
Annals of Emerging Technologies in Computing (AETiC)   
Vol. 4, No. 1, 2020 

Research Article 

Performance of Parallel Distributed Bat 
Algorithm using MPI on a PC Cluster 

 

    Fazal Noor*, Abdulghani Ibrahim and Mohammed M. AlKhattab 

Islamic University of Al-Madinah, Saudi Arabia 
mfnoor@gmail.com; a.a.ghanii@gmail.com; mostafa.kht9@gmail.com 

*Correspondence: mfnoor@gmail.com 
  

Received: 222nd November 2019; Accepted: 12th December 2019; Published: 1st January 2020 
Abstract: Optimization algorithms are often used to obtain optimal solutions to complex nonlinear 

problems and appear in many areas such as control, communication, computation, and others.  Bat algorithm 

is a heuristic optimization algorithm and efficient in obtaining approximate best solutions to non-linear 

problems.  In many situations complex problems involve large amount of computations that may require 

simulations to run for days or weeks or even years for an algorithm to converge to a solution.  In this 

research, a Parallel Distributed Bat Algorithm (PDBA) is formulated using Message Passing Interface (MPI) 

in C language code for a PC Cluster. The time complexity of PDBA is determined and presented. The 

performance in terms of speed-up, efficiency, elapsed time, and number of times fitness function is executed 

is also presented.  
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1. Introduction 

Many real-world optimization problems in the areas of controls, chemistry, biology, 
engineering, and may other fields require large amounts of computations and simulations. The 
problem may be formulated as a continuous function and nature inspired optimization methods 
utilized to obtain optimal solutions. Bat algorithm (BA) is a heuristic optimization algorithm and has 
been reported to be efficient in providing optimal solutions to continuous nonlinear constrained 
problems. In cases where the search space is extremely large a PC cluster is useful for large 
computations [1]. A PC cluster consists of off the shelf machines connected to a fast Ethernet switch. 
A PC cluster can be thought of as an affordable supercomputer. Super computers are used in many 
parallel computing applications to solve very complex problems [2].   

In this research, our main aim is to develop a parallel bat algorithm for optimization problems 
and use a PC cluster for parallel distributive computations [3, 5, 6, 7]. RedHat Linux is used as the 
operating system with Local Area Multicomputer (LAM) software for building the cluster. Parallel 
Bat algorithm using Message Passing Interface is implemented in C language and its performance is 
studied on a PC Cluster.   

The BA and its variants have been employed in solving variety of real-world optimization 
problems, the reason is faster convergence, fewer parameter adjustments, and efficient 
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implementation [4]. Bat Algorithm has been used in various optimization problems.  Bat Algorithm 
(BA) is used to find optimum capacitor size to reduce transmission and distribution losses in bus 
system [4]. BA has also used in Wireless Sensor Networks for distributed iterative node localization. 
BA has also used to resolve combined economic and emission dispatch problem. 

2. PC Clusters 

In the literature there are many types of clusters, however a Beowulf cluster is an affordable 
alternative. It consists of multiple PCs of N nodes connected with a Fast Ethernet switch [2]. The main 
reason to use a PC cluster is for performance. Multiple computers connected together and working 
on multiple tasks or problems is expected to finish the tasks faster than using a single computer. PC 
cluster is useful for real-time constraints such a task with computations finish in a certain time period. 
For example, weather forecasting has to be performed in real-time. PC cluster provides throughput, 
it provides computing power much more than a single processor. An example is Beowulf Linux 
cluster used by Google, in which 15,000 PCs are used to provide high performance Web search service 
[3]. 

 
Figure 1. PC Cluster with MPI. 

PC cluster provides memory for applications requiring huge amounts of data for example in 
terabytes. PC clusters provide computational power such as for parallel programming. Breaking up 
a problem into parallel tasks and submitting them to a PC cluster provides a solution in a fraction of 
a time. For example, solving a system of M linear equations or matrix vector multiplication or image 
processing, etc. Tasks that may be easily divided in small tasks and executed independently are called 
in the literature as embarrassingly parallel [7]. The metric used to measure performance is called a 
Speedup Factor and is a measure or indicator of relative performance given as  

S(p) = Execution time using single processor system ( with best sequential algorithm)
Execution time using multiple processor (with p processors)

               (1)                                              

S(p) =  Ts
Tp

=  Ts
(  Tcomputation+  Tcommunication )

                                              (2) 

Ts: Execution time with the best sequential algorithm running on single processor, Tp : Execution 
time for solving the same problem on a PC cluster. Note: Tp is the total time which consists of 
computation time (Tcomp) and time spent communicating (Tcomm) among nodes in a PC cluster.  
Efficiency: useful to known how long processors are being used on the computation. Efficiency is 
defined as 

 𝐸𝐸 =   𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸 𝐸𝐸𝑢𝑢𝐸𝐸𝐸𝐸𝑢𝑢 𝑢𝑢𝐸𝐸𝐸𝐸𝑢𝑢𝑠𝑠𝐸𝐸 𝑝𝑝𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝑢𝑢𝑢𝑢𝐸𝐸𝑝𝑝
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸 𝐸𝐸𝑢𝑢𝐸𝐸𝐸𝐸𝑢𝑢  𝑡𝑡𝐸𝐸𝑠𝑠𝐸𝐸𝐸𝐸𝑝𝑝𝑠𝑠𝐸𝐸 𝑝𝑝𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝑢𝑢𝑢𝑢𝐸𝐸𝑝𝑝  𝐸𝐸 𝐸𝐸𝐸𝐸𝑡𝑡𝑛𝑛𝐸𝐸𝑝𝑝 𝐸𝐸𝑜𝑜 𝑝𝑝𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝑢𝑢𝑢𝑢𝐸𝐸𝑝𝑝𝑢𝑢

                               (3) 

   =    Ts
( Tp x p )�                                                                    (4) 
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which leads to:                                                          
 E =  S(p)

p
  x 100 %                                                                   (5) 

3. Optimization Method – Sequential Bat Algorithm  

In 2010 Xin-She Yang, proposed a meta-heuristic optimization algorithm based on Bat’s 
echolocation behavior and named it Bat algorithm [1,4]. The bats emit sound waves and based on the 
reflected echoes of the sound waves; the bats can discern its prey from other objects. The bats 
biological system is so sophisticated that it is able to even compute the prey’s size and location. The 
bat emits loud sound waves when it is in search phase and then decreases the loudness as it 
approaches its prey and at same time increases the pulse emission rate. The bat algorithm uses 
dynamic strategy to perform global search (exploration) and local search (exploitation) to get a better 
solution. Yang developed the bat algorithm with the following 3 rules: 

1. Echolocation is used by the bats to compute distance and be able to discern between 
food/prey and background objects. 

2. Each bat is flying randomly with velocity at position x and with a frequency f. The frequency 
may have varying wavelength lambda, and loudness A0 to search for prey.   

3. Assumption that loudness changes from a large positive value for A0 to a minimum constant 
value Amin. 

BA approach is based on the hunting behavior of bats. Bats use echolocation to detect prey, avoid 
obstacles and locate their resting location. The bats emit high-pitched sounds and interpret their 
echoes to determine the distance and direction of targets. The Bat algorithm has the following main 
features, automatic zooming via loudness and pulse emission rates, parameter control, frequency 
tuning. It has the following advantages, ability to solve efficiently wide range of nonlinear 
optimization problems with optimal solutions. The Bat algorithm has proven to provide solutions in 
a variety of applications, namely, Engineering design, Protein Structure prediction, Classification of 
genes, PID controllers, and Neural Networks.  

3.1 Sequential Bat Algorithm 

Step 1: Initialization of Bat Population  
Generate population randomly of N bats (possible solutions) each with dimension d and initial 

values for frequency, velocity, pulse emission rate and loudness, 
𝑥𝑥i𝑗𝑗 =  𝑥𝑥min𝑗𝑗 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1)(𝑥𝑥max𝑗𝑗 −  𝑥𝑥min𝑗𝑗)                                          (6) 

Where  𝑖𝑖 =  1, 2 …  N, 𝑗𝑗 =  1, 2 …  d,           𝑥𝑥min𝑗𝑗  𝑟𝑟𝑟𝑟𝑟𝑟 𝑥𝑥max𝑗𝑗      are lower and upper boundaries of 
dimension j, respectively. 

Step 2: Update Frequency, Velocity and Solution 
Each bat (solution) emits sound pulses of random frequency having value between fmax and 

fmin, and controls the velocity and provides a new position. Use the following equations for 
frequency, velocity, and position to update the bat’s position. 
        𝑓𝑓𝐸𝐸 = 𝑓𝑓𝑡𝑡𝐸𝐸𝐸𝐸 + (𝑓𝑓𝑡𝑡𝑚𝑚𝐸𝐸 − 𝑓𝑓𝑡𝑡𝐸𝐸𝐸𝐸)𝛽𝛽                                                (7) 
        𝑣𝑣𝐸𝐸𝐸𝐸 =  𝑣𝑣𝐸𝐸𝐸𝐸−1 + (𝑥𝑥𝐸𝐸𝐸𝐸−1 −  𝑥𝑥∗)𝑓𝑓𝐸𝐸                                                (8) 
        𝑥𝑥𝐸𝐸𝐸𝐸 =  𝑥𝑥𝐸𝐸𝐸𝐸−1 + 𝑣𝑣𝐸𝐸𝐸𝐸                                                          (9) 

Where β is a random number in the interval [0, 1] and x* is the current global best solution which 
is located after comparing all the solutions.  Upper and lower bounds of frequency are chosen such 
that it is comparable to the size of search space of that variable. 
        𝛽𝛽𝑓𝑓𝑡𝑡𝐸𝐸𝐸𝐸 = 0, 𝑓𝑓𝑡𝑡𝑚𝑚𝐸𝐸 = 100                                                 (10) 

• x* is the current global best location  
• t is number of iteration 
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Step 3: Local Search 
Use the following equation to compute a random walk in the vicinity of the best solution. 

       𝑥𝑥𝐸𝐸𝐸𝐸𝑛𝑛 =  𝑥𝑥𝐸𝐸𝑠𝑠𝑜𝑜 +  𝜀𝜀𝐴𝐴𝐸𝐸                                                     (11) 
Note, 𝑥𝑥𝐸𝐸𝑠𝑠𝑜𝑜  is the best solution chosen from among the best solutions, ε is a random number in 

the interval [-1, 1], while 𝐴𝐴𝐸𝐸 represents an average loudness of all the bats.  

Step 4: Updating Loudness and Pulse Emission Rate 
As the bat approach prey, they decrease the loudness of their emitted sound pulse and increase 

their pulse emission rate, these 2 are updated according to the following equations, 
      𝐴𝐴𝐸𝐸𝐸𝐸+1 = 𝑟𝑟𝐴𝐴𝐸𝐸𝐸𝐸                                                            (12) 
      𝑟𝑟𝐸𝐸𝐸𝐸+1 = 𝐴𝐴𝐸𝐸0(1 − 𝑒𝑒−𝛾𝛾𝐸𝐸)                                                     (13) 

Where α and γ have constant values, 𝑟𝑟𝐸𝐸0 and 𝐴𝐴𝐸𝐸0 have random values in the following range, 
𝑟𝑟𝐸𝐸0 ∈ [0, 1] and 𝐴𝐴𝐸𝐸0  ∈ [1, 2]. 

Step 5: Find the current best solution. 
Compare the current best bat with the last best fitness value, if it is better then perform an update 

of best solution. 

3.2 Parallel Models - Bat Algorithm 

The parallel bat algorithm is based on the inherent behaviour of each bat echolocation. Every bat 
is flying independently with its own frequency, velocity, and location. Therefore, a straight forward 
parallel method would be to have number of processors equal to the number of flying bats. Each 
processor executes in a parallel and distributed fashion. However, when there are limited number of 
processors, then a group of X bats or solutions will be assigned to each processor. In a parallel 
distributed algorithm, each worker node works on a split population (i.e. solutions) depending on 
the size of the PC cluster. That is if a PC cluster consisted of n=16 nodes and the population size was 
160, then each node works on population size of 160/16 = 10 solutions. The worker nodes each 
performs the same sequential steps, but now with reduced population size. Each worker after a 
specified number of iterations, sends the current best of its group to the Master node. The master 
node after receiving from all the workers their best, it then compares them and sends back to each 
worker, the best of all best_k. The parallel-distributed bat algorithm using the Master-Worker model 
is summarized as follows: 

3.3 Parallel Models: Master-Slave Model 

Parallel-Distributed Bat Algorithm – Master – Worker (PDBA-MW) 
Initialize every_send_time to 50 
For ( iteration = 1 to Max_iteration ) 
IF ( Worker Node ) then 
   For ( i=1 to newpopsize)   Note: newpopsize is N / total_workers 

1. Perform Steps 1 to 5 of sequential algorithm  
   End 
    If ( iterations equals every_send_time ) then 

a. Each worker_k sends its best candidate solution and corresponding fitness to the 
Master. 

b. Receive the best solution and fitness from Master node. 
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Else if ( Master Node ) then 

  For ( k = 1 to Total_Workers ) 

1. Receive best_k from each worker. 

2. Compare and choose best among all the best received. 

3. Send to each worker the best. 

ENDIF 
The process is terminated when desired accuracy is achieved or maximum number of iterations 

has been reached. 

 
Figure 2. Parallel Bat Algorithm on PC Cluster with MPI. 

In the PDBA the master may be used to perform primarily the exploration part and workers 
primarily perform the exploitation part more than exploration of the search space. Other scenarios 
are possible. The main objective in the PD method is to reduce the communication time as much as 
possible compared to the computation time.  

3.4 Parallel Models: Group Model 

In this model, after a fixed number of iterations, each node sends or broadcasts its best solution 
to the group nodes. This means if there are N nodes, then there will be N broadcasts in total. Each 
node stores the received best and performs comparison. If received solution is better than the node’s 
best, it is updated otherwise not. In the Bat algorithm the steps that can be parallelized (executed 
independently are bats updating its position) and iterations from generation to generation can not be 
parallelized since the improvement in population of bats depend on earlier update of the solutions.  

In the proposed PDBA, the MPI send and receive communication routines are used. The Send 
and Receive routines are Blocking, i.e. is do not return until transfer is completed. The syntax of send 
is MPI_Send( buf, count, datatype, dest, tag, comm), where buf is address of send buffer, count is 
number of items to send, datatype is datatype of each item, dest is rank of destination process, tag is 
message tag, and comm is the communicator. The syntax of receive is MPI_Recv( buf, count, 
datatype, src, tag, comm, status), where parameters are similar to send, src is rank of source process, 
and status is status of operation.  
Time Complexity Analysis of Bat Algorithm 

In this section, the time complexity of the serial Bat algorithm and the PDBA. Since the time 
complexity of a Heuristic algorithm depends on the number of iterations. Here time complexity of 
Bat algorithm time complexity is first derived based on time taken to perform floating point 
multiplication, and addition. The following Theorem is used for determining complexity. 

Theorem:  f(x) = O(g(x)) if and only if there exists positive constants, c and x0, such that 0 < f(x) < 
cg(x) for all x ³ x0 where f(x) and g(x) are functions of x. The computational complexity of the BA 
algorithm is determined to be as follows, 

 𝑇𝑇𝐵𝐵𝐵𝐵 = 𝑂𝑂�3𝑁𝑁(𝑟𝑟 + 1)� + 𝑂𝑂(𝑁𝑁(6𝑟𝑟 + 1) + 𝑂𝑂(𝑁𝑁 𝑥𝑥 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑒𝑒𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟 )                            (14a) 

When considering a multiplication or an adds as an operation, then equation (14a) can be 
rewritten as, 
     𝑇𝑇𝐵𝐵𝐵𝐵 = 𝑂𝑂(𝑁𝑁𝑟𝑟) +  𝑂𝑂(𝑁𝑁 𝑥𝑥 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑒𝑒𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓 𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑥𝑥𝑖𝑖𝑓𝑓𝑐𝑐)                                   (14b)                 
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     𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝑠𝑠 = 𝐺𝐺𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑢𝑢𝑥𝑥 𝑇𝑇𝐵𝐵𝐵𝐵                                                       (15)                                                                

where N is the population size, d is the number of dimensions, and G is the number of 
generations. 

The time complexity of PDBA is similar to the serial or sequential Bat algorithm with N replaced 
with p=N/M where N is the population size and M is the number of worker nodes, in addition PDBA 
has Tcomm (communication time). The communication time complexity of parallel algorithm is Tcomm 
is defined to be tstartup + n x data, where n is the size of data. Start-up time is assumed to be constant 
and data time is transmission time to send one data and n data words to be transmitted. The total 
time complexity of the PDBA is the sum of complexity of computation and communication times. 
    𝑇𝑇𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 = 𝑂𝑂(3𝑐𝑐(𝑟𝑟 + 1) + 𝑂𝑂�𝑐𝑐(6𝑟𝑟 + 1)� + 𝑂𝑂(𝑐𝑐 𝑥𝑥 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑒𝑒𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟) + 𝑇𝑇𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡             (16a)    

For large p or d, then eq. (16a) can be written as follows, 
    𝑇𝑇𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 = 𝑂𝑂(𝑐𝑐𝑟𝑟) + 𝑂𝑂(𝑐𝑐 𝑥𝑥 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑒𝑒𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟) + 𝑇𝑇𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡                                (16b) 

Usually, Tcomm is small and can be ignored. The theoretical Speed up (S) of PDBA is then 
computed as follows, 
    𝑆𝑆𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 =  𝑇𝑇𝐵𝐵𝐵𝐵 𝑇𝑇𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵⁄                                                            (17)                                  

4. Results 

In this section, in order to determine how well the PDBA optimization algorithm works several 
benchmark functions are used as a check. The PDBA simulations are run on a PC cluster consisting 
of a Master node and M worker nodes.  The population size N is chosen to be 160.  Each node works 
on pop = N/M with M consisting of 1, 2, 4, 8, and 16 nodes, respectively.  The parameters used for 
the simulation are as follows; Maximum number of generations is 10000, population size is 160 for 1 
node, 80 for 2 nodes, 40 for 4 nodes, 20 for 8 nodes, and 10 for 16 nodes.  All the benchmark functions 
have known global optimum values.  The PDBA is terminated when either maximum number of 
generations are reached or the following condition is satisfied 
   �𝐹𝐹𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝑠𝑠 𝑡𝑡𝐸𝐸𝐸𝐸 −   𝐹𝐹𝐸𝐸𝐸𝐸𝑡𝑡𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝑜𝑜 𝑡𝑡𝐸𝐸𝐸𝐸�   <  10−4                                             (18) 

Three performance measurements are speed-up, efficiency, and elapsed time are used to 
evaluate the performance of the PDBA algorithm.  Figure 3 and Figure 4 shows the speedup and 
efficiency, respectively, for 3 different population sizes, double (160), original (80), and half size (40).  
Figure 5, shows time taken for the 5 different PC cluster sizes, the time decreases with increase in PC 
cluster size. Figures 5 and 6 show the number of times a fitness function is called and maximum, 
minimum, and average values are plotted. To check the performance of PDBA, the following 
benchmark functions out of many available were tested. A benchmark function named F1: Schaffer 2 
is a global optimization problem, having the following features, being continuous, not convex, 
unimodal, differentiable, and non-separable. This is a unimodal minimization problem defined as 
follows: 

   𝑓𝑓𝑆𝑆ℎ𝑚𝑚𝑜𝑜𝑜𝑜𝐸𝐸𝑝𝑝(𝐱𝐱) = 0.5 + 𝑢𝑢𝐸𝐸𝐸𝐸2( 𝐸𝐸12− 𝐸𝐸22)2− 0.5
1+  0.001( 𝐸𝐸12   +    𝐸𝐸22)2

                                     (19) 
Here, n represents the number of dimensions and 𝑥𝑥𝐸𝐸  ∈  [−100, 100]   for 𝑖𝑖 = 1, 2 .   For 2 

dimensions f( xi ) = 0,  for xi = 0 and for i=1, 2.  
Another benchmark function F2 is the Rosenbrock global optimization problem.  This is a 

minimization problem defined as follows: 
𝑓𝑓𝑅𝑅𝐸𝐸𝑢𝑢𝐸𝐸𝐸𝐸𝑛𝑛𝑝𝑝𝐸𝐸𝐸𝐸𝑅𝑅(𝐱𝐱) =   ∑ [100 ( 𝑥𝑥𝐸𝐸2  −   𝑥𝑥𝐸𝐸+1 )2  +    (𝑥𝑥𝐸𝐸 − 1)2 ]𝐸𝐸−1

𝐸𝐸=1                            (20) 

Here n represents the number of dimension and for i=1,, n.  Global optimum occurs at f(xi ) =0  
for xi = 1 and for i=1,2,….,n.  The features of the Rosenbrock function are that it is continuous, convex, 
multimodal, differentiable, and non-separable. 
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Figure 3. Speedup for Cluster size for original population size of 80, half (40), and double (160). 

 
 Figure 4. Efficiency for PC Cluster size for original population size of 80, half (40), and double (160). 

 
Figure 5. Elapsed time in seconds versus PC cluster size. 

 
Figure 6. Number of times the fitness function is evaluated for benchmark function F1. 
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Figure 7. Number of times the fitness function is evaluated for benchmark function F2. 

 

Figure 8. Two-dimensional Schaffer 2 function 

 

Figure 9. Two-dimensional Rosenbrock function 

5. Concluding Discussions 

A parallel distributed Bat algorithm is formulated for continuous constrained optimization 
problems. The results show the efficacy of the algorithm for optimization problems with large 
population size and vast search space.  The Bat’s algorithm has several parameters which can affect 
the convergence rate if they are fine tuned.  New solutions are formulated by computing the 
frequencies, loudness and pulse emission rates.  The new generated solutions are accepted or not 
depends on several factors such as loudness, pulse rate, and fitness of the solution to the global 
optimum.  It is seen the parallel distributed version using MPI, namely the PDBA, the convergence 
rate and speed up increases as PC cluster size is increased.  The time computational complexity for 
BA and PDBA was derived and speed up in terms of computational and communication presented.  
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The Schaffeur2 and Rosenbrock are standard benchmark functions were used to evaluate the 
characteristics of PDBA such as convergence rate, precision, and robustness.  It was seen the 
convergence to the minimum took longer in the Rosenbrock function case compared to the Schafeur2 
function. The common features of these two functions are both are continuous, differentiable, and 
non-separable, whereas Schaffer2 is not convex and unimodal and Rosenbrock is convex, and 
multimodal.    

In real-world applications involving thousands or more design variables are very challenging 
and in the future the work should be directed towards using the PDBA with multi-objective 
constraints. Another direction of future research is the use of PDBA in obtaining optimum weights 
of Neural Networks. 
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