
Annals of Emerging Technologies in Computing (AETiC)
Vol. 4, No. 1, 2020

Research Article

Performance of Parallel Distributed Bat
Algorithm using MPI on a PC Cluster

 Fazal Noor*, Abdulghani Ibrahim and Mohammed M. AlKhattab

Islamic University of Al-Madinah, Saudi Arabia
mfnoor@gmail.com; a.a.ghanii@gmail.com; mostafa.kht9@gmail.com

*Correspondence: mfnoor@gmail.com

Received: 222nd November 2019; Accepted: 12th December 2019; Published: 1st January 2020
Abstract: Optimization algorithms are often used to obtain optimal solutions to complex nonlinear

problems and appear in many areas such as control, communication, computation, and others. Bat algorithm

is a heuristic optimization algorithm and efficient in obtaining approximate best solutions to non-linear

problems. In many situations complex problems involve large amount of computations that may require

simulations to run for days or weeks or even years for an algorithm to converge to a solution. In this

research, a Parallel Distributed Bat Algorithm (PDBA) is formulated using Message Passing Interface (MPI)

in C language code for a PC Cluster. The time complexity of PDBA is determined and presented. The

performance in terms of speed-up, efficiency, elapsed time, and number of times fitness function is executed

is also presented.

Keywords: Bat Algorithm, Computational Complexity, Distributed, Message Passing Interface (MPI),
Optimization Algorithm, Parallel, PC Cluster, Neural Networks.

1. Introduction

Many real-world optimization problems in the areas of controls, chemistry, biology,
engineering, and may other fields require large amounts of computations and simulations. The
problem may be formulated as a continuous function and nature inspired optimization methods
utilized to obtain optimal solutions. Bat algorithm (BA) is a heuristic optimization algorithm and has
been reported to be efficient in providing optimal solutions to continuous nonlinear constrained
problems. In cases where the search space is extremely large a PC cluster is useful for large
computations [1]. A PC cluster consists of off the shelf machines connected to a fast Ethernet switch.
A PC cluster can be thought of as an affordable supercomputer. Super computers are used in many
parallel computing applications to solve very complex problems [2].

In this research, our main aim is to develop a parallel bat algorithm for optimization problems
and use a PC cluster for parallel distributive computations [3, 5, 6, 7]. RedHat Linux is used as the
operating system with Local Area Multicomputer (LAM) software for building the cluster. Parallel
Bat algorithm using Message Passing Interface is implemented in C language and its performance is
studied on a PC Cluster.

The BA and its variants have been employed in solving variety of real-world optimization
problems, the reason is faster convergence, fewer parameter adjustments, and efficient

Fazal Noor, Abdulghani Ibrahim and Mohammed M. AlKhattab, “Performance of Parallel Distributed Bat Algorithm using
MPI on a PC Cluster”, Annals of Emerging Technologies in Computing (AETiC), Print ISSN: 2516-0281, Online ISSN: 2516-029X,
pp. 19-27, Vol. 4, No. 1, 1st January 2020, Published by International Association of Educators and Researchers (IAER), DOI:
10.33166/AETiC.2020.01.003, Available: http://aetic.theiaer.org/archive/v4/v4n1/p3.html.

http://aetic.theiaer.org/
http://www.theiaer.org/index.htm
http://aetic.theiaer.org/archive/v4/v4n1/p3.html
mailto:mfnoor@gmail.com
mailto:a.a.ghanii@gmail.com
mailto:mostafa.kht9@gmail.com
mailto:mfnoor@gmail.com

AETiC 2020, Vol. 4, No. 1 20

implementation [4]. Bat Algorithm has been used in various optimization problems. Bat Algorithm
(BA) is used to find optimum capacitor size to reduce transmission and distribution losses in bus
system [4]. BA has also used in Wireless Sensor Networks for distributed iterative node localization.
BA has also used to resolve combined economic and emission dispatch problem.

2. PC Clusters

In the literature there are many types of clusters, however a Beowulf cluster is an affordable
alternative. It consists of multiple PCs of N nodes connected with a Fast Ethernet switch [2]. The main
reason to use a PC cluster is for performance. Multiple computers connected together and working
on multiple tasks or problems is expected to finish the tasks faster than using a single computer. PC
cluster is useful for real-time constraints such a task with computations finish in a certain time period.
For example, weather forecasting has to be performed in real-time. PC cluster provides throughput,
it provides computing power much more than a single processor. An example is Beowulf Linux
cluster used by Google, in which 15,000 PCs are used to provide high performance Web search service
[3].

Figure 1. PC Cluster with MPI.

PC cluster provides memory for applications requiring huge amounts of data for example in
terabytes. PC clusters provide computational power such as for parallel programming. Breaking up
a problem into parallel tasks and submitting them to a PC cluster provides a solution in a fraction of
a time. For example, solving a system of M linear equations or matrix vector multiplication or image
processing, etc. Tasks that may be easily divided in small tasks and executed independently are called
in the literature as embarrassingly parallel [7]. The metric used to measure performance is called a
Speedup Factor and is a measure or indicator of relative performance given as

S(p) = Execution time using single processor system (with best sequential algorithm)
Execution time using multiple processor (with p processors)

 (1)

S(p) = Ts
Tp

= Ts
(Tcomputation+ Tcommunication)

 (2)

Ts: Execution time with the best sequential algorithm running on single processor, Tp : Execution
time for solving the same problem on a PC cluster. Note: Tp is the total time which consists of
computation time (Tcomp) and time spent communicating (Tcomm) among nodes in a PC cluster.
Efficiency: useful to known how long processors are being used on the computation. Efficiency is
defined as

 𝐸𝐸 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸 𝐸𝐸𝑢𝑢𝐸𝐸𝐸𝐸𝑢𝑢 𝑢𝑢𝐸𝐸𝐸𝐸𝑢𝑢𝑠𝑠𝐸𝐸 𝑝𝑝𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝑢𝑢𝑢𝑢𝐸𝐸𝑝𝑝
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸 𝐸𝐸𝑢𝑢𝐸𝐸𝐸𝐸𝑢𝑢 𝑡𝑡𝐸𝐸𝑠𝑠𝐸𝐸𝐸𝐸𝑝𝑝𝑠𝑠𝐸𝐸 𝑝𝑝𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝑢𝑢𝑢𝑢𝐸𝐸𝑝𝑝 𝐸𝐸 𝐸𝐸𝐸𝐸𝑡𝑡𝑛𝑛𝐸𝐸𝑝𝑝 𝐸𝐸𝑜𝑜 𝑝𝑝𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝑢𝑢𝑢𝑢𝐸𝐸𝑝𝑝𝑢𝑢

 (3)

 = Ts
(Tp x p)� (4)

 www.aetic.theiaer.org

AETiC 2020, Vol. 4, No. 1 21

which leads to:
 E = S(p)

p
 x 100 % (5)

3. Optimization Method – Sequential Bat Algorithm

In 2010 Xin-She Yang, proposed a meta-heuristic optimization algorithm based on Bat’s
echolocation behavior and named it Bat algorithm [1,4]. The bats emit sound waves and based on the
reflected echoes of the sound waves; the bats can discern its prey from other objects. The bats
biological system is so sophisticated that it is able to even compute the prey’s size and location. The
bat emits loud sound waves when it is in search phase and then decreases the loudness as it
approaches its prey and at same time increases the pulse emission rate. The bat algorithm uses
dynamic strategy to perform global search (exploration) and local search (exploitation) to get a better
solution. Yang developed the bat algorithm with the following 3 rules:

1. Echolocation is used by the bats to compute distance and be able to discern between
food/prey and background objects.

2. Each bat is flying randomly with velocity at position x and with a frequency f. The frequency
may have varying wavelength lambda, and loudness A0 to search for prey.

3. Assumption that loudness changes from a large positive value for A0 to a minimum constant
value Amin.

BA approach is based on the hunting behavior of bats. Bats use echolocation to detect prey, avoid
obstacles and locate their resting location. The bats emit high-pitched sounds and interpret their
echoes to determine the distance and direction of targets. The Bat algorithm has the following main
features, automatic zooming via loudness and pulse emission rates, parameter control, frequency
tuning. It has the following advantages, ability to solve efficiently wide range of nonlinear
optimization problems with optimal solutions. The Bat algorithm has proven to provide solutions in
a variety of applications, namely, Engineering design, Protein Structure prediction, Classification of
genes, PID controllers, and Neural Networks.

3.1 Sequential Bat Algorithm

Step 1: Initialization of Bat Population
Generate population randomly of N bats (possible solutions) each with dimension d and initial

values for frequency, velocity, pulse emission rate and loudness,
𝑥𝑥i𝑗𝑗 = 𝑥𝑥min𝑗𝑗 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1)(𝑥𝑥max𝑗𝑗 − 𝑥𝑥min𝑗𝑗) (6)

Where 𝑖𝑖 = 1, 2 … N, 𝑗𝑗 = 1, 2 … d, 𝑥𝑥min𝑗𝑗 𝑟𝑟𝑟𝑟𝑟𝑟 𝑥𝑥max𝑗𝑗 are lower and upper boundaries of
dimension j, respectively.

Step 2: Update Frequency, Velocity and Solution
Each bat (solution) emits sound pulses of random frequency having value between fmax and

fmin, and controls the velocity and provides a new position. Use the following equations for
frequency, velocity, and position to update the bat’s position.
 𝑓𝑓𝐸𝐸 = 𝑓𝑓𝑡𝑡𝐸𝐸𝐸𝐸 + (𝑓𝑓𝑡𝑡𝑚𝑚𝐸𝐸 − 𝑓𝑓𝑡𝑡𝐸𝐸𝐸𝐸)𝛽𝛽 (7)
 𝑣𝑣𝐸𝐸𝐸𝐸 = 𝑣𝑣𝐸𝐸𝐸𝐸−1 + (𝑥𝑥𝐸𝐸𝐸𝐸−1 − 𝑥𝑥∗)𝑓𝑓𝐸𝐸 (8)
 𝑥𝑥𝐸𝐸𝐸𝐸 = 𝑥𝑥𝐸𝐸𝐸𝐸−1 + 𝑣𝑣𝐸𝐸𝐸𝐸 (9)

Where β is a random number in the interval [0, 1] and x* is the current global best solution which
is located after comparing all the solutions. Upper and lower bounds of frequency are chosen such
that it is comparable to the size of search space of that variable.
 𝛽𝛽𝑓𝑓𝑡𝑡𝐸𝐸𝐸𝐸 = 0, 𝑓𝑓𝑡𝑡𝑚𝑚𝐸𝐸 = 100 (10)

• x* is the current global best location
• t is number of iteration

 www.aetic.theiaer.org

AETiC 2020, Vol. 4, No. 1 22

Step 3: Local Search
Use the following equation to compute a random walk in the vicinity of the best solution.

 𝑥𝑥𝐸𝐸𝐸𝐸𝑛𝑛 = 𝑥𝑥𝐸𝐸𝑠𝑠𝑜𝑜 + 𝜀𝜀𝐴𝐴𝐸𝐸 (11)
Note, 𝑥𝑥𝐸𝐸𝑠𝑠𝑜𝑜 is the best solution chosen from among the best solutions, ε is a random number in

the interval [-1, 1], while 𝐴𝐴𝐸𝐸 represents an average loudness of all the bats.

Step 4: Updating Loudness and Pulse Emission Rate
As the bat approach prey, they decrease the loudness of their emitted sound pulse and increase

their pulse emission rate, these 2 are updated according to the following equations,
 𝐴𝐴𝐸𝐸𝐸𝐸+1 = 𝑟𝑟𝐴𝐴𝐸𝐸𝐸𝐸 (12)
 𝑟𝑟𝐸𝐸𝐸𝐸+1 = 𝐴𝐴𝐸𝐸0(1 − 𝑒𝑒−𝛾𝛾𝐸𝐸) (13)

Where α and γ have constant values, 𝑟𝑟𝐸𝐸0 and 𝐴𝐴𝐸𝐸0 have random values in the following range,
𝑟𝑟𝐸𝐸0 ∈ [0, 1] and 𝐴𝐴𝐸𝐸0 ∈ [1, 2].

Step 5: Find the current best solution.
Compare the current best bat with the last best fitness value, if it is better then perform an update

of best solution.

3.2 Parallel Models - Bat Algorithm

The parallel bat algorithm is based on the inherent behaviour of each bat echolocation. Every bat
is flying independently with its own frequency, velocity, and location. Therefore, a straight forward
parallel method would be to have number of processors equal to the number of flying bats. Each
processor executes in a parallel and distributed fashion. However, when there are limited number of
processors, then a group of X bats or solutions will be assigned to each processor. In a parallel
distributed algorithm, each worker node works on a split population (i.e. solutions) depending on
the size of the PC cluster. That is if a PC cluster consisted of n=16 nodes and the population size was
160, then each node works on population size of 160/16 = 10 solutions. The worker nodes each
performs the same sequential steps, but now with reduced population size. Each worker after a
specified number of iterations, sends the current best of its group to the Master node. The master
node after receiving from all the workers their best, it then compares them and sends back to each
worker, the best of all best_k. The parallel-distributed bat algorithm using the Master-Worker model
is summarized as follows:

3.3 Parallel Models: Master-Slave Model

Parallel-Distributed Bat Algorithm – Master – Worker (PDBA-MW)
Initialize every_send_time to 50
For (iteration = 1 to Max_iteration)
IF (Worker Node) then
 For (i=1 to newpopsize) Note: newpopsize is N / total_workers

1. Perform Steps 1 to 5 of sequential algorithm
 End
 If (iterations equals every_send_time) then

a. Each worker_k sends its best candidate solution and corresponding fitness to the
Master.

b. Receive the best solution and fitness from Master node.

 www.aetic.theiaer.org

AETiC 2020, Vol. 4, No. 1 23

Else if (Master Node) then

 For (k = 1 to Total_Workers)

1. Receive best_k from each worker.

2. Compare and choose best among all the best received.

3. Send to each worker the best.

ENDIF
The process is terminated when desired accuracy is achieved or maximum number of iterations

has been reached.

Figure 2. Parallel Bat Algorithm on PC Cluster with MPI.

In the PDBA the master may be used to perform primarily the exploration part and workers
primarily perform the exploitation part more than exploration of the search space. Other scenarios
are possible. The main objective in the PD method is to reduce the communication time as much as
possible compared to the computation time.

3.4 Parallel Models: Group Model

In this model, after a fixed number of iterations, each node sends or broadcasts its best solution
to the group nodes. This means if there are N nodes, then there will be N broadcasts in total. Each
node stores the received best and performs comparison. If received solution is better than the node’s
best, it is updated otherwise not. In the Bat algorithm the steps that can be parallelized (executed
independently are bats updating its position) and iterations from generation to generation can not be
parallelized since the improvement in population of bats depend on earlier update of the solutions.

In the proposed PDBA, the MPI send and receive communication routines are used. The Send
and Receive routines are Blocking, i.e. is do not return until transfer is completed. The syntax of send
is MPI_Send(buf, count, datatype, dest, tag, comm), where buf is address of send buffer, count is
number of items to send, datatype is datatype of each item, dest is rank of destination process, tag is
message tag, and comm is the communicator. The syntax of receive is MPI_Recv(buf, count,
datatype, src, tag, comm, status), where parameters are similar to send, src is rank of source process,
and status is status of operation.
Time Complexity Analysis of Bat Algorithm

In this section, the time complexity of the serial Bat algorithm and the PDBA. Since the time
complexity of a Heuristic algorithm depends on the number of iterations. Here time complexity of
Bat algorithm time complexity is first derived based on time taken to perform floating point
multiplication, and addition. The following Theorem is used for determining complexity.

Theorem: f(x) = O(g(x)) if and only if there exists positive constants, c and x0, such that 0 < f(x) <
cg(x) for all x ³ x0 where f(x) and g(x) are functions of x. The computational complexity of the BA
algorithm is determined to be as follows,

 𝑇𝑇𝐵𝐵𝐵𝐵 = 𝑂𝑂�3𝑁𝑁(𝑟𝑟 + 1)� + 𝑂𝑂(𝑁𝑁(6𝑟𝑟 + 1) + 𝑂𝑂(𝑁𝑁 𝑥𝑥 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑒𝑒𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟) (14a)

When considering a multiplication or an adds as an operation, then equation (14a) can be
rewritten as,
 𝑇𝑇𝐵𝐵𝐵𝐵 = 𝑂𝑂(𝑁𝑁𝑟𝑟) + 𝑂𝑂(𝑁𝑁 𝑥𝑥 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑒𝑒𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓 𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑥𝑥𝑖𝑖𝑓𝑓𝑐𝑐) (14b)

 www.aetic.theiaer.org

AETiC 2020, Vol. 4, No. 1 24

 𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝑠𝑠 = 𝐺𝐺𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑢𝑢𝑥𝑥 𝑇𝑇𝐵𝐵𝐵𝐵 (15)

where N is the population size, d is the number of dimensions, and G is the number of
generations.

The time complexity of PDBA is similar to the serial or sequential Bat algorithm with N replaced
with p=N/M where N is the population size and M is the number of worker nodes, in addition PDBA
has Tcomm (communication time). The communication time complexity of parallel algorithm is Tcomm
is defined to be tstartup + n x data, where n is the size of data. Start-up time is assumed to be constant
and data time is transmission time to send one data and n data words to be transmitted. The total
time complexity of the PDBA is the sum of complexity of computation and communication times.
 𝑇𝑇𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 = 𝑂𝑂(3𝑐𝑐(𝑟𝑟 + 1) + 𝑂𝑂�𝑐𝑐(6𝑟𝑟 + 1)� + 𝑂𝑂(𝑐𝑐 𝑥𝑥 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑒𝑒𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟) + 𝑇𝑇𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 (16a)

For large p or d, then eq. (16a) can be written as follows,
 𝑇𝑇𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 = 𝑂𝑂(𝑐𝑐𝑟𝑟) + 𝑂𝑂(𝑐𝑐 𝑥𝑥 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑒𝑒𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟) + 𝑇𝑇𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 (16b)

Usually, Tcomm is small and can be ignored. The theoretical Speed up (S) of PDBA is then
computed as follows,
 𝑆𝑆𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 = 𝑇𝑇𝐵𝐵𝐵𝐵 𝑇𝑇𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵⁄ (17)

4. Results

In this section, in order to determine how well the PDBA optimization algorithm works several
benchmark functions are used as a check. The PDBA simulations are run on a PC cluster consisting
of a Master node and M worker nodes. The population size N is chosen to be 160. Each node works
on pop = N/M with M consisting of 1, 2, 4, 8, and 16 nodes, respectively. The parameters used for
the simulation are as follows; Maximum number of generations is 10000, population size is 160 for 1
node, 80 for 2 nodes, 40 for 4 nodes, 20 for 8 nodes, and 10 for 16 nodes. All the benchmark functions
have known global optimum values. The PDBA is terminated when either maximum number of
generations are reached or the following condition is satisfied
 �𝐹𝐹𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝑠𝑠 𝑡𝑡𝐸𝐸𝐸𝐸 − 𝐹𝐹𝐸𝐸𝐸𝐸𝑡𝑡𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝑜𝑜 𝑡𝑡𝐸𝐸𝐸𝐸� < 10−4 (18)

Three performance measurements are speed-up, efficiency, and elapsed time are used to
evaluate the performance of the PDBA algorithm. Figure 3 and Figure 4 shows the speedup and
efficiency, respectively, for 3 different population sizes, double (160), original (80), and half size (40).
Figure 5, shows time taken for the 5 different PC cluster sizes, the time decreases with increase in PC
cluster size. Figures 5 and 6 show the number of times a fitness function is called and maximum,
minimum, and average values are plotted. To check the performance of PDBA, the following
benchmark functions out of many available were tested. A benchmark function named F1: Schaffer 2
is a global optimization problem, having the following features, being continuous, not convex,
unimodal, differentiable, and non-separable. This is a unimodal minimization problem defined as
follows:

 𝑓𝑓𝑆𝑆ℎ𝑚𝑚𝑜𝑜𝑜𝑜𝐸𝐸𝑝𝑝(𝐱𝐱) = 0.5 + 𝑢𝑢𝐸𝐸𝐸𝐸2(𝐸𝐸12− 𝐸𝐸22)2− 0.5
1+ 0.001(𝐸𝐸12 + 𝐸𝐸22)2

 (19)
Here, n represents the number of dimensions and 𝑥𝑥𝐸𝐸 ∈ [−100, 100] for 𝑖𝑖 = 1, 2 . For 2

dimensions f(xi) = 0, for xi = 0 and for i=1, 2.
Another benchmark function F2 is the Rosenbrock global optimization problem. This is a

minimization problem defined as follows:
𝑓𝑓𝑅𝑅𝐸𝐸𝑢𝑢𝐸𝐸𝐸𝐸𝑛𝑛𝑝𝑝𝐸𝐸𝐸𝐸𝑅𝑅(𝐱𝐱) = ∑ [100 (𝑥𝑥𝐸𝐸2 − 𝑥𝑥𝐸𝐸+1)2 + (𝑥𝑥𝐸𝐸 − 1)2]𝐸𝐸−1

𝐸𝐸=1 (20)

Here n represents the number of dimension and for i=1,, n. Global optimum occurs at f(xi) =0
for xi = 1 and for i=1,2,….,n. The features of the Rosenbrock function are that it is continuous, convex,
multimodal, differentiable, and non-separable.

 www.aetic.theiaer.org

AETiC 2020, Vol. 4, No. 1 25

Figure 3. Speedup for Cluster size for original population size of 80, half (40), and double (160).

 Figure 4. Efficiency for PC Cluster size for original population size of 80, half (40), and double (160).

Figure 5. Elapsed time in seconds versus PC cluster size.

Figure 6. Number of times the fitness function is evaluated for benchmark function F1.

0

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

d
up

PC Cluster size

Speed Up

Series1

Series2

Series3

0

0.5

1

1.5

1 2 4 8 16

Ef
fic

ie
nc

y

PC Cluster size

Efficiency

4.5E+01

2.2E+01

1.1E+01
5.6E+00 2.8E+000.0E+00

1.0E+01
2.0E+01
3.0E+01
4.0E+01
5.0E+01

1 2 4 8 16

Ti
m

e
in

 S
ec

on
ds

PC Cluster Size

Time (sec) vs PC cluster size

 www.aetic.theiaer.org

AETiC 2020, Vol. 4, No. 1 26

Figure 7. Number of times the fitness function is evaluated for benchmark function F2.

Figure 8. Two-dimensional Schaffer 2 function

Figure 9. Two-dimensional Rosenbrock function

5. Concluding Discussions

A parallel distributed Bat algorithm is formulated for continuous constrained optimization
problems. The results show the efficacy of the algorithm for optimization problems with large
population size and vast search space. The Bat’s algorithm has several parameters which can affect
the convergence rate if they are fine tuned. New solutions are formulated by computing the
frequencies, loudness and pulse emission rates. The new generated solutions are accepted or not
depends on several factors such as loudness, pulse rate, and fitness of the solution to the global
optimum. It is seen the parallel distributed version using MPI, namely the PDBA, the convergence
rate and speed up increases as PC cluster size is increased. The time computational complexity for
BA and PDBA was derived and speed up in terms of computational and communication presented.

 www.aetic.theiaer.org

AETiC 2020, Vol. 4, No. 1 27

The Schaffeur2 and Rosenbrock are standard benchmark functions were used to evaluate the
characteristics of PDBA such as convergence rate, precision, and robustness. It was seen the
convergence to the minimum took longer in the Rosenbrock function case compared to the Schafeur2
function. The common features of these two functions are both are continuous, differentiable, and
non-separable, whereas Schaffer2 is not convex and unimodal and Rosenbrock is convex, and
multimodal.

In real-world applications involving thousands or more design variables are very challenging
and in the future the work should be directed towards using the PDBA with multi-objective
constraints. Another direction of future research is the use of PDBA in obtaining optimum weights
of Neural Networks.

Acknowledgement

This research was supported by the Takamul Grant #25 from the Deanship of Research at the
Islamic University of AlMadinah. The authors are also thankful to the support provided by the
Faculty of Computer and Information Systems.

References

[1] X.-S. Yang, "A New Metaheuristic Bat-Inspired Algorithm," Studies in Computational Intelligence, Springer

Berlin, pp. 65-74, 2010. https://doi.org/10.1007/978-3-642-12538-6_6.

[2] Syed Misbahuddin and Fazal Noor, “Hands-on Workshop on Parallel Processing”, University of Hail,

Saudi Arabia,: Syed Misbahuddin, 2007.

[3] D.-W. Huang and J. Lin, "Scaling Populations of a Genetic Algorithm for Job Shop Scheduling Problems

using MapReduce," presented at the 2010 IEEE Second International Conference on Cloud Computing

Technology and Science (CloudCom), Indianapolis, IN, pp. 780–785, 2010. DOI 10.1109/CloudCom.2010.18

[4] Y. Xin-She "Bat algorithm for multi-objective optimisation," Internal Journal of BioInspired Computation,

vol. 3, pp. 267-274, 2011. Doi 10.1504/IJBIC.2011.042259.

[5] F. Wang, P. L. H. Yu, and D. W. Cheung, "Combining Technical Trading Rules Using Parallel Particle

Swarm Optimization based on Hadoop," presented at the International Joint Conference on Neural

Networks (IJCNN), Beijing, China, pp.3987-3994. 2014. DOI: 10.1109/IJCNN.2014.6889599.

[6] W. Zhao, H. Ma, and Q. He, "Parallel k-means clustering based on mapreduce," vol. 5931, pp. 674-679, 2009.

[7] Barry Wilkinson and Michael Allen, Parallel Programming: Techniques and Applications Using Networked

Workstations and Parallel Computers, North Carolina at Charlotte: Prentice Hall, 2005.

[8] K. Khan, A. Nikov, and A. Sahai, "A Fuzzy Bat Clustering Method for Ergonomic Screening of Office

Workplaces," in Third International Conference on Software, Services and Semantic Technologies S3T 2011.

vol. 101, ed: Springer Berlin Heidelberg, 2011, pp. 59-66. https://doi.org/10.1007/978-3-642-23163-6_9

[9] Eduardo R. Hruschkaaand Nelson F.F. EbeckenbCOPPE, "researchgate," 27 May 2002. [Online] Available:

https:// www.researchgate.net /publication/ 220571471_A_ genetic_ algorithm _for _cluster _analysis.

[Accessed 3 Mar 2019].

[10] Chandra R., L. Dagum D. Kohr. D. Maydan, J. McDonald and R. Menon, Parallel Programming in OpenMP,

San Francisco, CA: Margon Kaufmann Publishers, 2001.

© 2020 by the author(s). Published by Annals of Emerging Technologies in Computing
(AETiC), under the terms and conditions of the Creative Commons Attribution (CC BY)
license which can be accessed at http://creativecommons.org/licenses/by/4.0/.

 www.aetic.theiaer.org

https://doi.org/10.1109/CloudCom.2010.18
https://doi.org/10.1504/IJBIC.2011.042259
https://doi.org/10.1109/IJCNN.2014.6889599
http://creativecommons.org/licenses/by/4.0/

	1. Introduction
	2. PC Clusters
	3. Optimization Method – Sequential Bat Algorithm
	3.1 Sequential Bat Algorithm
	3.2 Parallel Models - Bat Algorithm
	3.3 Parallel Models: Master-Slave Model
	3.4 Parallel Models: Group Model
	4. Results
	5. Concluding Discussions
	Acknowledgement
	References

