section, we provide an in-depth study of the exchange rate scheme for a special case of 
𝑝𝑝 = 1.  

3.4.1 When 𝑩𝑩 ≤ 𝟎𝟎 (i.e., 𝒃𝒃 ≥ 𝟎𝟎) 
From (1), 

𝑅𝑅(𝑋𝑋) = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑋𝑋 + 𝑅𝑅0                                                                         (4) 

where 𝑋𝑋 is the absolute value of 𝐵𝐵, i.e. 𝑋𝑋 = −𝐵𝐵 and 𝑌𝑌 is the absolute value of 𝑏𝑏, i.e., 𝑌𝑌 = 𝑏𝑏, and 𝑅𝑅0 is 
the initial exchange rate of 𝑇𝑇𝑑𝑑 in 𝑇𝑇𝑘𝑘. Figure 2 shows examples of linear exchange rate functions 𝑅𝑅(𝑋𝑋) 
generated from (4). 

 
Figure 2. Linear exchange rate functions 𝑅𝑅(𝑋𝑋) for 𝑋𝑋 = −𝐵𝐵 ≥ 0 with different alpha values =1, 0.1, 

and 0.01, and 𝑅𝑅0 = 1. 
So, 𝑌𝑌 = ∫ (𝛼𝛼𝑋𝑋 + 𝑅𝑅0)𝑑𝑑𝑋𝑋 = 𝛼𝛼

2
𝑋𝑋2 + 𝑅𝑅0𝑋𝑋 + 𝐶𝐶, where 𝐶𝐶 is the integral constant. 

From 𝑌𝑌 = 0 for 𝑋𝑋 = 0, 
𝑌𝑌 = 𝛼𝛼

2
𝑋𝑋2 + 𝑅𝑅0𝑋𝑋.                                                                                   (5) 

Figure 3 shows the relationship between the total balance 𝑌𝑌 = 𝑏𝑏 of the key token and the total 
balance 𝑋𝑋 = −𝐵𝐵 of the derived token from (5). 

From (5), the amount 𝛥𝛥𝑌𝑌 of the key token 𝑇𝑇𝑘𝑘 exchanged for 𝛥𝛥𝑋𝑋 amount of the derived token 𝑇𝑇𝑑𝑑 
when 𝑋𝑋 = 𝑋𝑋𝑡𝑡 is derived as 

𝛥𝛥𝑌𝑌 = 𝛼𝛼
2

((𝑋𝑋𝑡𝑡 + 𝛥𝛥𝑋𝑋)2 − 𝑋𝑋𝑡𝑡2) + 𝑅𝑅0𝛥𝛥𝑋𝑋.                                                       (6) 

By solving the quadratic equation (5), we get 
𝑋𝑋 = 1

𝛼𝛼
(�2𝛼𝛼𝑌𝑌 + 𝑅𝑅02 − 𝑅𝑅0).                                                                (7) 

So the amount 𝛥𝛥𝑋𝑋 of the derived token 𝑇𝑇𝑑𝑑 exchanged for 𝛥𝛥𝑌𝑌 amount of the key token 𝑇𝑇𝑘𝑘 when 𝑌𝑌 =
𝑌𝑌𝑡𝑡 is derived as 

𝛥𝛥𝑋𝑋 = 1
𝛼𝛼

(�2𝛼𝛼(𝑌𝑌𝑡𝑡 + 𝛥𝛥𝑌𝑌) + 𝑅𝑅02 − 𝑅𝑅0) − 𝑋𝑋𝑡𝑡.                                      (8) 

So, using (6) and (8), we can get the amount of tokens exchanged given 𝛥𝛥𝑋𝑋 and 𝛥𝛥𝑌𝑌, respectively. If 
we apply (7) to (4), we get the following: 

𝑅𝑅(𝑌𝑌) = �2𝛼𝛼𝑌𝑌 + 𝑅𝑅02.                                                                       (9) 
Figure 4 shows examples exchange rate functions 𝑅𝑅(𝑌𝑌) generated from (9). 
From (9), 
             𝛼𝛼 = 1

2𝑑𝑑
(𝑅𝑅2(𝑌𝑌) − 𝑅𝑅02).                                                                   (10) 
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Figure 3. The total balance 𝑌𝑌 = 𝑏𝑏 of the key token for the total balance 𝑋𝑋 = −𝐵𝐵 ≥ 0 of the derived 

token with different alpha values 𝛼𝛼 =1, 0.1, and 0.01, and 𝑅𝑅0=1. 

Using this formula, we can get 𝛼𝛼 for a condition given by the relation between 𝑌𝑌𝑘𝑘 and 𝑅𝑅(𝑌𝑌𝑘𝑘). For 
example, if the condition is given as 𝑅𝑅(𝑌𝑌𝑘𝑘) = 𝑘𝑘𝑅𝑅0, 

𝛼𝛼 = (𝑘𝑘2−1)𝑅𝑅0
2

2𝑑𝑑𝑘𝑘
.                                                                                        (11) 

So, if 𝑘𝑘 = 10 for 𝑌𝑌𝑘𝑘 = 33,333 ETH, i.e., 107 USD (assuming 1 ETH = 3 × 102 USD) and 𝑅𝑅0 = 0.0001, 
we get 𝛼𝛼 = 14,850,000 × 10−18, i.e., 14,850,000 wei. 

 
Figure 4. Exchange rate functions 𝑅𝑅(𝑌𝑌) for 𝑌𝑌 = 𝑏𝑏 ≥ 0 with different alpha values 𝛼𝛼 =1, 0.1, and 0.01, 

and 𝑅𝑅0 = 1. 

Instead of applying a predefined 𝑅𝑅0 value, we can derive 𝑅𝑅0 and 𝛼𝛼 values by applying some 
fundamental numbers like the starting total balance 𝐵𝐵𝑠𝑠 (= −𝑋𝑋𝑠𝑠) of the derived token and the key 
token budget 𝑏𝑏𝑠𝑠 (= 𝑌𝑌𝑠𝑠), which is effectively having a constraint that the (𝑋𝑋, 𝑌𝑌) graph should pass a 
(𝑋𝑋𝑠𝑠, 𝑌𝑌𝑠𝑠) point. From the equations (5) and (11), following equations are derived for 𝑅𝑅0 and 𝛼𝛼, respec-
tively: 

𝑅𝑅0 =
−2𝑑𝑑𝑘𝑘+2�𝑑𝑑𝑘𝑘2+(𝑘𝑘2−1)𝑑𝑑𝑘𝑘𝑑𝑑𝑠𝑠

(𝑘𝑘2−1)𝑑𝑑𝑠𝑠
.                                                                        (12) 

𝛼𝛼 =
4𝑑𝑑𝑘𝑘−4�𝑑𝑑𝑘𝑘2+(𝑘𝑘2−1)𝑑𝑑𝑘𝑘𝑑𝑑𝑠𝑠+2(𝑘𝑘2−1)𝑑𝑑𝑠𝑠

(𝑘𝑘2−1)𝑑𝑑𝑠𝑠2
.                                                              (13) 
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If we apply 𝑘𝑘 = 10, 𝑋𝑋𝑠𝑠 = 111135874.936329, 𝑌𝑌𝑠𝑠 = 1 ETH, and 𝑌𝑌𝑡𝑡 = 33,333 ETH to (11) and (12), 
for example, we get 𝑅𝑅0 = 0.0002000159754300310 × 10−18 = 20001597543003  wei and 𝛼𝛼 =
594095 wei. 

From (9), the volatility 𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

 of the exchange rate 𝑅𝑅 with respect to the key token is 
𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

= 𝛼𝛼

�2𝛼𝛼𝑑𝑑+𝑅𝑅02
.                                                                              (14) 

From (5) and (14), we get 
𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

= 1

𝑑𝑑+𝑅𝑅0𝛼𝛼
                                                                                              (15) 

which means 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑅𝑅

= 𝑋𝑋 + 𝑅𝑅0
𝛼𝛼

= −𝐵𝐵 + 𝑅𝑅0
𝛼𝛼

.                                                             (16) 

3.4.2 When 𝑩𝑩 ≥ 𝟎𝟎 (i.e., 𝒃𝒃 ≤ 𝟎𝟎) 
From (3), 

𝑟𝑟(𝑥𝑥) = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝑥𝑥 + 𝑟𝑟0                                                             (17) 

where 𝑥𝑥 is the absolute value of b, i.e. 𝑥𝑥 = −𝑏𝑏, and 𝑦𝑦 is the absolute value of 𝐵𝐵, i.e., 𝑦𝑦 = 𝐵𝐵, and 𝑟𝑟0 is 
the initial exchange rate of 𝑇𝑇𝑘𝑘 in 𝑇𝑇𝑑𝑑. 

As in the case of 𝐵𝐵 ≤ 0, we can derive the following equations: 
𝑦𝑦 = 𝛽𝛽

2
𝑥𝑥2 + 𝑟𝑟0𝑥𝑥.                                                                     (18) 

𝛥𝛥𝑦𝑦 = 𝛽𝛽
2

((𝑥𝑥𝑡𝑡 + 𝛥𝛥𝑥𝑥)2 − 𝑥𝑥𝑡𝑡2) + 𝑟𝑟0𝛥𝛥𝑥𝑥 .                                                  (19) 

𝑥𝑥 = 1
𝛽𝛽

(�2𝛽𝛽𝑦𝑦 + 𝑟𝑟02 − 𝑟𝑟0).                                            (20) 

𝛥𝛥𝑥𝑥 = 1
𝛽𝛽

(�2𝛽𝛽(𝑦𝑦𝑡𝑡 + 𝛥𝛥𝑦𝑦) + 𝑟𝑟02 − �2𝛽𝛽𝑦𝑦𝑡𝑡 + 𝑟𝑟02).                                               (21) 

𝑟𝑟(𝑦𝑦) = �2𝛽𝛽𝑦𝑦 + 𝑟𝑟02.                                                           (22) 

If we apply 𝑟𝑟(𝑥𝑥𝑘𝑘) = 𝑘𝑘𝑟𝑟0 to (17), we get 
𝛽𝛽 = (𝑘𝑘−1)𝑟𝑟0

𝑑𝑑𝑘𝑘
.                                                                   (23) 

So, if 𝑘𝑘 = 10 for 𝑥𝑥𝑘𝑘 = 33,333 ETH, i.e., 107 USD (given 1 ETH = 3 × 102 USD) and 𝑟𝑟0 = 10000, we 
get 𝛽𝛽 = 2.7 × 10−18. 

Similarly to the derivation of 𝑅𝑅0 and 𝛼𝛼 values from a fundamental coordinate (𝑋𝑋𝑠𝑠,𝑌𝑌𝑠𝑠), 𝑟𝑟0 and 𝛽𝛽 
can be derived by applying a fundamental coordinate (𝑥𝑥𝑠𝑠,𝑦𝑦𝑠𝑠) to (18) and (23): 

𝑟𝑟0 = 2𝑑𝑑𝑘𝑘𝑑𝑑𝑠𝑠
2𝑑𝑑𝑘𝑘𝑑𝑑𝑠𝑠+(𝑘𝑘−1)𝑑𝑑𝑠𝑠2

.                                                               (24) 

𝛽𝛽 = 2(𝑘𝑘−1)𝑑𝑑𝑠𝑠
2𝑑𝑑𝑘𝑘𝑑𝑑𝑠𝑠+(𝑘𝑘−1)𝑑𝑑𝑠𝑠2

.                                                        (25) 

From (17), the volatility 𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

 of the exchange rate 𝑅𝑅 with respect to the key token is 
𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

=
𝑑𝑑(1𝑟𝑟)

𝑑𝑑𝑑𝑑
= − 𝛽𝛽

(𝛽𝛽𝑑𝑑+𝑟𝑟0)2
.                                                             (26) 

From (20) and (26), we get 
𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

= − 1

2𝑑𝑑+𝑟𝑟0
2

𝛽𝛽

                                                       (27) 

which means 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑅𝑅

= −2𝑦𝑦 − 𝑟𝑟02

𝛽𝛽
= −2𝐵𝐵 − 𝑟𝑟02

𝛽𝛽
.                                       (28) 

3.4.3 Combining the two cases: 𝑩𝑩 ≤ 𝟎𝟎 (i.e., 𝒃𝒃 ≥ 𝟎𝟎) and 𝑩𝑩 ≥ 𝟎𝟎 (i.e., 𝒃𝒃 ≤ 𝟎𝟎) 
If we combine (4) and (22), we can get a graph of the exchange rate 𝑅𝑅 for the total balance (which 

is 𝑋𝑋when 𝐵𝐵 ≤ 0 and y when 𝐵𝐵 ≥ 0) of the derived token as shown in Figure 5. 
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Figure 5. The exchange rate 𝑅𝑅 for the total balance (which is 𝑋𝑋 when 𝐵𝐵 ≤ 0 and 𝑦𝑦 when 𝐵𝐵 ≥ 0) of 

the derived token. Drawn using (4) and (22) with 𝑅𝑅0 = 1
𝑟𝑟0

= 1 and 𝛼𝛼 = 𝛽𝛽 = 1. 

Likewise, if we combine (9) and (17), we can get a graph of the exchange rate 𝑅𝑅 for the total 
balance (which is 𝑌𝑌 when 𝑏𝑏 ≥ 0 and 𝑥𝑥 when 𝑏𝑏 ≤ 0) of the key token as shown in Figure 6. 

 

 
Figure 6. The exchange rate 𝑅𝑅 for the total balance (which is 𝑌𝑌 when 𝑏𝑏 ≥ 0 and 𝑥𝑥 when 𝑏𝑏 ≤ 0) of the 

key token. Drawn using (9) and (17) with 𝑅𝑅0 = 1
𝑟𝑟0

= 1 and 𝛼𝛼 = 𝛽𝛽 = 1. 

3.5 Payment Guaranteed Exchange System 

An exchange system can serve as a source of a derived token, directly affecting the amount of 
the token in circulation. For the system that is presented in this paper, we will adopt the following 
principle: 

 “The exchange system is the only circulation source of the derived token.” 
We call it the Single Circulation Source (SCS) principle, and it narrows down the possible cases 

to where  𝐵𝐵 ≤ 0 (i.e., 𝑏𝑏 ≥ 0), since no more than the amount of the derived token that has been 
swapped to the key token can be swapped back. In fact, the amount of the derived token in circulation 
always equals to −𝐵𝐵(= 𝑋𝑋). 

This system has several advantages, which include but are not limited to: 1) guaranteed payments 
for the derived token in circulation, and 2) transparency in minting, burning, and pricing of the de-
rived token. The payment guarantee is backed by the amount of reserved key token that has been 
swapped in exchange for the derived token, which in our scheme refers to 𝑏𝑏. Since the exchange 
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system is stable (by Theorem 1), any portion of the circulating derived token can be exchanged back 
to the key token at any time, although the amount of the paid key token depends on the exchange 
rate when the exchange is actually made. Moreover, when the amount of the derived token in circu-
lation becomes zero, meaning the entire amount of the derived token in circulation returns to the 
exchange, the total key token paid is identical to the total key token originally used to circulate the 
derived token. 

This system can withstand even the most extreme scenarios–one where 𝐵𝐵 ≈ 0  and another 
where 𝐵𝐵 ≈derived token's total supply. 𝐵𝐵 ≈ 0 means the exchange has just launched, or almost all the 
derived token that was bought by users have been sold back to the exchange. In that situation, the 
PG-PERS system doesn’t break because there are no more derived tokens in circulation that can flow 
into the exchange. In the 𝐵𝐵 ≈derived token's total supply case on the other hand, the exchange has sold 
almost all of the minted derived token, so the derived token owners can mint more tokens to meet 
the market’s demands. 

We define such an exchange system a Payment Guaranteed exchange system and the exchange 
rate scheme built into the system a Payment Guaranteed Polynomial Exchange Rate Scheme, or PG-
PERS. As 𝑋𝑋 is the amount of the derived token in circulation in PG-PERS, (16) can be interpreted as 
follows: 

“The amount of the key token needed to change the price of the derived token by a unit value is in linear 
proportion to the amount of the circulated derived token.” 

So, the more the derived token is circulated, the stabler (i.e., less vulnerable) the token price becomes. 

3.6 Comparison of PG-PERS and Uniswap 

Table 1. A comparison of PG-PERS and Uniswap. 

 PG-PERS Uniswap 
(Constant-Product Market Maker) 

In-Bound Key 
Token 

Derived Token 
Price 

Price Increase 
(%p) 

Derived Token 
Price 

Price Increase 
(%p) 

0 0.0000236294 0 0.0000236294 0 

10 0.0000239781 1 0.0000236579 0 

100 0.0000269137 14 0.0000239159 1 

1,000 0.0000470993 99 0.0000265729 12 

10,000 0.0001309899 454 0.0000608376 157 

100,000 0.0004081156 1,627 0.0011730220 4,864 

1,000,000 0.0012886265 5,353 0.0892486111 377,602 

100,000,000 0.0128841204 54,426 8.6653856635 36,672,019 

We compared the proposed scheme and Uniswap's Constant-Product Market Maker scheme in 
terms of the price change rate of the derived token. For realistic results, we used the same parameters 
used in Fanco Swap (see Section 4.1) for PG-PERS. For Uniswap, we tuned parameters so as to have 
the same initial price as PG-PERS (see Section 4.3.1). In order to set the initial prices identically, 16,541 
units of the key token were needed for initial deposit in Uniswap's scheme, while none was needed 
for PG-PERS. Note that we assumed that there would be no exchange fees in both schemes. Table 1 
shows the simulation results. As shown in the table, the rate of increase of the token price escalates 
dramatically in Uniswap compared to PG-PERS as the more derived token is bought by users, i.e., 
the amount of the key token flowing into the system increases. 
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4. Applications 

4.1 Fanco Swap 

Fanco Swap14 is the first token swap service that utilizes the PG-PERS(𝑝𝑝 = 1). Fanco (hereinafter, 
FANCO) is an ERC20 token that is currently used on aFan15, which is an incentivized social media 
platform for creators and fans. Fanco Swap enables swaps between Fanco token and Ether coin, using 
equations (6) and (8) to calculate the exchanged amounts in swaps. For example, when a user pays 
𝛥𝛥𝑌𝑌 ETH for some token, 𝛥𝛥𝑋𝑋 FANCO is computed using the equations and is given to the user. Figure 
7 shows the high-level system structure of Fanco Swap. Its smart contract is written in Solidity[9], 
one of the most popular programming languages for Ethereum Virtual Machine (EVM)[10], and is 
deployed on the Ethereum Network. 

 
Figure 7. Fanco Swap System Structure 

4.2 Precision Problem and Computation Cost Problem 

The Fanco Swap’s PERS algorithm implemented as a smart contract is executed in EVM run 
environment. Any computation done in a Blockchain setting needs to consider the asynchrony 
among Blockchain nodes, especially when it involves monetary values. Ethereum guarantees deter-
ministic status changes by restricting the types of values EVM handles. For instance, EVM, as of writ-
ing, does not support floating-point numbers; instead, monetary values are recommended to be rep-
resented in the smallest unit called wei, which equals 10−18 of ETH. Another measure Ethereum takes 
to achieve deterministic execution and to prevent users from intentionally or unintentionally making 
nodes run their code forever is putting a price for each of the EVM operation[10]. A user who wishes 
to run code or process a transaction on Ethereum has to pay the costs (or “gas”) upfront. 

While these features of Ethereum help Ethereum’s nodes to be in sync, they also complicate 
implementing PERS as an Ethereum smart contract. One of the problems we encountered while de-
veloping Fanco Swap was precision. As mentioned before, EVM does not support floating-point 
numbers nor more complex mathematical operations like square roots, which is required to solve for 
𝛥𝛥𝑋𝑋 in equation (8).16 A good technical solution is Newton's method for integer square roots that uses 
only addition and division operations[11]. However, the method has the quadratic convergence rate, 
and iterating and computing inside the for-loop on Ethereum costs extra gas fees that users would 
have to pay. 

14 https://afan.ai/swap 
15 https://afan.ai 
16 Note that equation (6), the equation for ∆Y, is made up only of simple operations and can be solved on-chain. 
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As solutions to these precision and computation cost problems, we developed the “Off-chain 
Computation On-chain Verification (OCOV)” model and utilized the “Ratio Comparison” method. 
The OCOV model minimizes the smart contract computation load by delegating the heavy and com-
plex computation to the off-chain client-side web page, leaving only the verification to the on-chain 
smart contract. In effect, computing the Ether amount 𝛥𝛥𝑌𝑌 user should get and the token amount 𝛥𝛥𝑋𝑋 
to pay is done on the exchange web client with equation (8), and the 𝛥𝛥𝑋𝑋 and 𝛥𝛥𝑌𝑌 values are sent to the 
Ethereum network as a transaction. Then the verification of the 𝛥𝛥𝑋𝑋 and 𝛥𝛥𝑌𝑌 submitted by the transac-
tion creator is made in EVM run environment. Also, the off-chain JavaScript code uses the big-
number.js library17 in order to handle the big numbers in wei; however, there is still an upper limit to 
the number of significant digits that can be kept in JavaScript Numbers–that is, as values get bigger 
we would lose confidence in the lower digits, and there will inevitably be errors in the final values. 
To deal with these limitations, the system needs to permit a certain level of errors (or 𝜀𝜀) in exchange 
rates in the verification. 

When determining the validity of 𝛥𝛥𝑋𝑋 and 𝛥𝛥𝑌𝑌, the smart contract employs the Ratio Comparison 
method, which compares the theoretical (expected) and empirical (actual) values of the exchange 
rate. The theoretical rate is driven purely from the equations, whereas the empirical rate is driven 
from the empirical values. The two values can be represented as 𝑅𝑅(𝑑𝑑)+𝑅𝑅(𝑑𝑑+𝛥𝛥𝑑𝑑)

2
 and 𝛥𝛥𝑑𝑑

𝛥𝛥𝑑𝑑
, respectively, 

and they are identical if there is no precision error. 
Theorem 3: Without precision errors, the expected exchange rate and the actual exchange rate 

are identical, i.e., 
𝑅𝑅(𝑑𝑑)+𝑅𝑅(𝑑𝑑+𝛥𝛥𝑑𝑑)

2
= 𝛥𝛥𝑑𝑑

𝛥𝛥𝑑𝑑
.                                                                                   (29) 

Proof.  By (6), 𝛥𝛥𝑌𝑌 = 𝛽𝛽
2

((𝑋𝑋𝑡𝑡 + 𝛥𝛥𝑋𝑋)2 − 𝑋𝑋𝑡𝑡2) + 𝑅𝑅0𝛥𝛥𝑋𝑋. 
Therefore, 

𝛥𝛥𝑑𝑑
𝛥𝛥𝑑𝑑

= 1
𝛥𝛥𝑑𝑑
�𝛽𝛽
2

(𝑋𝑋𝑡𝑡2 + 2𝑋𝑋𝑡𝑡𝛥𝛥𝑋𝑋 + 𝛥𝛥𝑋𝑋2 − 𝑋𝑋𝑡𝑡2) + 𝑅𝑅0𝛥𝛥𝑋𝑋� = 𝛽𝛽(𝑋𝑋𝑡𝑡 + 1
2
𝛥𝛥𝑋𝑋) + 𝑅𝑅0.    

 
By (4), 

𝑅𝑅(𝑑𝑑𝑡𝑡)+𝑅𝑅(𝑑𝑑𝑡𝑡+𝛥𝛥𝑑𝑑)
2

= (𝛽𝛽𝑑𝑑𝑡𝑡+𝑅𝑅0)+(𝛽𝛽𝑑𝑑𝑡𝑡+𝛽𝛽𝛥𝛥𝑑𝑑+𝑅𝑅0)
2

= 2𝛽𝛽𝑑𝑑𝑡𝑡+𝛽𝛽𝛥𝛥𝑑𝑑+2𝑅𝑅0
2

= 𝛽𝛽(𝑋𝑋𝑡𝑡 + 1
2
𝛥𝛥𝑋𝑋) + 𝑅𝑅0

= 𝛥𝛥𝑑𝑑
𝛥𝛥𝑑𝑑

.

     

Q.E.D. 
Restricting the rate of error in exchange rates using the Ratio Comparison method has an effect 

of having the relative error of 𝛥𝛥𝑋𝑋, i.e.,𝛥𝛥𝑑𝑑𝜀𝜀−𝛥𝛥𝑑𝑑
𝛥𝛥𝑑𝑑

, bounded by 𝜀𝜀.  
Theorem 4: The relative error of 𝛥𝛥𝑋𝑋 is bounded by 𝜀𝜀, i.e., 

�𝛥𝛥𝑑𝑑𝜀𝜀−𝛥𝛥𝑑𝑑
𝛥𝛥𝑑𝑑

� < 𝜀𝜀.                                                                                       (30) 

Proof. Let us define 𝛥𝛥𝑋𝑋𝜀𝜀 as an 𝛥𝛥𝑋𝑋 value with precision errors, and the verifier function as  

𝑉𝑉(𝛥𝛥𝑌𝑌,𝛥𝛥𝑋𝑋𝜀𝜀) = �
𝛥𝛥𝛥𝛥
𝛥𝛥𝑋𝑋𝜀𝜀

−𝑅𝑅(𝑋𝑋)+𝑅𝑅(𝑋𝑋+𝛥𝛥𝑋𝑋)
2

𝑅𝑅(𝑋𝑋)+𝑅𝑅(𝑋𝑋+𝛥𝛥𝑋𝑋)
2

�.     

Since 𝑅𝑅(𝑑𝑑)+𝑅𝑅(𝑑𝑑+𝛥𝛥𝑑𝑑)
2

= 𝛥𝛥𝑑𝑑
𝛥𝛥𝑑𝑑

, 𝑉𝑉(𝛥𝛥𝑌𝑌,𝛥𝛥𝑋𝑋𝜀𝜀) can be rewritten as �
𝛥𝛥𝛥𝛥
𝛥𝛥𝑋𝑋𝜀𝜀

−𝛥𝛥𝛥𝛥𝛥𝛥𝑋𝑋
𝛥𝛥𝛥𝛥
𝛥𝛥𝑋𝑋

� and the Ratio Comparison method 

states that 𝑉𝑉(𝛥𝛥𝑌𝑌,𝛥𝛥𝑋𝑋𝜀𝜀) = �
𝛥𝛥𝛥𝛥
𝛥𝛥𝑋𝑋𝜀𝜀

−𝛥𝛥𝛥𝛥𝛥𝛥𝑋𝑋
𝛥𝛥𝛥𝛥
𝛥𝛥𝑋𝑋

� < 𝜀𝜀. So, 

−𝜀𝜀 <
𝛥𝛥𝛥𝛥
𝛥𝛥𝑋𝑋𝜀𝜀

−𝛥𝛥𝛥𝛥𝛥𝛥𝑋𝑋
𝛥𝛥𝛥𝛥
𝛥𝛥𝑋𝑋

< 𝜀𝜀     

which means 

17 https://github.com/MikeMcl/bignumber.js/ 
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−𝜀𝜀 < 𝛥𝛥𝑑𝑑𝜀𝜀−𝛥𝛥𝑑𝑑
𝛥𝛥𝑑𝑑

< 𝜀𝜀.     
Q.E.D. 

By comparing the exchange rates, the calculations are simplified drastically. Moreover, by com-
paring the relative error of the exchange rate to 𝜀𝜀, the validity of inputs can be tested reliably with 
varying exchange rates. For example, had we compared the rates themselves, as the rate became a 
large number with many significant digits, its error would have increased linearly. In contrast, the 
fraction of error in the rate stays constant in the exchange rate. 

With the OCOV model, there is an issue of transaction conflicts as the system can only process 
one swap (one transaction) at a time. If there are two users who send transactions at the same time, 
after one of the transactions is processed, the other transaction becomes invalid since both transac-
tions’ inputs have been calculated based on the same 𝑋𝑋𝑡𝑡 value, which has been modified in between. 
Due to this problem, Fanco Swap utilizes both Newton’s method and the Ratio Comparison method. 
For the swaps in Token-to-Ether direction, Fanco Swap takes the token amount as an input and cal-
culates the corresponding Ether amount on-chain, using equation (6). For the Ether-to-Token direc-
tion, it takes both the token amount and Ether amount as inputs, as well as the 𝑋𝑋𝑡𝑡 value, which is the 
token circulation at the moment the inputs have been calculated. When processing the swap, if 𝑋𝑋𝑡𝑡 has 
been changed since the user sent the transaction, the token amount is recalculated using (8) and New-
ton’s method. Otherwise, the inputs 𝛥𝛥𝑋𝑋 and 𝛥𝛥𝑌𝑌 can be verified with the Ratio Comparison method 
and are used as the amount of FANCO that the user would get and the amount of ETH that  the user 
would pay, respectively. 

4.3 Implementations 

4.3.1 Constants 
R0 = 23,629,374,000,000 wei 
The initial exchange rate ( 𝐸𝐸𝑇𝑇𝐸𝐸

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
) set for Fanco Swap. This is the exchange rate set at the creation 

of Fanco Swap and will not be altered in the lifetime of Fanco Swap. 𝑅𝑅0 is obtained using equation 
(12), where 𝑋𝑋𝑠𝑠 is the amount of token that was being circulated in the aFan app when the exchange 
was launched, and 𝑌𝑌𝑠𝑠 is the amount of Ether budget that was used to buy 𝑋𝑋𝑠𝑠 token for reserve. For 
Fanco Swap, 𝑋𝑋𝑠𝑠 = 11,703,563 FANCO  and 𝑌𝑌𝑠𝑠 = 333 ETH. We set 𝑘𝑘 = 10 and 𝑌𝑌𝑘𝑘 = 33,333 ETH so 
that token’s value increases tenfold once 33,333 ETH has been exchanged for token. 

𝜶𝜶 = 830,000 wei 
The 𝛼𝛼 value, or the slope of the 𝑅𝑅(𝑋𝑋), is obtained from equation (13), with the same 𝑋𝑋𝑠𝑠,𝑌𝑌𝑠𝑠 , 𝑘𝑘 and 

𝑌𝑌𝑘𝑘 values as those used for calculating 𝑅𝑅0. 

𝜺𝜺 = 1 wei (= 10−18 ETH) 
𝜀𝜀 is the maximum relative error permitted in the exchange rate system. The fact that all the pa-

rameters and input values are in wei (i.e., multiplied by 1018 and decimals are discarded) has an 
effect of rounding values to 1 wei. We were able to reduce 𝜀𝜀 to less than 1 wei, and therefore directly 
compare values in the Ratio Comparison. 

4.3.2 Functions 
4.3.2.1 Ratio Comparison 

Function verifyRatio() accepts two parameters, deltaX (= 𝛥𝛥𝑋𝑋) and deltaY (= 𝛥𝛥𝑌𝑌), which are the 
change in 𝑋𝑋(= −𝐵𝐵) and the change in 𝑥𝑥(= 𝑏𝑏), respectively. The function returns whether the deltaX 
and deltaY are valid at the moment (when 𝑋𝑋 = 𝑋𝑋𝑡𝑡) for an Ether-to-Token swap. This is checked by 
comparing delta𝑑𝑑

delta𝑑𝑑
 (= the actual rate) and 𝑅𝑅(𝑑𝑑)+𝑅𝑅(𝑑𝑑+delta𝑑𝑑)

2
 (= the expected rate), and deltaX and deltaY are 

said to be valid if the two rates are equal within the permitted error threshold. As Theorem 3 shows, 
the two rates are identical if there are no precision errors in PG-PERS(𝑝𝑝 = 1). Table 2 shows the So-
lidity code for ratio verification. 
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Table 2. Ratio verification algorithm (verifyRatio). 

function getRateAtX(int256 X) view public returns(int256) { 

    int256 C = SLOPE; 

    int256 R = INTERCEPT; 

    return (C.mul(X).add(R.mul(1 ether))).div(1 ether); 

} 

 

function verifyRatio(int256 deltaY, int256 deltaX) view internal { 

    uint256 Xt = tokenCirculation; 

    uint256 R1 = getRateAtX(Xt); 

    uint256 R2 = getRateAtX(Xt.add(deltaX)); 

    uint256 expectedR = R1.add(R2).div(2); 

    uint256 actualR = deltaY.mul(1 ether).div(deltaX); 

    uint256 diff = expectedR < actualR ? actualR.sub(expectedR) : expectedR.sub(actualR); 

    require(diff == 0, "Amount verification failed"); 

} 
4.3.2.2 Token-to-Ether Swaps 

By calling tokenToEther() function, the recipient gets deltaY ETH in exchange for deltaX 
FANCO, where deltaY is calculated with equation (6). The sender of the message needs to call To-
ken.approve(exchange, deltaX) beforehand, or alternatively, s/he can make just one call to Token.ap-
proveAndCall(exchange, deltaX, data) that executes tokenToEther() function inside the method. In 
case of changes in 𝑋𝑋𝑡𝑡 between the transaction submission and execution, the recipient will get at least 
the lowerBound amount of Ether. If the amount of Ether has dropped too low (below the lower-
Bound), the transaction will be reverted by intention. Table 3 shows the pseudocode for to-
kenToEther() function. 

 
Table 3. Pseudocode of the tokenToEther() function. 

function tokenToEther(address _recipient, uint256 _dX, uint256 _lowerBound) 

    public 

    onlyWhileOpen 

{ 

    checkTokenAmount(_dX); 

    require(tokenCirculation >= _dX, "token amount exceeds tokenCirculation"); 

    /// Calculate roundedDY, the amount of ETH to give to the user. 

    checkEtherAmount(roundedDY); 

    /// Check that roundedDY meets the _lowerBound requirement. 

    /// Check that the contract has enough ETH. 

    /// Update TOKEN and ETH amounts in the contract. 

    /// Transfer _dX amount of TOKEN from _recipient to this swap contract. 

    /// Transfer roundedDY amount of ETH to _recipient. 

} 
4.3.2.3 Ether-to-Token Swaps 

By calling eitherToToken() function, the recipient gets deltaX FANCO in exchange for msg.value 
amount of ETH. This function first checks whether the input Xt equals the current value of tokenCir-
culation (𝑋𝑋𝑡𝑡), and if so, uses verifyRatio() to check the validity of the inputs deltaX and deltaY. User 
needs to send Ether along with the transaction as msg.value, which should be the rounded up value 
of deltaY. If the two values do not match up, the Newton’s method kicks in, calculating a new token 
amount with msg.value and tokenCirculation. If the amount of token user would get is lower than 
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lowerBound, the transaction will be reverted by intention. The pseudocode for the function is shown 
in Table 4. 

Table 4. Pseudocode of the etherToToken() function. 

function etherToToken( 

    address _recipient, 

    uint256 _dX, 

    uint256 _dY, 

    uint256 _Xt, 

    uint256 _lowerBound 

) 

    public 

    payable 

    onlyWhileOpen 

{ 

    checkEtherAmount(msg.value); 

    /// Define dX as the TOKEN amount that user would get, 

    /// rounded to the smallest unit of TOKEN. 

    checkTokenAmount(dX); 

    /// If the exchange rate stayed the same 

    /// (no other transactions have been processed in between), 

    /// verify using verifyRatio() and use the dX and dY provided by the client. 

    /// Otherwise, use the dX recalculated from calcTokenAmount(). 

    /// Check that dX meets the _lowerBound requirement. 

    /// Update TOKEN and ETH amounts in the contract. 

    /// Transfer dX amount of TOKEN to _recipient. 

} 

5. Conclusion 

In this paper, we proposed a new exchange rate scheme, named polynomial exchange rate 
scheme (PERS), that defines exchange rates as polynomial functions of the total balances of tokens, 
and provided a proof that the exchange rate functions generated by the scheme are consistent, stable, 
and resilient. Compared with the existing deposit-based exchange rate schemes, PERS has ad-
vantages that 1) it requires no initial key token deposit and 2) it has relatively stable price change 
rates especially when the total balances approach extreme cases. 

As a real-world application of PERS, we presented Fanco Swap where users can swap Fanco 
token with Ether coin and vice versa. Fanco Swap is a PG-PERS(𝑝𝑝 = 1) system, meaning it uses PERS 
to determine the price and guarantees Ether payments in exchange for the token in circulation by 
applying the SCS principle, which limits the source of Fanco token to only Fanco Swap. 

By the design constraints of Solidity–EVM framework, on which the presented swap system is 
implemented, we encountered several issues such as 1) precision problem and 2) computation cost 
problem. These issues could be well addressed by adopting the off-chain computation on-chain ver-
ification (OCOV) model and the Ratio Comparison method in addition to Newton’s method for 
square roots. As a result, the epsilon parameter (𝜀𝜀) needed in the Ratio Comparison could be lowered 
to the level of 10−18 ETH (1 wei). 

We hope that the proposed scheme and the presented solutions to the practical issues would be 
widely adopted to other token swap systems in the future. 

6. Future Work 

As follow-up research topics, we have several ideas listed below:  

 www.aetic.theiaer.org 

http://www.aetic.theiaer.org/


AETiC 2020, Vol. 4, No. 1 43 

1. Provide more in-depth analysis of the relationship between the token price volatility and the 
parameters of PG-PERS 

2. Use PERS as a model to analyze the price changes in order-book based token markets  
3. Extend PERS to support direct swaps between derived tokens (e.g. between ERC20 tokens) or 

cross-chain cryptocurrencies  
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